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Abstract

In this paper we first present three new features for classifying CNF formulas. These features are

based on the structural information of the formula and consider AND-gates as well as exactly-one

constraints. Next, we use these features to construct a machine learning approach to select a SAT

solver configuration for CNF formulas with random decision forests. Based on this classification task

we can show that our new features are useful compared to existing features. Since the computation

time for these features is small, the constructed classifier improves the performance of the SAT solvers

on application and hand crafted benchmarks. On the other hand, the comparison shows that the set

of new features also results in a better classification.

1 Introduction

Most modern SAT solvers, for example the ones that are used in international competitions [6,
7], have a good default configuration, which solve a high number of formulas on these bench-
marks. Hence, many applications use these systems, for example in scheduling [15]. Still, these
SAT solvers can provide more performance when tuned for a set of benchmarks, as shown
recently in the Configurable SAT Solver Challenge 20131. There exists methods to
automatically tune a highly configurable SAT solver, such as ParamILS [20], GGA [4], or
SMAC [19]. Given a benchmark that contains a set of problem formulas, one of these tools can
be used to find a configuration of the used SAT solver to solve the benchmark best. Such a con-
figuration requires many calls of the SAT solver, and a huge amount of computational resources.
For an initial check whether using a SAT solver for a new problem is promising, we propose a
simpler mechanism by classifying formulas and then selecting a promising configuration.

For selecting such a solver configuration, or a solver, there already exists tools. SATzilla [31]
is such a tool that selects a SAT solver out of a portfolio of solvers based on a set of features,
and internally learns a model to predict the run time of all the solvers in the portfolio. Then,
SATzilla chooses the solver with the smallest predicted run time. More features have been pro-
posed in [14], however, no empirical results on these features has been presented. The method
instance specific algorithm configuration(ISAC) has been proposed by Kadioglu et al. [21, 23],
and is based on the features that have been proposed by SATzilla, excluding run time based
features. In ISAC the training set of instances is split into clusters based on the normalized
features, and then for each cluster a good configuration is learned with GGA. To solve a a
new instance, ISAC extracts its features, normalizes them, and then selects the cluster that is
most similar to the instance, or if no such cluster is available in the set of known clusters a
fall-back configuration is used. Again, the learning phase is done offline, so that a use of the
ISAC method can use only the selection phase of the tool. For ISAC feature filtering has been
proposed, to select only features that improve the creation of good instance clusters, and hence
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also selecting a good cluster. Further related work are sequential and parallel portfolio solvers,
most prominently pfolio [29], which simply execute different SAT solvers in parallel, even with
only a single computation unit.

In this paper we present three new CNF features, as well as a new classification model for
SAT solver configurations. The computation of these features is light-weighted, so that they can
be also extracted on nowadays large application formulas. On recent SAT benchmarks we show
that the computation of the features can be done much faster than for the features of widely used
SATzilla. The quality of the feature is evaluated based on a formula classification, where we
select a solver configuration based on the input formula. For a pre-defined set of configurations,
we compute the run time for a large benchmark of application and crafted formulas. Then, we
show that a very simple classification model, namely random decision forests, results in a good
classification. When we train our classifier on the available competition instances of 2011 and
2012, and evaluate its performance on the 600 instances of 2013, then the best configuration can
solve 229 instances, the classifier variant can solve 274 instances. When replacing our features
by the features computed by SATzilla the number of solved instances drop to 239. A reason
for this smaller number is the time that is required to extract the features. Therefore, we try
to compute all features with a very small run time.

The paper is structured as follows: First we present the state-of-the-art features, and next
propose the new CNF features as well as the algorithms for their extraction in Section 2. Next,
in Section 3, we discuss different possibilities for objective functions and how features can be
used to classify CNF formulas. Then, Section 4 evaluates this classification. The conclusion of
the paper is presented in Section 5.

2 Feature Extraction of CNF Formulas

The set of Boolean variable V is the set of natural numbers V = N+. A literal x is a positive
Boolean variable x, or a negative Boolean variable x. A clause C is a set of literals, and
a formula F in conjunctive normal form (CNF) is a multi-set of clauses, because duplicate
clauses can occur. In this paper we use the following notation: for a formula F and the literal
x, Fx represents the set {C | C ∈ F, x ∈ C}. Furthermore, vars(F ) represents the set of
variables occurring in the formula. We assume the reader to be familiar with the basic concepts
of propositional logic and SAT solving. More details about the used concepts can be found
in [9].

In the following we present features that are already used in SATzilla [31], before introduc-
ing new features. Some features in SATzilla are based on the run time of an algorithm. We
improve the concept of run time in seconds by a hardware-independent measurement: instead
of measuring time, we maintain counters that are increased during the computation. After the
computation, the value of the counter correlates to the run time of the algorithm, however, the
value of the counter is independent of the used architecture. Hence, the dynamic feature run
time is turned into a static feature.

Before we extract features from a formula, we apply unit propagation until a fixed point is
reached. This way, the computational overhead is reduced, because all satisfied clauses, and all
falsified literals are removed from the formula. Finally, the unit clauses are added back to the
formula, to still work on the semantically equivalent formula. We do not apply more complex
simplification techniques due to two reasons: (1) the different solver configurations use different
simplification techniques and (2) for large formulas simplification techniques can consume a lot
of time.
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Table 1: Graph structures considered for features computation of a formula F with |F | = m, and n
variables. The indexes i and j are elements of the corresponding vertexes sets.

Considered
Graphs Vertices Edges Weights sequences

CV+ (CV−) B = {1, . . . ,m} 〈i, j〉 and 〈j, i〉 iff - degrees
W = {1, . . . , n} j ∈ Ci (−j ∈ Ci)

Variables V = {1, . . . , n} 〈i, j〉 iff there is 1 ≤ k ≤ n 2−k degrees
{i, j} ⊆ (Ck ∪ Ck) weights

Clauses V = {1, . . . ,m} 〈i, j〉 iff degrees
Cj ∩ Ci 6= ∅ |Cj ∩ Ci| weights

Resolution V = {1, . . . ,m} 〈i, j〉 iff degrees
|Ci ∩ Cj | = 1 2−(|Ci∪Cj |−2) weights

2.0.1 Graphs and Sequences

Most of the following features are based on graphs G = (V,E), or bipartite graphs G =
(W,B,E), where V , W and B are vertices, and the set of edges is E ⊆ V × V or E ⊆
(W×B)∪(B×W ), respectively. The edges in a graph can be weighted by a function w : E → R.
Furthermore, for each vertex v, the degree is defined as deg(v) = |{w | 〈v, w〉 ∈ E}|.

Given a graph, the degrees of all vertices v can be collected as a sequence. A degree
sequence of values S = 〈x1, . . . , xn〉 is characterized with common statistical measures. First,
a preprocessing step is used, which removes all elements xi = 0 from the sequence S, and that
sorts the elements in S, to obtain an invariance against shuffled formula, similarly to rotation
invariance in shape recognition. The number of zero elements xi = 0 is used as a statistical
measurement of a sequence S.

Then, the following properties of such a normalized sequence are considered as features: the
mean mean(S), the standard deviation, minimum, maximum,and mode, which is the smallest
number that appears most frequently in the sequence. Furthermore, the quantiles for 25 %,
50 % and 75 % are used, as well as the values rate rate(S) = 1

n |{x1, . . . , xn}| and the entropy
entropy(S) = ln(n) − 1

n

∑
cj ln(cj), where each cj represents the number of occurrences of

for a value xi = j in the sequence. Finally, for a sorted sequence, also its derivation S′ =
〈x2−x1, . . . , xn−xn−1〉 is computed, and all the above measures are used as features of this new
sequence as well. This way, a more global view on the values in the sequence is represented, for
example whether a sequence S increases slightly, or whether there are only a few high increases.

2.1 Graph Features

The following graphs are then computed for the CNF formula: (i) The Clause-Variable graph
(CV+ for positive literals, CV− for negative literals) that connects literals with the clauses in
which they appear. (ii) The Variables graph in which two variables are connected when they
appear in the same clause without considering the polarity. (iii) The Clause graph connects
clauses that share literals and (iv) the Resolution graph connects clauses when they produce a
non-tautological resolvent. Table 1 defines this structural information more formally and also
presents the considered sequences.

For the literal graph the sequence deg±(i) = max(degCV +(i),degCV −(i))
degCV +(i)+degCV −(i) is used, which repre-

sents the major polarity of each clause. For some of the graphs weighted variants are used, and
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hence the calculation of the weights is given. For the variable and the resolution graph, the
weight reflects how strong the search space of the problem is influenced by the corresponding
variable or resolvent.

2.2 Features Aiming at Formula Structure

CNF formulas of applications, or difficult hand crafted CNF formulas contain a structure [2, 3],
that is assumed to be exploited by modern SAT solvers [9]. The following sections present
features that are motivated by this structure. This way, we try to distinguish better between
application formula families and crafted formula families.

2.2.1 Binary Implication Graph

A simple graph of a formula is the binary implication graph BIG = (V,E), which contains all
literals as vertices, V = lits(F ), and all edges in the graph correspond to the binary clauses in
the current formula: E = {〈a, b〉, 〈b, a〉 | {a, b} ∈ F}. For this graph, a sequence with the degree
of each node is used.

2.2.2 Naive Encoded Constraints

CNF formulas come from different applications, for example hardware verification [22], or
scheduling [15]. Whereas verification problems contain gates, for example AND-gates, schedul-
ing instances usually contain Exactly-One-constraints. A usual circuit is encoded based on
the Tseitin encoding [30] with AND-gates x↔ (a1∧· · ·∧ak), that results in k+1 clauses. Due to
the Plaisted-Greenbaum encoding of circuits [28], not all these k+1 clauses are required of each
gate to represent the full circuit in CNF. Then, the partial representation x→ (a1∧· · ·∧ak), or
x← (a1 ∧ · · · ∧ ak) is only present. Although there exists research on extracting more complex
high level constraints, we do not focus on those constraints here, because we want to keep the
computational effort for the feature computation as small as possible.

To extract these AND-gates, all three patterns need to be detected. Furthermore, for
scheduling instances, the constraint Exactly-One can also be found, because its clause pattern
is very similar:

(x→ (a1 ∧ · · · ∧ ak)),∧ · · · ∧ (ak → (a1 ∧ · · · ∧ x).

The undirected graphs AND-gates(V,EAND), BlockedAND-gates(V,EBAND) and Exactly-
One-gates(V,EEXO) can be extracted from the formula with a single method, which is given in
Figure 1. The sets of edges for the corresponding graphs present for a pair of literals whether
this pair is present in a gate of the above types. The algorithm first computes the binary
implication graph (line 1), and initializes the graphs (line 2). Next, for each clause C it is
tested, whether this clause is part of an exactly one constraint, or an AND-gate (line 3). First,
for all literals l ∈ C it is tested whether all remaining literals l′ of the clause are implied by l
negatively, l → l′ (lines 5–8). If not, then C cannot form an exactly one constraint, and the
literal l cannot build an AND-gate with the clause C (line 8). The literal l and the clause C
can still build a blocked AND-gate, namely if all required binary clauses could be added by
blocked clause addition [24]. An easy check for this situation is to test whether the clause C is
the only clause that contains the literal l in the formula. If this check succeeds for all literals
(lines 12–13), then C and l build a blocked AND-gate, and the corresponding edges are added
to EBAND (lines 14–15). If the current clause C and the literal l build an AND-gate, then the
edges are added to EAND (lines 8–9), and the blocked gate is not added (line 11). Finally, if
C represents an exactly one constraint, the clique of edges is added (lines 16–19). Given the
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ExtractConstraintFeatures (CNF formula F )

1 let BIG be the binary implication graph for F
2 let EAND = ∅, EBAND = ∅, EEXO = ∅ // initialize edges
3 for C ∈ F, |C| > 2 // for all large clauses
4 let exo = > // might be an exactly one
5 for l ∈ C

6 for l′ ∈ C \ {l} // check for clique

7 if l′ 6∈ BIG(l) then // l implies l′

8 let exo = ⊥, goto 12 // no AND-gate
9 for l′ ∈ C \ {l} // found AND-gate

10 let EAND = EAND ∪ {(l′, l)}
11 goto 5 // jump over blocked AND-gate
12 for l′ ∈ C \ {l} // check blocked AND-gate
13 if {C | C ∈ F, l ∈ C} > 3 then goto 3 // not obviously blocked
14 for l′ ∈ C \ {l} // found blocked AND-gate

15 let EBAND = EBAND ∪ {(l′, l)}
16 if exo = > then // add EEXO clique
17 for l ∈ C

18 for l′ ∈ C \ {l}
19 let EEXO = EEXO ∪ {(l′, l)}

Figure 1: Extracting AND-gates, blocked AND-gates and exactly one constraints from a formula.

edges for the three graphs, weighted variants are added for the AND graph, and the blocked
AND graph, where each edge that is added (line 10, 15) is weighted with 2−|C|, so that this
weight represents how strong the clause constrains the search space.

2.2.3 Symmetries

As reported for example in [1], problems originating from routing can also contain symmetries.
Similarly, scheduling instances can contain many symmetries [18]. Hence, a feature is added,
which reflects how symmetric an instance might be, which can be calculated iteratively. The
underlying idea for the features originates in the coloring scheme of [1] to detect symmetries. For
each variable v and each clause C, two measures depending on the iteration i are used: sv(i),
which corresponds to the color, and sC(i). For the initial iteration, both literal and clause
measures are set to 1. Then, they are calculated as follows: sC(i) =

∑
v∈C sv(i − 1), i > 0

and based on the clause measures sC(i), the variable measures can be calculated: sv(i) =∑
C∈Fv

sC(i). Following the coloring scheme in [1], different numbers sv(i) for two variables v
and w mean that these two variables are not in the same symmetry group. A sequence for
each iteration i is build based on the different values for variables sv(i), adding the number of
occurrences for each value. Hence, for the initial iteration a sequence with one value, namely
the number of variables, is added. For our feature computation we use the sequences after the
first, second and third iteration. Since only sums are used, this scheme is only an approximation
so that the generated symmetry classes cannot be used for symmetry breaking.
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2.2.4 Recursive Weight Heuristic

Another well known feature for literals of a formula is the recursive weight heuristic (RWH).
Initially, this heuristic was proposed for solving random 3-SAT formulas with a look-ahead
solver [27]. Then, RWH has been generalized to formulas with arbitrary clauses [5]. The
heuristic provides a score hi(x, F ) for each literal x that represents the tendency whether x
is present in a model of the formula F . By increasing the number of iterations, the preci-
sion of the tendency can be increased. This score is initialized to h0(x, F ) = 0 for all liter-
als. For each iteration i, a scale factor µi(F ) is added, which represents the average of the
current iteration: µi(F ) = 1

2 |vars(F )|
∑

x∈vars(F ) (hi(x, F ) + hi(x, F )) . The value hi+1(x, F ) rep-

resents the tendency of x being part of the model, by testing for each clause C with x ∈ C
how likely the remaining literals l ∈ (C \ x) will be falsified by the model. hi+1(x, F ) =∑

C∈Fx

(
γk−|C|µi(F )

|C|−1∏
l∈(C\{x}) hi(l, F )

)
, The values of each iteration are weighted with

the mean of the previous iteration µi(F ), and is furthermore weighted by a factor γ, which is
set to γ = 5, both in the literature and our implementation. For the iterations i = 1, i = 2 and
i = 3 the values of hi(l, F ) are used as a sequence as formula features.

2.2.5 Implementation Details

During the computation of a feature, for example the resolution graph, the graph is built while
iterating over the clauses of the formula. Let each clause Ci of the formula be represented
by its index i. Then, a required property of the graph is that each index appears at most
once in the adjacency list of another index. Hence, during the construction of the graph, when
the index i should be added to the adjacency list of index j, then first a check needs to be
performed so that i is not added twice. For fast random accesses and a compact representation,
an array-based data structure is used. Then, the inserting procedure can result in a quadratic
algorithm, because for each element i, the whole list has to be tested. Even if the list is sorted,
the procedure remains quadratic, because in the array, after adding each element, needs to
remain sorted. In the worst case, the inserted element is always the smallest element. Then,
all remaining elements need to be pushed by one position.

To avoid the quadratic overhead, we do not check for the presence of the index i, but simply
add i to the adjacency list. After the whole graph has been constructed, and before its features
are computed, each adjacency list is sorted, and then from the sorted list duplicates can be
removed in linear time. A drawback of this approach is that during constructing the graph
much more memory is consumed.

3 Instance Classification

A machine learning approach is used to select a configuration for a given instance. Such an
approach is visualized in Figure 2. First, the features of the instance are extracted. Next,
the features are given to a classifier, which selects a configuration that is supposed to work
well on the given formula. The aim of the classification is to identify good configurations for a
given formula. Here, many questions have to be answered: (i) Which configuration should be
available as candidates? (ii) What happens if one of the components fails, for example due to
exhausting resources. (iii) Which features should be used? (iv) How should the classification
procedure work?

An answer to the question (i) is difficult: if the classification algorithm always selects the
best configuration, then many very diverse configurations should be available, so that a range
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Figure 2: Classification of a formula given a SAT solver with many configurations.

of different formulas can be covered. In available tools, like ISAC, classification is interleaved
with configuration optimization. This way, new configurations are created that have a high
performance on a certain class of benchmarks.

The illustration already answers question (ii): If the feature extraction or the classification
produce a failure, which happens for example by reaching resource limits, then a fallback con-
figuration is used. For the computation of the features a trade off has to be made. Usually, the
more features are available, the better the classification result, which can be measured in the
prediction precision. The run time of the features computation has also to be taken into ac-
count. If computing the feature already consumes more time than there is available for solving
the formula, then such an expensive feature should not be considered. There might also exist
feature that do not help to classify a formula. Depending on the used classification algorithm,
which might limit the number of used features, such features might be dropped to be able to
consider better choices.

Finally, given the configurations {C1, . . . , Cj , Ck, . . . , Cn} and the features, the classifier
needs to be trained on a set of formulas {F1, . . . , Fi, . . . , Fm} so that given a new formula a
good configuration can be selected. First, for each pair of a formula Fi from the training set
and each configuration Cj a decision has to be made whether Cj should be selected for solving
the formula Fi. We label Cj for Fi with good, if Cj should be selected for Fi. Otherwise,
the label bad is assigned. Now, given a certain resource limit, several schemes to assign the
label good are possible. For this paper we focus on the time resource, denoted as timeout, for
which we can define the labelling. Timef (Fi) represents the time used to compute the features
of Fi, timeCj

(Fi) is the time in which configuration Cj solves the instance Fi, b is a constant
(5 seconds for our experiments) estimating how long the execution of the classification model
for an instance can last. For the labellings Relative and Complement we define Ck as the
fallback configuration. Then, the three labellings are:

Name Condition for good

Global timeCj
(Fi) + timef (Fi) + b < timeout

Relative timeCj
(Fi) + timef (Fi) + b

< min(timeout, timeCk
(Fi) + timef (Fi) + b)

Complement timeCj (Fi) + timef (Fi) + b < timeout
∧ (j = k ∨ labelCk

(Fi) = bad)

Then, based on the given labelling schemes, a machine learning algorithm can be selected that is
trained on training data and afterwards used for classifying new formulas. Possible algorithms
are neural networks [16], support vector machines [13][12] or random decision forests [10]. Fur-
thermore, the classifier can be set up as a multi-class classifier to select one configuration, or
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for each configuration there is a classifier that predicts whether this configuration should be
selected for the current formula. In the latter case, the prediction with the highest likelihood
is chosen.

3.1 Design Decisions – A First Classification Prototype

The fallback configuration is the configuration that can solve most of the instances of the
benchmark. The resource limit for extracting the features as well as classifying is 125 CPU
seconds and 6.8 GB of memory. The overall memory limit is 7 GB. As features we use all
features of our tool except the clause graph and the resolution graph features (because their
computation is too expensive, see Section 4.1). The configurations used for the evaluated
classifier have been created during the Configurable SAT Solver Challenge 2013 for the SAT
solver Riss. To this set we add the default configuration of the solver. Hence, we do not tune
the configurations on the benchmark, but use existing configurations only. As classification
algorithm we use random decision forests, and use the implementation provided in the tool
Weka [17]. Based on preliminary tests, we set up the classifier with the following settings:
The configurations are labeled with good according to the Complement schema, selecting the
default configuration as soon as the current formula is not very similar to known formulas. For
the labelling procedure, a feature extraction timeout of 125 seconds is applied. Then for each
configuration a random decision forest is trained, where the number of trees in the forest, as
well as the depth of all trees is optimized for each configuration, using a local search algorithm
and the training data. Starting with n trees and a depth of m, we perform a Hill Climbing
algorithm [11] that attempts to iteratively improve m and n till the accuracy of the classifier
can no longer be improved or till we reach a limit of 3 iterations. The number of trees value is
changed by adding δt ∈ {−4,−2, 0, 2, 4} and the depth by adding δt ∈ {−10,−5, 0, 5, 10} where
〈δt, δd〉 6= 〈0, 0〉.

When a new formula is classified, then for each configuration a probability of being labeled
with good is returned. This probability is calculated as the number of trees in this random
decision forest that classify the formula as good for the configuration and normalizing this
number by the number of trees in the forest. The configuration with the highest probability is
selected. For tie-breaking, the configuration that can solve more formulas on the training data
is selected if two configurations have the same probability.

4 Empirical Evaluation

For the empirical evaluation we use the SAT solver Riss [25], which is an extension of Glucose
2.2 mainly by incorporating the CNF simplifier Coprocessor [26]. The evaluation of the
techniques is performed on all industrial instances and all crafted instances that have been used
in the SAT Competitions and Challenge 2011 to 2013, including unselected instances. The full
set contains 3213 instances.2 The CPU time limit is set to 900 seconds and the memory limit
is 7 GB. The used cluster uses AMD Opteron 6274 CPUs with 16 cores and 2 MB level 2 cache
that is shared by two cores. The experiment uses one out of four cores for a SAT solver to
stabilize the results.

2Duplicates benchmarks are kept. The source code and all used data is available at
tools.computational-logic.org/content/riss/blackbox.tar.gz.
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Figure 3: Run time distribution and memory consumption for the different feature computations.

4.1 Feature Computation

First, we compare the computation of our feature set to the widely used feature extraction
algorithm of SATzilla. For SATzilla, the available feature sets All and Base are computed.
We implemented our feature extraction into the SAT solver Riss. With this implementation we
extracted the feature sets Full, which computes all the features including the clause graph and
the resolution graph. Furthermore, we compute NoCG, which does not compute the clause
graph features, NoRes, which does not compute the resolution graph and NoCGRes, which
does not compute the clause graph features, nor the resolution graph features.

Figure 3 shows the distribution of the run time of the feature computation, as well as their
memory consumption. The run time for SATzillaAll is very high, so that this feature set is
too expensive for being used online. Next, the feature computation for SATzillaBase shows a
plateau at 20 seconds, but can compute features for 2926 instances. Computing all features with
Full can solve less instances, mainly due to the memory limitation. Since Full constructs all
graphs, its memory consumption is very high. When either the clause graph or the resolution
graph is not computed, then features for more instances can be computed. The least run time
and memory consumption is obtained when the two graphs are not used in NoCGRes, which
results in features for more instances. The comparison of run time and memory shows the effect
of the implementation of our feature extraction (Section 2.2.5): by using more memory, the run
time of the algorithm can be decreased significantly.

In machine learning, the information gain is defined as the change in the entropy of the
information from a prior state to a state that takes some information as given. The information
gain ration is then the ration of the information gain and the intrinsic value. To compute how
important are the features defined in this paper, we calculate the information gain ratio with
respect to each to the classes defined by each of the configurations and then build average.
According to the values obtained we defined the value 0.02 as the threshold that defines the
most important features. Table 2 shows the features groups that have computed features and
give the number of important features per group. All the newly introduced features groups
have features of high importance for the classification. Furthermore, more features with a high
importance are present in this table. When looking at the features that are computed with
SATzilla, then there are only 7 features that are more important than 0.02.
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Table 2: Most important features with respect to the information gain ratio.

Group Features Group Features

SymmTime2 13 variable-clause degree 4
SymmTime1 9 Exactly1Lit 3
variables graph degree 6 SymmTime0 4
variables graph weights 6 Full AND gate degree 3
RWH-1 6 variable-clause polarity 2
RWH-2 5 bin implication graph degree 1
RWH-3 5 Blocked AND gate weights 1
Full AND gate weights 5 resolution graph degree 1
clause-variable degree 4 clauses graph degree 1

Other features 6

4.2 Performance of Available Configurations

The used configurations of Riss are BMC08, CircuitFuzz, default, GI, IBM, LABS and
SWV from the Configurable SAT Solver Challenge 2013 3, as well as the configuration Riss3g
from the SAT Competition 2013.4 Table 3 shows the number of instances that can be solved by
each of the configurations on the benchmark, and furthermore includes the two state-of-the-art
SAT solvers Glucose 2.2(Gl 2.2) and Lingeling(Lgl) [8]. Furthermore, for the configurations
of Riss the number of unique solver contributions (UC) is presented, as well as the virtual best
solver(VBS), which selects for each instance of the benchmark the fastest configuration. The
UC states how many instances can be solved by this configuration only, but not by any other
configuration of Riss.5 Hence, UC shows a first potential of a classification approach, because
by selecting the right configuration, all these instances can be solved as well. However, the
unique solver contribution is only an approximation of the overall potential, because instances
that can be solved by only two configurations are not considered. The difference between the
best configuration Riss3g and VBS of 306 solved instances cannot be covered with the UC
only, because this sum is 104.

Note that the table shows furthermore that, on the selected benchmark, the two state-of-
the-art SAT solvers Lingeling and Glucose are more competitive than any configuration of
Riss. Glucose can solve almost 100 instances more, mainly due to additionally solved satisfiable
instances. Lingeling is especially good on solving additional unsatisfiable benchmarks.

4.3 Instance Classification

We compare the approach as presented in Section 3.1, which we call BlackBox, to the two
state-of-the-art SAT solver Glucose 2.2 and Lingeling [8]. The training instances for Black-
Box consists of instances that have been used for the competitions 2011 and 2012, and further-
more includes the unselected instances. The classifiers model is based on computing features
with no Resolution or Clauses graphs and the labelling version is the complement one. This
configuration is the one that performed better. Furthermore, for the configurations of Riss we
compute the virtual best solver (VBS), which solves a formula as fast as the fastest configu-

3For details see http://www.cs.ubc.ca/labs/beta/Projects/CSSC2013/results.html.
4For details see http://satcompetition.org/2013/results.shtml.
5Lingeling and Glucose are not considered for this analysis.

66

http://www.cs.ubc.ca/labs/beta/Projects/CSSC2013/results.html
http://satcompetition.org/2013/results.shtml


New CNF Features and Formula Classification E. M. Alfonso and N. Manthey

Table 3: Performance of the Configurations
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solved instances 1483 1264 1403 1231 1533 1374 1546 1356 1852 1602 1649

SAT 859 814 851 747 904 901 904 807 1109 932 994
UNSAT 624 450 552 484 629 473 642 549 743 670 655

SATUC 15 13 8 2 16 33 12 3
UNSATUC 3 2 5 13 3 9 9 0

rations. Additionally, the virtual worst solver (VWS) is added. This solver behaves as well
as the worst configuration, so that this solver solves only instances that can be solved by all
configurations. These two virtual solvers are interesting, because they represent the best case of
the configuration prediction (VBS) and the worst case (VWS). Finally, the configuration that
solves most of the instances, Riss3g, is added to the comparison. The plot in Figure 4 shows
the cactus plot. For the timeout of 900 seconds, the figure shows that the prediction is a nice
trade-off between the best configuration Riss3g and the VBS. BlackBox is located in the
expected area. The most trivial prediction would always select the best configuration Riss3g,
so that this configuration forms the actual lower bound.

4.3.1 Comparing BlackBox to the Used Configurations

The comparison of the prediction in BlackBox to the fallback configuration Riss3g is also in-
teresting, because BlackBox has to compensate the time used for classification with selecting
a good configuration. As long as the default configuration is selected, this time can be consid-
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Figure 4: Comparing the performance of the prediction BlackBox to state-of-the-art solvers
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Figure 5: Comparing the prediction BlackBox to the fallback configuration Riss3g (left: CPU time
scatter plot, middle: number of solved instances and unique solver contributions on 600 instances from
2013, right: number of times a configuration has been chosen on all 3213 instances).

ered as overhead. Another interesting number is the number of unique solver contributions of
the fallback configuration Riss3g, because this number show the number of instances where
the classifier either consumed too much run time and afterwards selects this configuration, or
where the classifier selected another configuration that could not solve the instance. These two
comparisons are presented in Figure 5. The overhead of the feature extraction and classification
seems to be negligible, most of the dots in the plot are very close to the identity line. For only
five instances the overhead makes the difference between being solved and not being solved.
These five instances are also present as unique solver contributions. On the other hand, for 50
instances BlackBox selects a different configuration that is capable to solve the instances that
cannot be solved by Riss3g. Furthermore, the distribution for selecting configurations out of
the available configurations is given. As expected, the fallback configuration is selected most of
the time. Note that the number of being selected as a configuration correlates to the number
of unique solver contributions (in Table 3). The configurations that have a high UC, namely
BMC08, IBM and LABS are selected more frequently then the other configurations.

A final evaluation has to be made on the instances that have been added newly to the
benchmark 2013. Usually, instances of previous competitions are used again, or previously
unselected instances are selected in a latter year. When the benchmark of 2013 is reduced to
the newly added instances6, only 351 instances are left in the benchmark. As expected, the
new files are not detected by the classification with the Complement labelling. Out of the
eight available configurations the default Riss3g is selected 333 times, and only 18 times the
configuration BMC08 is used. These numbers indicate that the decisions made in the design
phase result in a classification that strongly relies on a robust default configuration. While this
property is not bad per se, we consider relaxing that classification as future work, so that the
resulting BlackBox considers more configurations on novel formulas. The potential for this
future work is present: 40 times the configuration Riss3g is selected, and the solver cannot
solve the instance, although there is another configuration that can solve the instance. On the
other hand, for the 18 times where the configuration BMC08 is selected, Riss3g can solve
exactly one instance, whereas BlackBox does not solve the instance, because BMC08 cannot

6This reduction is done based on the file name of the instances in the benchmark.
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Table 4: Comparing BlackBox with theoretical combinations of features and labellings.

Features Labelling Solved Novel Solved

BlackBox Complement 274 121

NoCGRes Complement 276 123
NoCGRes Relative 242 97
NoCGRes Global 264 111

SATzillaBase Complement 239 98
SATzillaBase Relative 224 91
SATzillaBase Global 221 81

NoCGResNoNew Complement 273 120

solve any of the 18 instances.

4.3.2 Comparing BlackBox to Using Different Features and Classifications

While the above experiments have been created by running BlackBox on the cluster, with
the obtained data during computing the features for all feature sets, and for evaluating all
configurations, we can furthermore perform theoretical experiments by using the pre-computed
features and configuration run times. Hence, we first compare BlackBox to its theoretical
variant that does not include the classification time. Furthermore, we compare the different
labellings, and check how the new features influence the classification. Finally, we exchange the
feature set and use the widely used SATzillaBase.

The results for the 600 instances of the 2013 benchmark are presented in Table 4. First, by
executing the actual solver, two instances cannot be solved. Furthermore, the best labelling is
the labelling Complement for both feature sets. Where for our implementation of the features
the labelling Global gives better results then Relative, for the SATzillaBase features this
effect is not present. When our feature extraction is compared to SATzillaBase, then the
classifier for the two labellings Complement and Global we perform significantly better. A
future work analysis has to show, whether feature filtering improves this picture, as we currently
provide many more features than SATzillaBase. Currently, the new features help to classify
only three more instances correctly.

5 Conclusion

In this paper we present a set of new features for CNF formulas. For the features we use
the score of the RWH heuristic, a symmetry approximation, as well as a gate recognition that
detects partially and fully encoded AND-gates as well as exactly-one constraints. With an
efficient implementation we show that these features have the potential to replace the widely
used feature extraction of SATzilla.

Furthermore, we show how features can be used to select a configuration for a highly con-
figurable SAT solver. For preset configurations we present three objective functions how a
configuration should be chosen, where relying on a strong fallback configuration seems to be
very valuable on the used benchmarks. When combining such a labelling with the features, we
built a classifier that chooses a solver configuration for a given formula, improving the perfor-
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mance of the SAT solver Riss significantly. When using our features, the classification results
are already better than for the SATzilla features.

Consequently, future work is to improve the classifier, so that more novel formulas are clas-
sified correctly, but without loosing too much performance. Furthermore, the trade-off between
memory consumption and run time should be adopted in favor of memory consumption, because
for large formulas already 6 GB of memory are necessary. Finally, SAT-related formalisms, such
as MaxSAT or QBF, can benefit from the classification, because for these tools there also ex-
ists many highly configurable solvers that can benefit from classification. Hence, the feature
extraction will be adopted to the corresponding formats.

We hope that the presented approach is useful not only for selecting a configuration of an
existing solver, but furthermore enables the research community to look into techniques that
might be costly, but that are extremely helpful in solving formulas from a certain area. With
the classification approach, those techniques can be selected in the right case, but do not reduce
the overall performance of the SAT solver. Then, more techniques might be proposed that are
valuable in increasing the diversity of applications for SAT solving.

Acknowledgments The authors thank the ZIH of TU Dresden for providing the computa-
tional resources to produce the experimental data for the empirical evaluation.
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