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Abstract

Range arguments are a type of zero-knowledge proofs that aim to prove that a prover’s
committed value falls within a specified range for a verifier. Previously, most range ar-
guments were constructed based on the DLOG assumption, and hence, exponentiation
operation is required for proof generation and verification. In addition, it is generally
known that splitting a zero-knowledge proof protocol into a preprocessing phase and an
online phase makes computation after fixing the input efficient. Still, such protocol has yet
to be known for range arguments. This paper proposes an efficient range arguments pro-
tocol with a preprocessing phase. Our proposal takes a new approach by using arithmetic
circuits to express the constraints that the prover must prove. The prover (resp. verifier)
can generate (resp. verify) a part of proof based on multiplication and addition operations
instead of exponentiation operations. Our range argument is a generic construction that
does not rely on any particular mathematical assumptions, which enables us to construct
a post-quantum range argument. The implementation evaluation shows that the total
computation time for the prover and verifier in the online phase is efficient compared to
Bulletproofs, one of the state-of-the-art range proofs. Especially, the prover computation
is efficient.

1 Introduction

Zero-knowledge proofs (ZKPs) allow a prover to convince a verifier of the truth of a statement,
without revealing any further information. They are crucial building blocks for various secure
applications such as confidential transactions [4], signature schemes, and anonymous credential
systems, since the first proposal in 1985 [12].

Range arguments are a type of zero-knowledge proofs that aim to prove that a prover’s
committed value falls within a specified range for a verifier. Since the first practical range proof
construction was proposed [3], range arguments have been extensively used in various appli-
cations, e.g., anonymous credentials (to prove that a secret credential attribute, i.e., user age,
falls in a specific range) [7], confidential transactions [14] on blockchain systems, e-cash [6] and
electronic voting systems [1]. Computationally efficient range arguments are one of the leading
research topics of range arguments. Previously, most range arguments were constructed based
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on the DLOG assumption and hence, exponentiation operation is required for proof generation
and verification [5, 17, 10, 9, 8]. Since exponentiation is a heavy process compared to multi-
plication and addition operations, computation will become more efficient if proof generation
(resp. verification) can be executed by multiplication and addition operations. In addition, it
is generally known that splitting a zero-knowledge proof protocol into a preprocessing phase
and an online phase makes computation after fixing the input efficient [18, 19]. Suppose the
communication destination is fixed in advance, such as an electronic voting systems provider
for electronic voting or a particular e-cash system provider. In that case, such offline-online
protocol can be applied, but such protocol has yet to be known for range arguments.

1.1 Our Contribution

We propose a range argument protocol with a preprocessing phase. Compared to conventional
protocols based on the DLOG assumption [5, 17] and integer commitment [10, 9, 8], our proto-
col is new in that it is based on arithmetic circuits. We can split our range argument protocol
into a preprocessing phase and an online phase. This makes computation after fixing the input
efficient. Our range argument is efficient because, in addition to splitting into the preprocessing
phase, the prover (resp. verifier) generates (resp. verifies) a part of proof based on information-
theoretic message authentication codes (IT-MACs), which can be computed by multiplication
and addition operations. It makes proof generation (resp. verification) more efficient computa-
tionally than computed by exponential operations. Moreover, our range argument is a generic
construction that does not rely on any particular mathematical assumptions. In more detail,
our range argument relies on mathematical assumptions of a vector oblivious linear evaluation
(VOLE) and commitment that we employ. We can employ various types of VOLE construction
without any restrictions. However, it is not the same for commitments. That is, commitments
need additional properties to construct our range arguments securely. We newly define these
properties and prove that any homomorphic commitment satisfies these properties. Therefore,
by adapting the standard Pedersen commitment [16], our range argument is no need to use
a large class of groups as in square decomposition-based approaches [9, 8] to obtain 128-bit
security. Moreover, we can construct a post-quantum range argument by adapting quantum-
resistant VOLE like [18], which is based on LPN assumption, and that of commitment like [2],
which is based on lattice assumptions. Moreover, our range argument does not require a trusted
setup. We can make our range argument non-interactive using Fiat-Shamir heuristic [11].

The implementation evaluation shows that the total computation time for the prover and
verifier in the online phase is efficient compared to Bulletproofs, one of the state-of-the-art
methods. Especially, the prover computation is efficient. The verifier computation is not as
fast as Bulletproofs, but it is still efficient enough.

2 Technical Overview

Our main idea is to express the constraints that the prover must prove in range arguments
as arithmetic circuits and to adapt them to QuickSilver [19], which is one of ZKP for an
arithmetic circuit (ZKP-AC). ZKP-AC allows a prover with witness w to prove C(w) = 0 to
a verifier for some public arithmetic circuit C without revealing any additional information
beyond the fact that C(w) = 0. QuickSilver generates (resp. verifies) the proof by using
VOLE correlations. This type of ZKP-AC is called VOLE-based zero-knowledge proof (VOLE-
based ZKP). QuickSilver has computationally efficient features, such as preprocessing and proof
generation (resp. verification) by multiplication and addition operations. We can enjoy these
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features if we can adapt constraints of range arguments to QuickSilver, but it is actually non-
trivial for the following two reasons. First, unlike in ZKP-AC, we must assume that the prover’s
witness has already been committed before fixing the input in the protocol. In other words,
the prover must prove not only that (1) the witness w lies within a certain range, but also
that (2) w is indeed the committed value. This makes a QuickSilver-based range argument
non-trivial; it is unclear how we prove (2) in the QuickSilver framework, i.e., with arithmetic
circuits. Second, we must express the constraints that the prover proves in range arguments
as arithmetic circuits to prove (1). Since arithmetic circuits consist solely of addition and
multiplication operations, we have to represent the range-argument constraints as a function
using only addition and multiplication.

Based on the above observation, we propose a new range argument based on QuickSilver
effectively combined with commitment schemes. We newly define extended versions of hiding
and binding properties to construct our range arguments securely. We prove that any homo-
morphic commitment satisfies these properties, which makes our range argument adaptable to
any homomorphic commitment. Moreover, we introduce a new representation of arithmetic cir-
cuits for the constraints of the range argument. Since QuickSilver requires the same number of
interactions as there are multiplication gates in the arithmetic circuits,1 it is crucial to design
an arithmetic circuit for range arguments with as few multiplication gates as possible. Our
arithmetic circuit only requires n multiplication gates (that require interactions) for the range
[0, 2n − 1], based on the prior works [5, 17]. We give technical overviews of the above technical
contributions as follows.

Adapting Commitment Schemes. In QuickSilver, a prover masks his witness w by
(VOLE) randomness µ and sends σ := w − µ to a verifier. Afterward, the prover generates
MAC tags for w as a proof, and the verifier generates the corresponding MAC key using σ in a
zero-knowledge manner. The prover homomorphically computes a MAC tag for C(w) = 0 and
sends it to the verifier. The verifier, in turn, homomorphically computes the corresponding key
for C(w) = 0. As a result, the MAC verification will accept the MAC tag if and only if both
the prover and verifier have followed the protocol correctly. To construct a range argument
based on QuickSilver, we need to force the prover to bind the message w in the commitment
cw to the witness w used for σ := w − µ. Otherwise, even if the prover uses the witness w′

in σ that is not equal to the committed w, the verifier cannot verify w′ ̸= w and incorrectly
accepts w′. This makes QuickSilver-based range arguments challenging since the language for
the range argument is an NP language, given that w is committed and cannot be altered due
to the commitment scheme.

Given the above discussion, we add a verification procedure that checks the prover’s input
w is equivalent to the commited value w with the aid of the homomorphic property of the
commitment scheme. The prover sends a commitment c−µ := Com(−µ; r′) of randomness -µ,
where Com is a commitment algorithm and r′ is an internal randomness, in advance. Suppose
that the witness w is committed in the form of cw := Com(w; r). The prover also sends
randomness r⋆ := r ⊙r r

′ along with σ := w − µ, where ⊙r is a homomorphic operation over
the randomness space. Then, the verifier can check that:

Com(σ; r⋆)
?
= cw ⊙c c−µ (= Com(w + (−µ); r + r′)) , (1)

where ⊙c is a homomorphic operation over the commitment space. Although this procedure
enables the verifier to confirm the equivalence of the prover’s input and the committed value,

1To be precise, QuickSilver requires interactions only for multiplication gates where both inputs are masked
values. No interactions are needed for multiplication gates with at least one constant input.
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the verifier obtains σ, c−µ, and r⋆ in addition to cw to verify (1). Those values must be related
to the original commitment cw, and therefore, the standard hiding and binding properties are
insufficient for the commitment scheme required in our range argument.

Hence, we define new hiding and binding properties, called special hiding and special bind-
ing, that guarantee that w remains hidden and unalterable, even if an adversary obtains σ,
c−µ, and r⋆. In section 4, we give formal definitions of special hiding and special binding,
and we prove that any homomorphic commitment satisfies them. This flexibility enables our
generic construction of the range proof, allowing our range argument not to rely on any partic-
ular mathematical assumptions. By adapting quantum-resistant commitment like [2], we can
construct a post-quantum range argument.

Circuit Representation for Range Argument. To represent the constraints that the
prover must prove in range arguments as arithmetic circuits, we pay attention to the bit-
decomposition approach [5]. According to this approach, the prover must show the following
constraints to prove w ∈ [0, 2n − 1]:

• value-check: w =
∑n−1

i=0 wi · 2i

• bit-check: wi ∈ {0, 1} for i ∈ [0, n− 1],

where (w0, . . . , wn−1) is a bit representation of w. Note that both the value-check and the
bit-check are necessary to verify whether (w0, . . . , wn−1) represents a bit-wise decomposition of
w, as the arithmetic circuit is defined over some field Fp of order p, and each wi for i ∈ [0, n−1]
is an element of Fp, not a binary value. Considering that wi ∈ {0, 1} (⊂ Fp)⇔ wi(wi − 1) = 0
holds, we can convert the above constraints into the following functions:

• fval((w0, . . . , wn−1, w)) :=
∑n−1

i=0 wi · 2i − w

• fbit-i(wi) := wi(wi − 1) for i ∈ [0, n− 1].

The prover can show that value-check and bit-check hold by proving fval = 0 and each fbit-i = 0.
We can represent fval and each fbit-i by only multiplication and addition operations. Then, we
can represent constraints of range arguments by n+ 1 arithmetic circuits.

3 Preliminaries

3.1 Notation

x
$← S denotes a sampling of an element x from S uniformly at random. out← A(in) denotes

that an algorithm A takes in as input and outputs out. For a, b ∈ Z with a ≤ b, we write
[a, b] := {a, . . . , b}. A bold lowercase letter x := (x1, . . . , xn)

⊤ denotes a column vector. A bold
upper-case letter A denotes a matrix. A circuit C over a field Fp is defined by a set of input
wires I inC and output wires IoutC , along with a list of gates of the form (α, β, γ, T ), where α, β
are the indices of the input wires of the gate, γ is the index of the output wire of the gate, and
T ∈ {Add,Mult} is the type of the gate. If p > 2 is prime, C is an arithmetic circuit where
Add/Mult correspond to addition/multiplication in Fp. We write τ to denote the number of
Mult gates in C.

3.2 Zero-Knowledge Proof

A zero-knowledge proof of knowledge is a protocol in which a prover can convince a verifier that
some statement holds without revealing any information about why it holds. An argument is
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a proof which holds only if the prover is computationally bounded and certain computational
hardness assumptions hold. We consider arguments consisting of three interactive probabilistic
polynomial time (PPT) algorithms (Setup,P,V). Setup is the common reference string (CRS)
generator, P is the prover, and V is the verifier. Let R ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be a
polynomial-time-decidable ternary relation. Given CRS σ, we call w a witness for a statement
u if (σ, u, w) ∈ R and define the CRS-dependent language Lσ = {u | ∃w : (σ, u, w) ∈ R} as the
set of statements u that have a witness w in the relation R. A zero-knowledge proof should
satisfy three key properties:

• Completeness: A prover P succeeds in convincing a verifier V that a true statement as
long as u ∈ Lσ.

• Soundness: A malicious prover cannot convince a verifier V that a statement u is a
true statement if u /∈ Lσ. We distinguish between computational soundness that protects
against polynomial time cheating provers and statistical or perfect soundness where even
an unbounded prover cannot convince the verifier of a false statement. We will call
computationally sound proofs for arguments.

• Zero-Knowledge: A malicious verifier learns nothing except u ∈ Lσ. We distinguish
between computational zero-knowledge, where a polynomial time verifier learns nothing
from the proof and statistical or perfect zero-knowledge, where even a verifier with un-
limited resources learns nothing from the proof.

Due to the page limitation, we omit the precise definition as in [5], which defines completeness
as perfect completeness, soundness as computational witness-extended emulation, and zero-
knowledge as perfect special honest-verifier zero-knowledge (SHVZK).

3.3 VOLE and IT-MACs

We use vector oblivious linear evaluation (VOLE) and information-theoretic message authen-
tication codes (IT-MACs) to construct our range argument. VOLE generates authenticated
values, where P obtains x ∈ Fℓ

p and m ∈ Fℓ
p, and V obtains ∆ ∈ Fp and k ∈ Fℓ

p such that

m = k −∆ · x ∈ Fℓ
p. We omit the definition of the functionality of VOLE Fp

VOLE given in [19]
as subfield VOLE. By using VOLE, we can construct IT-MACs [15] to authenticate values in a
finite field Fp. In more detail, let ∆ ∈ Fp be a global key that can be used repeatedly, sampled
uniformly, and ∆ is known only by one party V. x ∈ Fp known by the other party P can be
authenticated by giving V a uniform key K[x] ∈ Fp and giving P the corresponding MAC tag

M [x] = K[x]−∆ · x ∈ Fp.

We denote such an authenticated value by [x]. We also denote the pair of authenticated values
that P has as [x]P = (x,M [x]) and that V has as [x]V = (∆,K[x]). An authenticated value [x]
can be “opened” by having P send x and M [x] to V, who verifies M [x] = K[x] −∆ · x. This
has a soundness error of 1/p. P and V can obtain the authentication relationship for another
value without communication by executing the following operations:

• Homomorphic Addition. P and V compute [x′′] = [x] + [x′] from [x] and [x′]. That
is, P computes [x′′]P := (x+ x′,M [x] +M [x′]). V computes [x′′]V := (∆,K[x] +K[x′]).

• Constant Addition. P and V compute [y] = c+ [x] from [x] and a public constant c.
That is, P computes [y]P := (c+ x,M [x]). V computes [y]V := (∆,K[x] + c∆).
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• Constant Multiplication. P and V compute [z] = c · [x] from [x] and a public constant
c. That is, P computes [z]P := (cx, c ·M [x]). V computes [z]V := (∆, c ·K[x]).

Using [x], P and V can obtain the another authenticated relation [w] of the IT-MACs
without revealing the value w possessed by P to V. Specifically, P computes σ := w− x, sends
σ to V, and obtains [w]P = (w,M [w]) := (w,M [x]). On the other hand, V receives σ and
obtain [w]V = (∆,K[w]) := (∆,K[x] + ∆σ).

3.4 VOLE-based ZKP

ZKP-AC allows a prover P to convinces a verifier V that the prover knows a witness w for
which C(w) = 0 without leaking any extra information [13]. The detail of the definition of
the functionality of ZKP-AC FZK is given in [19]. In recent years, several ZKP-ACs based
on subfield VOLE have been proposed [18, 19]. This types of ZKP-AC is called VOLE-based
ZKP. VOLE-based ZKP has computationally efficient features such as splitting the protocol
into a preprocessing phase and an online phase. In the preprocessing phase, P and V generate
VOLE correlations. In the online phase, P generates the proofs based on multiplication and
addition operations using the relation of IT-MACs. V checks the correctness of the output
of an arithmetic circuit. Generating VOLE correlations in the preprocessing phase makes
computation after fixing the input, that is, the online phase efficient. P must generate an
additional proof that P multiplies correctly for every multiplication gate whose inputs are not
both public. QuickSilver [19], one of VOLE-based ZKP, proposes the gate-by-gate paradigm to
generate such proof efficiently.

Gate-by-Gate Paradigm. The gate-by-gate paradigm is a technique for proving the
soundness of multiplication gates at once. For each multiplication gate (α, β, γ,Mult) in the
arithmetic circuit C, if wγ = wα · wβ is satisfied, then, taking into account mi = ki − ∆ · wi,
i ∈ {α, β, γ}, the following relation must be satisfied:

V knows︷ ︸︸ ︷
Bi := kα · kβ − kγ ·∆
= mα ·mβ + (wβ ·mα + wα ·mβ −mγ) ·∆+ (wα · wβ − wγ) ·∆2

= mα ·mβ︸ ︷︷ ︸
:=A0,i, P knows

+(wβ ·mα + wα ·mβ −mγ)︸ ︷︷ ︸
:=A1,i, P knows

· ∆︸︷︷︸
V knows

.

Moreover, when C has τ multiplication gates, the above relations can be checked at once using

the V’s challenge χ
$← Fp as follows:

∑
i∈[τ ]

Bi · χi

︸ ︷︷ ︸
:=B(V knows)

=
∑
i∈[τ ]

A0,i · χi

︸ ︷︷ ︸
:=A0(P knows)

+

∑
i∈[τ ]

A1,i · χi


︸ ︷︷ ︸

:=A1(P knows)

· ∆︸︷︷︸
V knows

.

Furthermore, to satisfy the zero-knowledge property, P sends the proof (U := A0 +M [ξ], V :=
A1 + ξ) to V using an additional VOLE [ξ], and V verifies B + K[ξ] = U + V · ∆, thereby
checking τ multiplication gates at once.

3.5 Commitment

A (non-interactive) commitment scheme is an essential building block for range arguments. It
allows a sender to commit to a value x by sending a commitment cx and then to reveal x by
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opening the commitment later. A commitment scheme must satisfy the property of hiding,
which requires the receiver not to obtain any information about x from the commitment that
the sender has committed, and binding, which requires the sender not later to generate opening
information that would change the value that the sender has already committed. That is, the
value that the sender opens is guaranteed to be x. More precisely, we define them as follows:

Definition 1 (Commitment). A non-interactive commitment scheme πcom consists of a pair
of PPT algorithms (CSetup, Com).

• pp ← CSetup(1κ): The setup algorithm CSetup is a PPT algorithm that takes security
parameter κ as input and outputs public parameters pp for the scheme. Message space X ,
randomness space R and commitment space C are defined by pp.

• cx ← Compp(x): The commitment algorithm Compp is a PPT algorithm (linked to pp)

that takes a message x ∈ X as input, draws r
$← R uniformly at random, and computes

commitment cx := Compp(x; r). For simplicity, we will write Compp as Com.

Definition 2 (Hiding). A non-interactive commitment scheme πcom is said to be hiding if
for all PPT adversaries A and sufficiently large security parameter κ, there exists a negligible
function negl(κ) such that∣∣∣∣∣∣Pr

 pp← CSetup(1κ), (x0, x1, st)← A(pp),
b

$← {0, 1}, r
$← R, cxb

:= Com(xb; r),
b′ ← A(st, cxb

)

: b′ = b

− 1

2

∣∣∣∣∣∣ ≤ negl(κ).

where the probability is over b, r, CSetup and A. Especially, if negl(κ) = 0 then we say the πcom

is perfectly hiding.

Definition 3 (Binding). A non-interactive commitment scheme πcom is said to be binding if
for all PPT adversaries A and sufficiently large security parameter κ, there exists a negligible
function negl(κ) such that

Pr

[
pp← CSetup(1κ),
(x0, x1, r0, r1)← A(pp)

: cx0
= cx1

∧ x0 ̸= x1

]
≤ negl(κ)

where cxi
:= Com(xi; ri) (i ∈ {0, 1}) and the probability is over CSetup and A. Especially, If

negl(κ) = 0 then we say the πcom is perfectly binding.

In this paper, we consider homomorphic commitments.

Definition 4 (Homomorphic Commitment). A homomorphic commitment scheme is a non-
interactive commitment scheme such that (X ,⊙x), (R,⊙r) and (C,⊙c) are all abelian groups,
and for all x0, x1 ∈ X , r0, r1 ∈ R, we have

Com(x0; r0)⊙c Com(x1; r1) = Com(x0 ⊙x x1; r0 ⊙r r1).

4 New Security Requirement for Commitment

As mentioned in section 2, we need to force the prover to bind the message w used in the
commitment cw for the range argument to the witness w used in σ := w−µ. We define special
binding, which guarantees that w in σ is bound to w in cw; both w are the same. On the other
hand, in the context of commitment, the verifier needs to obtain σ, cµ, and r⋆ in addition to
cw to verify (1). We also define special hiding, which guarantees that w remains hidden even if
the verifier obtains σ, cµ, and r⋆. Precisely, we define special binding and special hiding.
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Definition 5 (Special Binding). A homomorphic commitment scheme πcom satisfies special
binding if for all PPT adversaries A and sufficiently large security parameter κ, there exists a
negligible function negl(κ) such that

Pr

 pp← CSetup(1κ), µ
$← X ,

(x0, x1, r0, r1, r)← A(pp, µ),
c0 := cx0

⊙c cµ, c1 := cx1
⊙c cµ

: c0 = c1 ∧ x0 ̸= x1

 ≤ negl(κ),

where cxi
:= Com(xi; ri) (i ∈ {0, 1}) and cµ := Com(µ; r). Especially, if negl(κ) = 0, then we

say the πcom is perfectly special binding.

Even if cx0 ̸= cx1 , the adversary wins the game when the homomorphic operation results in
c0 = c1 for a specific value µ.

Definition 6 (Special Hiding). A homomorphic commitment scheme πcom satisfies special
hiding if for all PPT adversaries A and sufficiently large security parameter κ, there exists a
negligible function negl(κ) such that∣∣∣∣∣∣∣∣∣∣

Pr


pp← CSetup(1κ), (x0, x1, st)← A(pp),
b

$← {0, 1}, r
$← R, cxb

:= Com(xb; r),

x′ $← X , r′
$← R, cx′ := Com(x′; r′),

x⋆ := xb ⊙x x′, r⋆ := r ⊙r r
′,

b′ ← A(st, cxb
, cx′ , x⋆, r⋆)

: b′ = b

− 1

2

∣∣∣∣∣∣∣∣∣∣
≤ negl(κ).

In particular, if negl(κ) = 0 for any κ, then πcom satisfies perfectly special hiding.

In other words, even if an adversary obtains not only the challenging commitment cxb
but

also the commitment cx′ to the uniformly random number x′, the operation result between
the committed values x⋆, and the operation result between the random numbers used to gen-
erate each commitment r⋆, we can guarantee that the hiding property of the challenge xb is
guaranteed.

Theorem 1 (Special Binding). Any homomorphic commitment scheme satisfies special bind-
ing with the same advantage.

Proof. Let A be an adversary against the special binding of a homomorphic commitment scheme
πcom, and A′ be an adversary against the binding of a (homomorphic) commitment scheme. We
construct A′ by using any arbitrarily fixed A. The adversary A′ of hiding behaves as the
challenger of the special binding game. Let C be the challenger of the binding game. The
challenger A′ interacts A as follows:

1. C obtains pp
$← CSetup and sends pp to A′.

2. A′ chooses µ ∈ X and sends pp and µ to A.

3. A′ receives a challenge query (x0, x1, r0, r1, r) from A.

Suppose that the challenge query (x0, x1, r0, r1, r) from A meets special binding That is,
(x0, x1, r0, r1, r) meets c0 = c1 and x0 ̸= x1. C computes cx0

:= Com(x0; r0) and cx1
:=

Com(x1; r1). The commitments are group elements, then the following equation holds.

c0 = c1 ⇔ cx0 ⊙c cµ = cx1 ⊙c cµ

8
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⇔ cx0 ⊙c cµ ⊙c c
−1
µ = cx1 ⊙c cµ ⊙c c

−1
µ

⇔ cx0
= cx1

.

If A wins the game of special binding, A′ wins the game of binding with the same advantage.

Theorem 2 (Special Hiding). Any homomorphic commitment scheme satisfies special hiding
with the same advantage.

Proof. Let A be an adversary against the special hiding of a homomorphic commitment scheme
πcom, and A′ be an adversary against the hiding of a (homomorphic) commitment scheme.
We construct A′ by using any arbitrarily fixed A. The adversary A′ of hiding behaves as the
challenger of the special hiding game. Let C be the challenger of the hiding game. At the
beginning of the game, A′ receives a public parameter pp and forwards it to A. The challenger
A′ interacts A as follows:

1. A′ receives a challenge query (x0, x1) from A and forwards it to the challenger C. C

samples b
$← {0, 1}, r $← R, computes cxb

:= Com(xb; r), and send it to A′.

2. A′ samples x∗ $← X and r∗
$← R and computes cx′ := Com(x⋆; r⋆) ⊙c c−1

xb
. A′ send

(cxb
, cx′ , x⋆, r⋆) to A.

3. A predict b′ ∈ {0, 1} and sends b′ to A′

4. A′ receives b′ and forward b′ to C.

x⋆ and r⋆ are independent of b. b is included in cxb
and in c−1

xb
in cx′ . Then, if A wins the game

of special hiding, A′ wins the game of hiding with the same advantage.

Therefore, any homomorphic commitment satisfies special binding and special hiding with
the same advantage, which makes our range argument a generic construction that does not rely
on any particular mathematical assumptions.

5 Our Range Argument Construction

5.1 Range Arguments

Range arguments aim to prove that a prover’s committed value falls within a specified range
for a verifier. Precisely, range arguments are zero-knowledge arguments for the following NP
language L:

L =

{
(pp, cw, n)

∣∣∣∣ ∃(w, r) ∈ X ×Rs.t. cw = Com(w; r) ∧ w ∈ [0, 2n − 1]

}
.

This is the bit-decomposition-based definition and this definition generalizes to arbitrary inter-
vals [a, b]. Our protocol is based on bit-decomposition so that we will give an overview.

Bit-Decomposition Approach. Bit-decomposition takes an approach based on the premise
that a value within a certain range can be represented by a bit string representing that range.
We consider the proof of w ∈ [0, 2n − 1]. At first, the prover commits w by cw = Com(w; r). In
the proof generation, the prover converts w into a bit representation (w0, . . . , wn−1) and proves
the following two constraints hold, without leaking knowledge of w or each wi:

9
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• value-check: The original w can be restored from wi for i ∈ [0, n − 1]. In other words,

w =
∑n−1

i=0 wi · 2i holds.

• bit-check: each wi for i ∈ [0, n − 1] is a bit. In other words, wi ∈ {0, 1} holds for
i ∈ [0, n− 1].

One of the state-of-the-art methods in this paradigm is Bulletproofs [5], which features very
small proof sizeO(κ·log n) for a security parameter κ and enjoys a transparent setup. Therefore,
Bulletproofs have become the most commonly used solution in real-world applications.

5.2 Conversion to Circuit Representation

We show that we can convert constraints of value-check and bit-check into arithmetic circuits
to adapt QuickSilver [19].

Conversion for Value-Check. In order to convert w =
∑n−1

i=0 wi · 2i into an arithmetic
circuit representation, we define

fval((w0, . . . , wn−1, w)) :=

n−1∑
i=0

wi · 2i − w.

We can express fval by addition and multiplication operations. Therefore, we can convert fval
into an arithmetic circuit Cval as shown in Figure 1. The prover can prove that w =

∑n−1
i=0 wi ·2i

holds if he can show Cval((w0, . . . , wn−1, w)) = 0 holds.

Conversion for Bit-Check. Next, we will convert wi ∈ {0, 1} for i ∈ [0, n − 1] into
arithmetic circuits representation. We note that for any i ∈ [0, n − 1], if wi(wi − 1) = 0, then
wi ∈ {0, 1} holds identically. We define

fbit-i(wi) := wi(wi − 1).

We can express fbit-i by addition and multiplication operations. Therefore, we can convert fbit-i
into each arithmetic circuit Cbit-i as shown in Figure 2. If Cbit-i(wi) = 0 for i ∈ [0, n− 1], then
we can prove that wi ∈ {0, 1} for i ∈ [0, n− 1] holds. V can be confident that the prover holds
w ∈ [0, 2n − 1] by verifying that the outputs of Cval and each Cbit-i are all 0.

Since we have already converted value-check and bit-check into n + 1 arithmetic circuits
Cval and Cbit-i for i ∈ [0, n − 1], we can construct our range argument by simply executing
QuickSilver n+ 1 times for n+ 1 arithmetic circuits.

Combining Verification of Gate-by-Gate Paradigm. In QuickSilver, P and V generate
VOLE correlations in the preprocessing phase, which makes computation after fixing the input
efficient. However, reducing the number of VOLE correlations is desirable in terms of communi-
cation and computational efficiency. We can reduce the number of VOLE correlations required
for the gate-by-gate paradigm for Cbit-i for i ∈ [0, n− 1] from n to 1. We combine the n times
gate-by-gate paradigm for n arithmetic circuits Cbit-i for i ∈ [0, n − 1] into one. Specifically,

V samples χ
$← Fp as a challenge, and send χ to P. For each multiplication gate i that each

{Cbit-i}i∈[0,n−1] has, P computes U :=
∑

i∈[0,n−1] A0,i ·χi+M [ξ] and V :=
∑

i∈[0,n−1] A1,i ·χi+ξ,

and send (U, V ) to V. V computes W :=
∑

i∈[0,n−1] Bi ·χi+K[ξ]. V can verify n multiplication
gates at once by W = U +∆ · V .

By reconsidering the necessary circuits based on the above discussion, n + 1 arithmetic
circuits {Cbit-i}i∈[0,n−1] and Cval can be expressed as a single arithmetic circuit Crp with n+ 1
inputs and n+1 outputs in Figure 3. By running QuickSilver on Crp, we can execute value-check
and bit-check in one go.

10
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Figure 3: The arithmetic circuit Crp for range arguments.

5.3 Our Range Argument Protocol

We propose a range argument protocol Πp
RA in Figure 4 and 5. We use VOLE Fp

VOLE and
homomorphic commitment πcom. In the preprocessing phase, P and V use functionality Fp

VOLE

to obtain 4n + 2 VOLE correlations and P commits one VOLE randomness µ by c−µ. P
commits the witness w by cw. In the online phase, P and V obtain authenticated values of
the each witness wi by using σi := wi − µi. P sends σn := wn − µ and r⋆ := r + r′ to V, and
V verifies that w in σ is bound to w in cw by Com(σn; r

⋆) = cw ⊙c c−µ. Then, P generates
zero-knowledge proofs for the arithmetic circuit Crp using VOLE and IT-MAC. V verifies that

11
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the proof (U, V ) for gate-by-gate paradigm satisfies W = U + ∆ · V , and the proof M [whi ]
corresponding to each output wires hi for i ∈ [0, n − 1] satisfies M [whi

] = K[whi
]. After all

checks are passed, the verifier can be convinced of w ∈ [0, 2n − 1].

Theorem 3. The range arguments Πp
RA have perfect completeness, computational witness-

extended emulation, and SHVZK with soundness error (n+ 3)/p+ ϵ, where ϵ is the advantage
of binding of πcom.

Due to the page limitation, we focus on the effect caused by incorporating a commitment
πcom into QuickSilver and omit full proof. The adversary A wants to forge w′ ̸= w. Let
w′ := w+ e, where e is an error. If A uses a correct VOLE randomness µ, A sends σ′

n := w′−µ
to the verifier. In this case, A needs to break special binding, that is, A needs to find σ′

n

such that Com(σ′
n; r

⋆) = cw ⊙c c−µ holds. This advantage is ϵ. Else if A uses an incorrect
VOLE randomness µ′, A sends σ′

n := w′ − µ′ to the verifier. By setting µ′ = µ − e, which
makes σ′

n = σn, the verifier V will pass the commitment check Com(σ′
n; r

⋆) = cw ⊙c c−µ,
but does not pass the subsequent IT-MAC verification. A sets M [w′] := M [µ]. V computes
K[w′] := K[µ] + ∆σ′

n = K[µ] + ∆(w′ − µ) + ∆e. Here, the adversary A must satisfy M [w′] =
K[w′] − ∆w′ ⇔ M [µ] = K[µ] − ∆µ + ∆e. The probability that A can estimate ∆ such that
∆e = 0 is 1/p and the probability that A can estimate ∆ that can pass the gate-by-gate
paradigm verification is 2/p.

6 Experimental Evaluation

We conducted performance evaluations to benchmark our range argument against Bullet-
proofs [5], which is one of the state-of-the-art bit-decomposition constructions. Bulletproofs
have become the most commonly used solution in real-world applications, and other state-of-
the-art range proofs generally compare Bulletproofs, so it is also suitable for comparison with
our range argument. The other mainstream is the square-decomposition approach, but it has
the drawback of relaxed soundness and need RSA or large class groups to address the relaxed
soundness. Then, we have not evaluated square-decomposition constructions like Sharp [8].

Protocol Πp
RA (Part I)

Inputs: The prover P and the verifier V hold a circuits Crp over Fp, which has n+1 inputs and
n+1 outputs. The prover P also holds a witness w and its bit representation w0, w1, . . . , wn−1

such that Crp((w0, w1, . . . , wn−1, w)) = 0n+1.
Preprocessing Phase: We denote µ3n as µ.

1. P and V send (init) to Fp
VOLE, witch returns a uniform ∆ ∈ Fp to V.

2. P and V send (extend, 4n + 2) to Fp
VOLE, which returns {[µi]P := (µi,M [µi])}i∈[0,3n],

{[νi]P := (νi,M [νi])}i∈[0,n−1], [ξ]P := (ξ,M [ξ]) to P and {[µi]V := (∆,K[µi])}i∈[0,3n],
{[νi]V := (∆,K[νi])}i∈[0,n−1], [ξ]V := (∆,K[ξ]) to V.

3. P generates r′
$← R (= Fp), computes c−µ := Com(−µ; r′) and sends c−µ to V.

Commit Phase: P computes cw := Com(w; r) and publishes it.

Figure 4: Our range argument over any field (Part I).
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Protocol Πp
RA (Part II)

Online Phase: We denote w as wn. Let (wα, wβ) be the values on the left and right input

wires (α, β). For i ∈ I inCrp
\ {n}(= [0, n− 1]), let w

(ℓ)
i for ℓ ∈ {0, 1, 2} be values on each wires

from input value wi.

1. For i ∈ [0, n − 1], P sends values σ
(ℓ)
i := w

(ℓ)
i − µℓ(n−1)+i for ℓ ∈ {0, 1, 2} and σn :=

wn − µ to V. P computes [w
(ℓ)
i ]P = (w

(ℓ)
i ,M [w

(ℓ)
i ]) := (w

(ℓ)
i ,M [µℓn+i]) and [wn]P =

(wn,M [wn]) := (wn,M [µ]). V also computes [w
(ℓ)
i ]V = (∆,K[w

(ℓ)
i ]) := (∆,K[µℓn+i] +

∆σi) and [wn]V = (∆,K[wn]) := (∆,K[µ] + ∆σn).

2. P computes r⋆ := r + r′ and sends r⋆. V checks Com(σn; r
⋆)

?
= cw ⊙c c−µ. If the check

fails, then V outputs false.

3. For each gate (α, β, γ, T ) ∈ Crp, execute the following in the topological order, where

i ∈ [0, n − 1]. For simplicity, We denote [w
(ℓ)
i ]P (resp. [w

(ℓ)
i ]V) for each ℓ ∈ {0, 1, 2} as

[wi]P = (wi,M [wi]) (resp. [wi]V = (∆,K[wi])) below:

• Case T = Add and (wα, wβ) = (wi,−1): Since one of the inputs of the Add gate
is the public constant −1, P computes [wi − 1]P = (wi − 1,M [wi − 1]) := (wi −
1,M [wi]), and V computes [wi − 1]V = (∆,K[wi − 1]) := (∆,K[wi] −∆), without
communicating with each other.

• Case T = Mult and (wα, wβ) = (wi, wi − 1): Both inputs wα and wβ of the Mult
gate are not public. P computes di := wi · (wi − 1)− νi ∈ Fp for i ∈ [0, n− 1] and
send them to V. V computes [wi(wi−1)]V = (∆,K[wi(wi−1)]) := (∆,K[νi]+∆di)
for i ∈ [0, n− 1].

• Case T = Mult and (wα, wβ) = (wi, 2
i): Since one of the inputs of the Mult gate is

the public constant 2i, P computes [2iwi]P = (2iwi,M [2iwi]) := (2iwi, 2
i ·M [wi])

and V computes [2iwi]V = (∆,K[2iwi]) := (∆, 2i ·K[wi]) without communicating
with each other.

• Case T = Add and wα = wi2
i or wβ = wn: Although both inputs wα and wβ to

the Add gate are not public, for using the additive homomorphism of IT-MACs, P
computes [wγ ]P := (wα+wβ ,M [wα]+M [wβ ]) and V computes [wγ ]V := (∆,K[wα]+
K[wβ ]) without communicating with each other.

4. For each Mult gate i ∈ [0, n − 1] which inputs (wα, wβ) are (wi, wi − 1), P has
([wγ ]P , [wα]P , [wβ ]P) and V also has ([wγ ]V , [wα]V , [wβ ]V) as an authenticated triple
(mi = ki −∆ ·wi, i ∈ {α, β, γ}). To verify that P has correctly computed wγ = wα ·wβ

for each multiplication gate i ∈ [0, n− 1] all at once, both parties execute the following.

(a) For i ∈ [0, n− 1], P computes A0,i := mα ·mβ ∈ Fp and A1,i := wα ·mβ +wβ ·mα−
mγ ∈ Fp, and V also computes Bi := kα · kβ − kγ ·∆ ∈ Fr

p.

(b) V generates χ
$← Fp and send χ to P.

(c) P computes U :=
∑

i∈[0,n−1] A0,i · χi +M [ξ] and V :=
∑

i∈[0,n−1] A1,i · χi + ξ using

A0,i, A1,i. V computes W :=
∑

i∈[0,n−1] Bi · χi +K[ξ] using Bi.

5. P sends (U, V ) and mhi
for all hi ∈ IoutCrp

to V. V checks W
?
= U + ∆V and K[whi

]
?
=

M [whi
] for all hi ∈ IoutCrp

. If the checks fail, V outputs false. Otherwise, V outputs true.

Figure 5: Our range argument over any field (Part II).
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Table 1: Compering computational costs of our range arguments with Bulletproofs over a field
Fp. All timings are in milliseconds.

n = 32 n = 64

p ≈ 2128 P V P V
Bulletproofs [5] 3.88 0.60 7.38 1.04

the online phase of Πp
RA-Ped 0.51 1.35 0.63 1.42

The benchmarks were made on a laptop with an Apple M2 Max, 64GB RAM, running macOS
14. We implement our scheme using C++, based on an existing implementation of QuickSil-
ver1. In detail, we use the P-256 curve for the Pedersen commitment [16] as a widely standard
commitment scheme and generate VOLE correlations using [18] without any VOLE extensions.
We call this range argument scheme Πp

RA-Ped. We measured the running time of only the online
phase of Πp

RA-Ped in terms of proving and verification time, respectively. We also implement
Bulletproof using an existing implementation2. The implementation result of computational
costs is in Table 1. The total computation time for the prover and verifier in the online phase
is more efficient than that of Bulletproofs. Especially, the prover computation is efficient. The
verifier computation is not as fast as Bulletproofs, but it is still efficient enough. Since no wit-
ness information is communicated during the preprocessing phase, the prover and verifier can
execute the preprocessing phase computation in advance. Therefore, our range argument is effi-
cient in the online phase. Including the computations of the preprocessing phase, it takes about
25-27 ms for 32-bit and 64-bit, but our range argument is sufficiently practical. Moreover, our
range argument is a generic construction. By adapting BDLOP commitment [2] as quantum-
resistant commitment, we can construct a post-quantum range argument. We also benchmark
the commit phase of BDLOP commitment itself, and it takes 78.3(ms). It is dominant for our
range argument, but it will still be efficient.

7 Conclusion

We proposed an efficient range arguments protocol with preprocessing phase. The main idea is
to express the constraints that the prover must prove in range arguments as arithmetic circuits.
To adapt the constraints to ZKP-AC, we define new hiding and binding properties, called special
hiding and special binding, and we prove that any homomorphic commitment satisfies them
with the same advantage, which makes our range argument a generic construction that does
not rely on any particular mathematical assumptions, enabling us to construct a post-quantum
range argument. The implementation evaluation showed that the total computation time for
the prover and verifier in the online phase is efficient compared to Bulletproofs, one of the
state-of-the-art methods. Especially, the prover computation is efficient.
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