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Abstract

Geography Markup Language (GML) has been established as the standard language for
the transport, storage and modelling of geographic information. In this paper we study
how to adapt the XPath query language to GML documents. With this aim, we have
defined a semantic based XPath language which is not based on the (tree-based) syntactic
structure of GML documents, instead it is based on the “semantic structure” of GML
documents. In other words, the proposed XPath language is based on the GML schema.
We have developed a system called UALGIS, in order to implement the approach. Such
system stores GML documents by means of the PostGIS RDBMS. In order to execute
semantic-based XPath queries we have defined a translation of the queries into SQL. Such
translation takes into account the GML schema. Finally, the system allows to visualize the
result. With this aim, the result of a query is exported to the Keyhole Markup Language
(KML) format.

1 Introduction

The Geography Markup Language (GML) [7, 20, 21, 8] has been established as the standard
language for the transport, storage and modeling of geographic information. GML is a dialect
of the eXtensible Markup Language (XML) [27], which adapts XML to Geo-spatial data. XML
allows to describe the structure of Web data by means of a tree. The tree structure is used to
describe relations between data: for instance, a paper tag contains author, title and publisher
as subtree tags and the subtree publisher can be described by means of name of the journal,
country, editors, etc. The need for querying XML documents has motivated the design of the
XPath query language [28]. The XPath language allows to specify the path of the XML tree to
be retrieved. In addition, XPath allows to constraint the query by means of boolean conditions
about the attributes and tags of the selected nodes. For instance, we can specify in a query
that we would like to retrieve the editors of the journals in which “Becerra” has published a
paper as follows:

/papers/paper[author = “Becerra”]/journal/editor

XPath can be used for retrieving the GML elements. However, due to the usual syntactic
structure of GML documents XPath should be adapted to this special case. GML allows to
describe spatial objects including, if any, their geometry, together with the coordinate reference
system, topology, among others. However, usually, GML documents do not use the tree-based
structure of XML documents for the representation of spatial objects. Usually, GML documents
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store spatial objects as a sequence of XML elements, and they are stored as children of the tree
root [18, 30]. It makes the tree-based XPath useless in most of the cases. The reason for storing
spatial objects as a sequence of children of the root is that the tree structure is not used for
representing spatial relations. One could think that a subtree of a node represents, for instance,
the spatial objects enveloped by the node. However, it is not true in general. GML allows the
specification of relations between spatial objects. However, GML allows to define a vocabulary
of relations between spatial objects. For instance, the European INSPIRE Directive [12] has
defined a certain vocabulary of GML whose aim is to create a spatial data infrastructure in
the European Union in order to share information through public organizations. However,
the syntatic structure of GML documents do not necessarily take into account the “semantic
structure” of such vocabulary. Such vocabulary can be seen as a GML schema in such a way
that spatial objects and relations between them conforms the schema. Usually, GML documents
contain spatial objects in which spatial relations are specified by means of the linking mechanism
of XML documents. Using XPath for GML documents, we could follow the links of the GML
document in order to retrieve relationships between spatial objects, however, it makes XPath
queries very sophisticated.

In this paper we study how to adapt the XPath query language to GML documents. With
this aim, we have defined a semantic based XPath language which is not based on the (tree-based)
syntactic structure of GML documents, rather than, it is based on the “semantic structure” of
GML documents. In other words, the proposed XPath language is based on the GML schema
instead of the syntactic structure.

We have developed a system called UALGIS, available via Web in http://indalog.ual.

es/ualgis/testGMaps.jsp in order to implement the approach. Such system stores GML
documents by means of the PostGIS [25]. In order to execute semantic-based XPath queries
we have defined a translation of the queries into SQL. Such translation takes into account the
GML schema. Finally, the system allows to visualize the result. With this aim, the result of a
query is exported to the Keyhole Markup Language (KML) format [6].

1.1 Related Work

Spatial data can be handled by well-known relational database management systems (RDBMS)
like: SpatialSQL [11], GeoSQL [13], Oracle Spatial [26] and PostGIS [25]. Basically, they are
based on extensions of the relational model for storing spatial objects and extensions of the
SQL query language for the retrieval of spatial queries.

In the case of GML data, the Web Feature Service (WFS) is a standard of the OpenGis
Consortium (OGC) [22] for data manipulation of geographic features stored on a Web site
(i.e. a Web Feature Server) using HTTP requests. The expressiveness of this language is very
poor compared with query languages like SQL. GQuery [4] is a proposal for adding spatial
operators to XQuery [5], the standard XML query language. Manipulation of trees and sub-
trees are carried out by means of XQuery, while spatial processing is performed using geometric
functions which use the JTS Topology Suite [1]. JTS is an open source API that provides a
spatial object model and a set of spatial operators. The GeoXQuery approach [14] extends the
Saxon XQuery processor [16] with function libraries that provide geo-spatial operations. It is
also based on JTS and provides a GML to Scalable Vector Graphics (SVG) [29] transformation
library for the XQuery processor in order to show query results.

With respect to GQuery and GeoXQuery, our proposal can be seen as a specific query lan-
guage for GML instead of considering ad-hoc mechanisms for querying GML in XPath and
XQuery. Our approach is focused on the XPath query language which is a sublanguage of the
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XQuery language. Our work can be seen as the first step to use XQuery as query language
for GML documents. However, our proposal is based on the semantic structure of GML docu-
ments instead of the syntactic one used in GQuery and GeoXQuery. With respect to geometric
functions, we are not still interested in queries involving geometric operations. Our current ap-
proach is mainly interested to querying semantic spatial relations expressed in GML documents
which do not depend on the geometry of the objects. In any case, we will consider the extension
of our work to geometric operations in the future by using the PostGIS library. Finally, our
system is able to export the result of queries in order to visualize them, but instead of using
SVG like in GeoXQuery, we export to KML.

GML Query [19] is also a contribution in this research line that stores GML documents in
a spatial RDBMS. This approach performs a simplification of the GML schema that is then
mapped to its corresponding relational schema. The basic values of spatial objects are stored
as values of the tables. Once the document is stored, spatial queries can be expressed using
the XQuery language with spatial functions. The queries are translated to their equivalent in
SQL which are executed by means of the spatial RDBMS. This approach has some similarities
with our. Firstly, the storage of GML documents in a spatial RDBMS. In our system, we store
GML documents by means of the PostGIS RDBMS. Secondly, in our approach the queries are
expressed in XPath and are translated into SQL. However, our XPath-based query language is
properly based on the GML schema.

Another problem related to GML is how to visualize GML documents. The are several
technologies (i.e. SVG, VRML, HTML, among others) to specify how to show the content of
GML documents. KML [6] is an XML-based language focused on geographic data visualization,
including annotation of maps and images, as well as controlling the display in the sense of where
to go and where to look. From this perspective, KML is complementary to GML and most of the
major standards of the OGC including Web Feature Service (WFS) [23] and Web Map Service
(WMS) [24]. We have decided to export our GML query result to KML due to the advantages
that offer this technology (i.e. APIs, WFS, WMS) and because it has been approved by the
OGC as standard for the exchange and representation of geographic data in three dimensions.
In this way the results can be interpreted by different GIS or Earth browsers. Other approaches
return the output in SVG format but it has as disadvantage that it is just a graphical format.
KML can display the results without losing the GML semantics and allows to include meta-data.

The rest of this article is organized as follows. Section 2 will present the GML data model
and schema. Section 3 will define the semantic-based XPath language. Section 4 will describe
the system and finally Section 5 will conclude and present future work.

2 GML Data Model

In Figure 1, we show an example of GML document representing the center of a city. This
respresentation includes tags for CityCenter and cityCenterMember’s of a city, such as buildings,
blocks and ways. However, a GML data model provides mechanisms for structuring GML
documents. For instance, the previous GML document can be also represented as shown in
Figure 2.

where instead of using linking mechanisms of XML (i.e. xlink:href), the elements of the GML
document are nested. However, it is normally recommended to avoid nesting of GML elements
in order to do not increase the complexity of GML documents. From the point of view of using
XPath for querying GML documents, it makes not easy to express complex queries w.r.t. GML
documents. Our approach aims to propose a semantic version of XPath in which the result of
the query does not depend on the syntactic structure of the GML document. In other words,
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<CityCenter gml:id=”C1”>
<gml:name>London </gml:name>
<geometry>

<gml:Point>
<gml:pos>45.256 -71.92 </gml:pos >

</gml:Point >

</geometry >

<cityCenterMember>
<Building gml:id=”B1”>

<gml:name>Great Building <gml:/name>
<belongsTo>

<Block xlink:href=”BL1”/ >

</belongsTo>
</Building>

</cityCenterMember>
<cityCenterMember>

<Building gml:id=”B2”>
<gml:name>Small Building <gml:/name>
<belongsTo>

<Block xlink:href=”BL2”/ >

</belongsTo>
</Building>

</cityCenterMember>
<cityCenterMember>

<Block gml:id=”BL1”>
<gml:name>Grey Block <gml:/name>
<nextTo>

<Way xlink:href=”W1”/ >

<Way xlink:href=”W2”/ >

</nextTo>
</Block>

</cityCenterMember>
<cityCenterMember>

<Block gml:id=”BL2”>
<gml:name>Green Block <gml:/name>

</Block>
</cityCenterMember>
<cityCenterMember>

<Way gml:id=”W1”>
<gml:name>6th Street <gml:/name>

</Way>
</cityCenterMember>
<cityCenterMember>

<Way gml:id=”W2”>
<gml:name>5th Street <gml:/name>

</Way>
</cityCenterMember>

</CityCenter>

Figure 1: GML document representing the center of a city
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<CityCenter gml:id=”C1”>
<gml:name >London </gml:name >

<geometry>
<gml:Point>
<gml:pos>45.256 -71.92 </gml:pos >

</gml:Point >
</geometry >

<cityCenterMember>
<Building gml:id=”B1”>

<gml:name>Great Building <gml:/name>
<belongsTo>

<Block gml:id=”BL1”>
<gml:name>Grey Block <gml:/name>
<nextTo>

<Way gml:id=”W1”>
<gml:name>6th Street <gml:/name>

</Way>
<Way gml:id=”W2”>

<gml:name>5th Street <gml:/name>
</Way>

</nextTo>
</Block>

</belongsTo>
</Building>

</cityCenterMember>
<cityCenterMember>

<Building gml:id=”B2”>
<gml:name>Small Building <gml:/name>
<belongsTo>

<Block gml:id=”BL2”>
<gml:name>Green Block <gml:/name>

</Block>
</belongsTo>

</Building>
</cityCenterMember>
<cityCenterMember>

</CityCenter>

Figure 2: Center of a city, different representation.
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nesting of elements is not relevant in our approach because we will follow the GML schema to
define queries. Next will present a standard of GML schemas to be used in our approach.

2.1 INSPIRE Directive

The European INSPIRE Directive [12] aims to create a spatial data infrastructure in the Eu-
ropean Union to share information through public organizations and facilitate public access
across Europe. Furthermore, the spatial information considered under this policy is extensive
and covers a wide range of areas and topics. INSPIRE is based on several common principles:

• Data should be collected once and should be stored where they can be maintained more
efficiently.

• It must be able to easily combine the spatial information from different sources across
Europe and share it with other users and applications.

• It should be possible to collect information at some detail level and share it with all levels,
e.g. detailed for local analysis, general for global strategic purposes,. . .

• Geographic information should be transparent and readily available.

• It must be easy to find which geographic information is available, how it can be used to
meet a specific need, and under which conditions can be acquired and used.

The INSPIRE directive defines 34 topics on spatial data needed for application development.
The INSPIRE directive defines GML schemas for each one of these topics. We have followed
this directive in our approach in order to make our proposal more interesting in the real world.

For instance, the Figure 3 shows an example of GML schema for cities. This schema uses
an UML Profile for its definition called HollowWorld [9] which is based on Table E.1 of ISO
19136:2007 (GML 3.2.1) [2] and is used by the INSPIRE Directive. It describes the elements
(i.e. the members) of a city center. A city center contains differents entities like locals, buildings,
blocks, monuments and ways. Locals can be bars, shops and banks. Buildings can be buildings
of interest, and ways can be roundabouts, streets and squares.The GML schema also includes
spatial relationships between the entities: locals are ‘locatedAt” buildings that “belongsTo”
blocks which can be “nextTo” Ways. Monuments can be also “locatedAt” a way. GML allows
to describe entities by means of the Feature type. In addition, the INSPIRE directive provides
Data types for geographical entity naming.

In our system, we have used data available from IDEAndalućıa [15] which is part of the
geo-services of the INSPIRE directive. This is an Andalusian Cartographic System Geo-portal
available to search, locate, view, download or request some type of geographic information
referring to the territory of Andalusia in Spain. IDEAndalućıa provides various services, such
as WMS (Web Map Server) and WFS (Web Feature Service) with data available in GML
format. By a GetFeature request to a WFS server a GML document is returned with all the
Features of a selected type that are within the limits defined in a geographical rectangle or
GML Bounding Box.

3 Development of a Query language for GML based on
XPath

Now, the proposed GML query language is as follows. Basically, the path of the query has
to follow the GML schema, and the query can include boolean conditions over the elements of
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Figure 3: GML Schema of the City Center

the GML schema. For instance, we can express the following queries w.r.t. the running example:

Query 1. Buildings of the Block named Grey Block

/Building[belongsTo/Block/gml:name=“Grey Block”]
Query 2. Ways called ”5th street” next to some Block

/Block/nextTo/Way[gml:name=“5th Street”]
Query 3. Ways nextTo a Building called Great Building

/Building[gml:name=“Great Building”] /belongsTo/Block/nextTo/Way
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The semantic version of the XPath query language is syntactically similar to the tree-based
version. However, the semantic version can specify paths starting from any point of the schema
(i.e. the root of the XPath expression can be any of the features of the GML document). The
XPath expression alternates features with spatial relations. For instance, starting from Building
we can build the following (semantic) XPath expression:

/Building[gml:name=Great Building]/belongsTo/Block/nextTo/Way

by following the sequence Building, belongsTo, Block, nextTo and Way, where Building, Block
are Features and belongsTo and nextTo are relationships among Features.

Finally, let us see the syntactic version of the above Query 1, which is considerably more
complex than the proposed semantic one:

/CityCenter/cityCenterMember/Building[belongsTo/Block
[@xlink:href=/CityCenter/cityCenterMember/Block[gml:name=Grey Block]/@gml:id]]

3.1 Translation XPath to SQL

In order to implement the proposed XPath-based query language, we have to proceed as follows:

1. A GML schema is transformed into a Relational schema.

2. A GML document is stored in the spatial RDBMS.

3. A XPath query is translated into an equivalent SQL query.

4. The result of the query is exported to GML or KML format.

3.1.1 Transforming the GML Schema into a Relational Schema

For data storage the first thing to do is to transform the GML schema into a relational schema
of PostGIS. For this transformation we proceed as follows:

• A table is created for each element of Feature type.

• Attributes of elements of Feature type are mapped to columns of the tables.

• Geometric attributes of elements of Feature type are mapped to columns of PostGIS
geometry type.

• Spatial relations between elements of Feature type are represented in two ways:

– A one to one relationship is mapped to a column that references the primary key of
the elements in the spatial relation.

– A one to many relationship is mapped to a table, with the name of the spatial
relation, with columns containing the primary keys (i.e. foreign keys) of the elements
in the spatial relation.

– A many to many relationship is mapped as two one-to-many relationships, one for
each direction of the relationship.

• Feature inheritance is represented by table inheritance provided by PostGIS.

Figure 4 shows the result of the transformation of some elements of the GML schema
represented in Figure 3.
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Figure 4: A Fragment of Relational schema of the City Center

3.1.2 Storage of GML documents in the Spatial RDBMS

The GML documents are stored in the spatial RDBMS as follows. Firstly, features instances
are added to tables. Secondly, spatial relations are added to columns (in the case of one to
one relationships) and to tables (in the case of one to many and many to many relationships).
Next, we show the table instances of the running example:

Table: Building

ogc fid name belongsTo
B1 Great Building BL1
B2 Small Building BL2
. . . . . . . . .

Table: Block

ogc fid name
BL1 Grey Block
BL2 Green Block
. . . . . .

Table: Way

ogc fid name
W1 6th Street
W2 5th Street
. . . . . .

Table: Block nextTo

Block Way
BL1 W1
BL1 W2
. . . . . .
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3.1.3 Translation of XPath into SQL

We can now define the translation of XPath-based queries into SQL queries, using the trans-
formation of the GML Schema into the Relational Schema. The translation is as follows:

1. Case /A/p/B where p is a one to one relationship: Select B.* From A,B Where A.p =
B.id

2. Case /A/p/B where p is a one to many relationship or a many to many relationship:
Select B.* From A,A p,B Where A p.A = A.id and A p.B = B.id

3. Case /A/p1/B/p2/C where p1,p2 are one to one relationships: Select C.* From (Select
B.* From A,A p1,B Where A p1.A = A.id and A p1.B = B.id) B, C Where B.p2=C.id

4. Case /A/p1/B/p2/C where p2 is a one to one relationship and p1 is a one to one rela-
tionship: Select C.* From (Select B.* From A,A p1,B Where A p1.A = A.id and A p1.B
= B.id) B, B p2,C Where B p2.B = B.id and B p2.C = C.id

5. Case /A[cond]/p/B[cond2] where p is a one to one relationship: Select B.* From A,B
Where A.p = B.id and cond and cond2

6. Case /A[cond]/p/B[cond2] where p is a one to many relationship: Select B.* From
A,A p,B Where A p.A = A.id and A p.B = B.id and cond and cond2

7. Similarly, the rest of the cases

Now, we show the translation into SQL expressions of the XPath queries of Section 3 w.r.t.
the GML schema represented by Figure 3.

Query 1. Buildings of the Block named Grey Block

XPath Query SQL Expression

/Building[belongsTo/Block/gml:name=Grey Block]

Select Building.*
from Building,Block
where Building.belongsTo = Block.id
and Block.name = Grey Block

Next, we show the result of the query in GML format:

GML Output
<Building gml:id=”B1”>

<gml:name>Great Building <gml:/name>
<belongsTo>

<Block xlink:href=”BL1”/ >

</belongsTo>
</Building>
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Query 2. Ways called ”5th Street” next to some Block
XPath Query SQL Expression

/Block/nextTo/Way[gml:name=5th Street]

Select Way.*
from Way, Block nextTo, Block
where Block nextTo.Block = Block.id
and Block nextTo.Way = Way.id
and Way.name=”5th Street”

Query 3. Ways nextTo a Building called Great Building

XPath Query SQL Expression
/Building[gml:name=Great Building]/belongsTo/Block/nextTo/Way

Select Way.*
from Way, Block nextTo,
(Select Block.*
from Building, Block
where Building.belongsTo = Block.id
and Building.name = Great Building)
Block 0 where Block nextTo.Block = Block 0.id
and Block nextTo.Way = Way.id

3.1.4 Exporting to GML and XML

PostGIS natively provides several functions for the conversion of stored geometries to GML and
KML formats:

• AsGML. Returns the geometry as a GML element. We can choose the spatial reference
system.

• AsKML. It works similarly to AsGML but returning it as a KML geometry. We cannot
choose the spatial reference system since it is fixed to WGS84.

These functions are only responsible for generating the geometry in GML / KML format
but it is still required the export tables as GML and KML elements. With this aim, PostGIS
provides two tables as follows:

• Geometry columns table: It stores a catalog with the schema names, table names, column
names of the geometric data and their spatial reference system.

• Spatial ref sys table: It contains a collection of spatial reference systems and stores infor-
mation about the projections for transforming from one system to another.

4 UALGIS System

For validating the proposed query language a Web Geographic Information System, called UAL-
GIS, has been implemented (available in http://indalog.ual.es/ualgis/testGMaps.jsp).
The main features of the system can be summarized as follows:

• Storage of GML documents with PostGIS.

• GML / KML document creation using dom4j [17].
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Figure 5: UALGIS System Architecture

• Querying of elements of feature type of the database.

• XPath-based querying.

• Google Maps-based client for displaying the resut of queries.

The system has been built by using the Java Eclipse Galileo [10] as IDE. For project man-
agement, we have used Maven 2 [3], which has been used for handling library dependences
required for the construction of the GIS. The system architecture includes PostGIS version 1.4
server for data storage and a Tomcat version 6.0 server that handles the logic and presentation
layers of the application. For the presentation layer, pages are programmed using JSP, HTML
and AJAX for interacting with the server. Figure 5 shows the architecture.

The FeatureManager component is responsible for the management of Features stored in
the database. It is responsible for translating XPath queries into SQL queries. The FeatureM-
anager is also responsible for transforming the database rows to an object model that can be
processed by the DocumentManager component. The DocumentManager component is respon-
sible for handling documents in GML/KML format. It is also responsible for transforming the
objects returned by FeatureManager onto KML / GML documents. It also supports the reverse
process, i.e. the extraction of features from GML/KML documents. For creating and reading
documents the dom4j library is used. This is an Open Source XML Framework for Java that
allows reading, writing and navigation of XML documents. It also includes a processing model
based on events for large documents or XML streams and includes support for XML Schema
validation types. On the client side, the Web GIS is a map browser with support for KML.
It is based on the Google Maps API including a fast and efficient 2D browser that provides
features like zooming, panning, searching and displaying geographical names and information
about geographic entities. Figure 4 shows a snapshot of the UALGIS system.

5 Conclusion and Future Work

In this paper we have studied how to adapt the XPath query language to GML documents. With
this aim, we have defined a semantic based XPath language which is not based on the (tree-
based) syntactic structure of GML documents, instead it is based on the “semantic structure”
of GML documents. We have developed a system called UALGIS, in order to implement the
approach. Such system stores GML documents by means of the PostGIS RDBMS. In order to
execute semantic-based XPath queries we have defined a translation of the queries into SQL.
Such translation takes into account the GML schema. Finally, the system allows to visualize
the result. With this aim, the result of a query is exported to the KML format. As future work
different techniques as GML filtering, indexing, etc.. will be studied in order to improve the
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Figure 6: Snapshot of UALGIS

performance of the UALGIS system. On the other hand, we would like to extend our work to
the XQuery language. The extension should be also based on the semantic of GML. Finally,
we would like to combine our GML query language with ontologies. Its use would improve the
kind of queries and answers obtained from GML documents.
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