
On Unfolding for Programs Using Strings

as a Data Type

Andrei P. Nemytykh∗

Program Systems Institute of Russian Academy of Sciences
nemytykh@math.botik.ru

Abstract

As a rule, program transformation methods based on operational semantics unfold a
semantic tree of a given program. Sometimes that allows ones to optimize the program or to
automatically prove its certain properties. Unfolding is one of the basic operations, which
is a meta-extension of one step of the abstract machine executing the program. This paper
is interested in unfolding for programs based on pattern matching and manipulating the
strings. The corresponding computation model originates with Markov’s normal algorithms
and extends this theoretical base. Even though algorithms unfolding programs were being
intensively studied for a long time in the context of variety of programming languages,
as far as we know, the associative concatenation was stood at the wayside of the stream.
We define a class of term rewriting systems manipulating with strings and describe an
algorithm unfolding the programs from the class. The programming language defined by
this class is Turing-complete. The pattern language of the program class in turn fixes a
class of word equations. Given an equation from the class, one of the algorithms suggested
in this paper results in a description of the corresponding solution set.

Keywords: Program specialization, supercompilation, program analysis, program transformation,

unfolding, driving, Markov’s normal algorithms, word equations.

1 Introduction

Let L be a functional/logical programming language. Given a program P written in L, as a rule,
program transformation methods based on operational semantics unfold and try to analyze a
semantic tree of P in a given context of using P. If a program transformation methodM aims to
optimize P w.r.t. its run-time, then an abstract cost model is required and the optimizer trying
to reduce the run-time has to follow the model. Usually the L-interpreter is implemented
by means of a staircase of other languages. I.e. the L-interpreter is written in a language
L1 implemented in L2 and so on. This circumstance together with specific properties of the
hardware executing the program P make rather impossible using an actual (physical) execution
time-cost model in theoretical investigations.

The computation model standing behind the operational L-semantics gives a natural logical
time-cost model widely used in program transformation. The corresponding logical time-cost of
P(d0) is the number of computation steps taken by evaluation of P(d0). Such a computation
Step defined by the operational semantics is a subroutine being iterated by the L-interpreter
Int in its uppermost loop. Given a current state st of Int, the current call Step(st) results
in the next state following immediately after st. In general, the actual execution time taken
by the step evaluation is not uniformly bounded above by the size of the input data and this
fact may be unobvious without knowledge of some details of the entire implementation staircase

∗The reported study was partially supported by RFBR, research project No. 14-07-00133 A, and by Program
No. 16 for Basic Research of Presidium of Russian Academy of Sciences.

66 A. Lisitsa, A. Nemytykh (eds.), VPT 2014 (EPiC Series, vol. 28), pp. 66–83

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

mentioned above1. Nevertheless such a time-cost model is interesting from both theoretical and
practical points of view.

Int iterates Step(st0) when its input data st0 is completely static (known), while the
unfolding discussed above generates the semantics tree by means of iterating a meta-extension
MStep(st) of Step in the case when its input data st may be parameterized (partially un-
known/dynamic). A launch of MStep results in a tree being branched with the corresponding
input parameters. This tree is finite in the case when it is assumed that evaluation of Step(st)
takes a time uniformly bounded by the size of st, otherwise the tree may be potentially in-
finite. Prolog-III [3] including a string unification is an example of the language where the
time taken by the call MStep(st) is not uniformly bounded above. Associativity of the string
concatenation makes this property syntactically explicit [20]. Another example is a functional
programming language Refal [20, 22] not widely known; the Refal concatenation constructor is
also associative. Constraint logic programs manipulating the string values are used in industrial
programming. Strings form a fundamental data type used in most programming languages. Re-
cently, a number of techniques producing string constraints have been suggested for automatic
testing [8, 1] and program verification [16]. String-constraint solvers are used in many testing
and analysis tools [5, 2, 6, 15, 23].

All of that attracts an interest to string manipulation in the context of program analysis and
transformation. Even though algorithms unfolding programs were being intensively studied for a
long time (see for examples: [18, 19, 10, 14, 7]), as far as we know, the associative concatenation
was stood by the wayside of the stream and mainly was considered only in the context of the
Refal language mentioned above [18, 19, 21].

In this paper we are interested in unfolding for programs based on pattern matching and ma-
nipulating the strings. The corresponding computation model originates with Markov’s normal
algorithms [13] and extends this theoretical base. Given a string, the pattern matching looks for
an instance of a particular substring within the given string, and the logical time-cost model,
by definition, regards this search as a basic operation taking the only unit of the logical time.
Unfolding for such programs connects the program transformation with solving word equations
– another fundamental problem arisen by A. A. Markov. The corresponding satisfiability prob-
lem was solved by G. S. Makanin [12], but it still remains nontrivial from a practical point of
view. Unfolding for programs using strings as a data type is intensively used in a particular
approach to the program transformation and specialization, known as supercompilation2. Su-
percompilation is a powerful semantics-based program transformation technique [17, 19, 18, 11]
having a long history well back to the 1960-70s, when it was proposed by V. Turchin.

There is a number of simple algorithms dealing with specific classes of the word equations
(see [4] for examples). Given a word equation, they describe, in a certain way, the corresponding
solution set. The main problem is to create a formal description language which is both clear
in details and allowing us to represent some infinite solution sets in finite terms. For instance
any word equation itself is a description of its solution set, but, as a rule, such a description is
very obscure.

Our contribution. We give a syntactic description of a class of term rewriting systems ma-
nipulating with strings and using the theoretical time-cost model mentioned above. We suggest
a new algorithm for one-step unfolding of the programs from this class and this algorithm han-
dles an input that is partially unknown. I.e. we present a driving operation. The programming
language defined by this class is Turing-complete. The class is studied both in nondeterministic
and deterministic variants of the operational semantics. Given a word equation, one of the

1For example (but not only), a hidden garbage collection may cause that.
2From supervised compilation.

67

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

algorithms suggested in this paper results in a description (a term rewriting system) of the
corresponding solution set. As far as we know, there exist no papers using the nondeterministic
pattern matching as a language for such a description and none considered the class of the word
equations characterized by Theorems 1, 2 proved below, namely the variables separated by the
two3 equation sides such that at least one of the sides has at most one occurrence of each word
variable.

The paper is organized as follows. Sect. 2 provides the program presentation languages. In
Sect. 3 we consider important examples aiming to clarify the reader intuition on the unfolding
over the strings. The two theorems being our main result are proved in Sect. 4. The theorems
relate to both specialization of the programs manipulating the strings and solving the word
equations. The constructive proofs of these theorems yield outlines of the algorithms unfolding
the programs and solving the word equations from the class of the programs/(word equations)
meeting the conditions of the theorems and mentioned above.

2 Preliminaries

2.1 The Presentation Language

We present our program examples in two variants of a pseudocode for functional programs. The
first one named L is a deterministic language, while the second denoted L∗ is nondeterministic
one. The programs given below are written as strict term rewriting systems based on pattern
matching. The sentences in the L-programs are ordered from the top to the bottom to be
matched. The sentences in the L∗-programs are not ordered. The data set is a free monoid
under concatenation. I.e. the concatenation is associative. The double-plus sign stands for
the concatenation. The constant λ is the identity element of the concatenation and may be
omitted, the other constants c are characters. Let C denote a set of the characters. The monoid
of the data may be defined with the following grammar: d ::= λ | c | d1 ++ d2
Thus a datum is a finite sequence (including the empty sequence λ).

Let F = ∪iFi be a finite set of functional symbols, here Fi is a set of functional symbols
of arity i. Let v, f denote a variable and a function name correspondingly, then the monoid of
the corresponding terms may be defined as follows:
t ::= λ | c | v | f(args) | t1 ++ t2
args ::= t | t, args – where the number of the arguments of f equals its arity.

Let the denumerable variable set V be disjoined in two sets V = E ∪ S, where the names from
E are prefixed with ’e.’, while the names from S – with ’s.’. s.variables range over characters,
while e.variables range over the whole data set.

We refer to unknown data as parameters. Like the variables the parameters p may be one
of the two following types – e and s: p ::= #s.name | #e.name. They range similarly to the
corresponding variables. Unlike the variables the parameters are semantics entities.

For a term t we denote the set of all e-variables (s-variables) in t by E(t) (correspondingly
S(t)), the set of all e-parameters (s-parameters) in t by #E(t) (correspondingly #S(t)). V(t) =
E(t) ∪ S(t).

We denote the monoid of the terms by T (C,V,F) (or simply T) and the monoid of the
parameterized terms by T (C, #V,F) (or #T). A term without function names is passive. We
denote the set of all passive terms by P(C,V). Let G(T) ⊂ T (C,V,F) be the set of ground
terms, i.e. terms without variables. Let O(T) ⊂ G(T) be the set of object terms, i.e. ground
passive terms.

3The left one and the right one.

68

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

Multiplicity of h ∈ T \ {λ} in a term t is the number of occurrences of h in t. Let us denote
it by µh(t). The length ln(t) of a term t is defined by induction: ln(λ) = 0; if t ∈ C ∪ V, then
ln(t) = 1; ln(f(t1, . . . , tn)) = 1; otherwise t = t1 ++ t2, where ti 6= λ, and ln(t) = ln(t1)+ ln(t2).

Given a subset of the variables V1 = S1 ∪ E1 where S1 ⊂ S, E1 ⊂ E , a substitution is a
mapping θ : V1 → T (C,V,F) such that θ(S1) ⊂ C ∪ S. A substitution can be extended to act
on all terms homomorphically. A substitution is called ground, object, or strict iff its range is
a subset of G(T), O(T) or T (V) (i.e. passive terms), respectively. We use notation s = tθ for
s = θ(t), call s an instance of t and denote this fact by s� t.

Formal replacement V with #V, S with #S, E with #E gives analogous notations for the
parameterized terms.

The following two syntax constructions represent the same string of characters: ’a’ ++ ’b’

++ ’c’ and ’abc’. I.e. the second is a shortcut for the first. Examples of the variables are s.rA,
e.cls, e.A5, s.x[∗]. I.e. the variable’s names may be identifiers possibly indexed. Examples
of the parameters are #s.rA, #e.p(τ [i],c[∗]). The indices will be freely used and sometimes bring
semantics meaning, which will be explained in corresponding examples usage.

A program P in L is a pair 〈t, R〉, where t is a parameterized term called initial and R is
a finite set of rules of the form f(p1, . . . , pk) = r, where f ∈ Fk, for each (1 ≤ i ≤ k), pi is a
passive term, the term r may include some function names from R, V(r) ⊆ V(f(p1, . . . , pk)).
The variables in L cannot be subscripted by the indices including the asterisk sign.

The following program 〈t, R〉 is a predicate checking whether two given input object terms
are equal.

Example 1. t is eq(#e.p, #e.q) and R is
eq(s.x ++ e.xs, s.x ++ e.ys) = eq(e.xs, e.ys);

eq(λ, λ) = ’T’;

eq(e.xs, e.ys) = ’F’;

The syntax of programs in L∗ is defined similarly to the L-program syntax. The only
difference is: the variables in L∗ should be subscripted by the indices including the asterisk
sign. Henceforth we use the dotted equals sign =̇ to denote textual (syntactic) identity. The
sign := denotes an assignment.

2.2 On Semantics of the Pattern Matching

Associativity of the concatenation creates a problem with the pattern matching, namely, given
a term τ and a rule (l = r) ∈ R, then there can be several substitutions matching τ against l.
Thus we here have a kind of non-determinism. An example is as follows:

Example 2. τ = f(’abcabc’, ’bc’) and l = f(e.x ++ e.w ++ e.y, e.w). There exist two
substitutions matching the terms: the first one is θ1(e.x) = ’a’, θ1(e.w) = ’bc’, θ1(e.y) =
’abc’, the second one is θ2(e.x) = ’abca’, θ2(e.w) = ’bc’, θ2(e.y) = λ.

To make the pattern matching unambiguous in the language L, we take the following decision
arisen from Markov’s normal algorithms [13] and used in Refal [20]: (1) if there is more than one
way of assigning values to the variables in the left-side of a rule in order to achieve matching,
then the one is chosen in which the leftmost e-variable takes the shortest value; (2) if such a
choice still gives more than one substitution, then the chosen e-variable shortest value is fixed
and the case (1) is applied to the leftmost e-variable from the e-variables excluding considered
ones, and so on while the whole list of the e-variables in the left-side of the rule is not exhausted.

69

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

In the sequel we refer to this rule as Markov’s rule and to such a substitution as a Markov
substitution on l, matching τ . Given two terms s, t and a Markov substitution θ such that
s = tθ, we call s by a Markov instance and denote this fact by s≪ t.

Example 3. τ = f(’abacad’) and l = f(e.x ++ ’a’ ++ e.y ++ ’a’ ++ e.z). There exist
three substitutions matching the terms: the first one is θ1(e.x) = λ, θ1(e.y) = ’b’, θ1(e.z) =
’cad’; the second one is θ2(e.x) = λ, θ2(e.y) = ’bac’, θ2(e.z) = ’d’; the third one is θ3(e.x) =
’ab’, θ3(e.y) = ’c’, θ3(e.z) = ’d’.

The leftmost e-variable is e.x. Both in the first and the second substitutions the length of
e.x’s values is zero. The next leftmost e-variable is e.y and ln(’b’) < ln(’bac’). The first
substitution meets Markov’s rule.

Given a term of the form f(t1, . . . , tn) where for all (1 ≤ i ≤ n), ti ∈ O(T), and a term
f(p1, . . . , pn) where all pi are passive terms, matching f(t1, . . . , tn) against f(p1, . . . , pn) can
be viewed as solving the following system of equations in the free monoid of the object terms
O(T).  p1 = t1

. . .
pn = tn

We look for all values of the variables (i.e. substitutions θi) from V(f(p1, . . . , pn)) such that
for each i and each (1 ≤ j ≤ n), θi(pj) = tj and if the values’ set is not empty we choose: (1)
in the case of the language L, the only Markov substitution; (2) in the case of the language
L∗, nondeterministically one from the substitutions. In the second case the variables should
be subscripted by the required indices. This system has an important property: all ti do not
contain variables.

The following nondeterministic program 〈t, R〉 written in L∗ results in one of the strings: λ,
’ab’, ’F’.

Example 4. t is f(’abacad’) and R is
f(e.x[∗] ++ ’a’ ++ e.y[∗] ++ ’a’ ++ e.z[∗]) = e.x[∗];

f(e.x[∗]) = ’F’;

2.3 Mutual Instances of the Terms

In this section we introduce a notion of a trivial substitution and write down the structure of
the substitutions certificating the mutual instantiation of two given terms.

The associative concatenation causes mutual instances of the terms. For example, both
e.x� e.y ++ e.z and e.y ++ e.z � e.x hold. That motivates the following notation.

Definition 1. Let V1 and V2 be two sets of the variables such that V1 ∩ V2 = ∅, Vi ⊂ V. Let
Si = Vi ∩ S and Ei = Vi ∩ E. A substitution θ : V1 → T (V2) is called trivial iff (1) for all
distinct x, y ∈ V1, V2(θ(x))∩V2(θ(y)) = ∅; (2) for each x ∈ E1, θ(x) is concatenation of certain
distinct e-variables, possibly none of them and at most with one occurrence of each e-variable;
(3) θ(S1) ⊂ S2.

Clearly, given a term t, there is at most finitely many both substitutions θ and terms τ such
that t � τθ, modulo variables’ renaming, and for each v ∈ V(τ), ln(θ(v)) > 0, since such a
substitution takes finitely many t’s subterms as its values.

Suppose V1 = {s.u1, s.v1, e.x1} and V2 = {s.u2, s.v2, s.w2, e.x2, e.y2}, then the substitu-
tion θ(s.u1) = s.u2, θ(s.v1) = s.v2, θ(e.x1) = e.x2 ++ e.y2 is trivial, while the following two

70

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

substitutions η1(s.u1) = s.v2, η1(s.v1) = s.v2, η1(e.x1) = e.x2 ++ e.y2 and η2(s.u1) = s.u2,
η2(s.v1) = s.v2, η2(e.x1) = e.x2 ++ s.w2 ++ e.y2 are not. For the sake of the paper length limita-
tions we leave the proof of the following simple proposition to the reader.

Proposition 1. Let t1, t2 be two arbitrary terms. Both t1 � t2 and t2 � t1 hold iff either t1
equals to t2 modulo variables’ names, or all substitutions θ, η such that t1θ = t2 and t1 = t2η
are trivial.

3 Examples Related to the Associative Concatenation

In the supercompilation method the meta-step MStep discussed in Introduction is called a
driving. In this section we are concerned with specific problems of the driving, arisen from the
associative concatenation. We study in detail important examples aiming to clarify the reader
intuition on the driving over the strings.

Let a program 〈t, R〉 be given. Let g (a guard) be a predicate depending on parameters
from #V(t). The guard is defined by the following grammar:
g ::= ’T’ | qs
qs ::= cn | cn ∧ qs
cn ::= ¬(p = d)
where p ∈ #V(t), d is a parameterized term. We use #V(g) to denote the set of parameters in
the guard g – similarly to the one used for the terms.

The driving drv(t,g,R) takes these three input arguments and results in a tree being
branched with the input parameters from #V(t). In general (in supercompilation), t is an arbi-
trary parameterized term including some function names from the given program. Informally
speaking, from a semantics point of view, t can be seen as a kind of a goal used in Prolog. For
the sake of simplicity, in this paper we consider only parameterized initial terms of the following
kind f(q1, . . . , qn), where for each (1 ≤ i ≤ n), qi ∈ P(#V). The tree root is labeled by the pair
〈t, g〉. Each other node is labeled by a pair 〈p, h〉, where p is a parameterized term, h is a guard
imposed on parameters from #V(p). Given a node 〈t, h〉, the edges originating from this node
are labeled by predicates on the parameters from #V(t) ∪ #V(h).

The tree generated by drv(t,g,R) is finite in the case when it is assumed that evaluation
of drv(t,g,R) takes a time uniformly bounded by the size of the input parameters, otherwise
the tree may be potentially infinite. We now turn ourselves to the case g = ’T’; some remarks
on the general case will be given below.

The algorithm Step (see Section 1) consists of two subroutines: the pattern matching,
choosing a rewriting rule and generating a substitution θ : V → O(T), and replacement of the
variables in the right-side of this rule by the generated substitution.

Consequently the driving should include meta-extension of these subroutines. The corre-
sponding meta-extension of the pattern matching is a kind of unification used in Prolog and
is described below in details. It results in a tree with leaves labeled by substitutions of the
following kind θ : V → P(#V). Given these substitutions the second meta-subroutine applies
them to the right-side of the rewriting rule being considered and it labels the corresponding
leaves by the substations’ result.

Given a parameterized term f(t1, . . . , tn) where for each (1 ≤ i ≤ n), ti ∈ P(#V), and a term
f(p1, . . . , pn) where all pi ∈ P(V), the extended matching of f(t1, . . . , tn) against f(p1, . . . , pn)

71

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

can be seen as solving of the following systems of parameterized equations. p1 = t1
. . .

pn = tn

The following two examples are crucial.

Example 5.
Consider the following program P = 〈τ,R〉, τ = f(’a’ ++ #e.p, #e.p ++ ’a’) and R is

f(e.x, e.x) = ’T’;

f(e.x, e.y) = ’F’;

The root of the tree generated by drv(τ,’T’,R) is 〈τ, ’T’〉. The extended pattern matching
has to solve the following system of the parameterized equations: e.x = ’a’ ++ #e.p

e.x = #e.p ++ ’a’
(?)

It is equivalent to the only relation Φ(#e.p) (equation) – ’a’ ++ #e.p = #e.p ++ ’a’ imposed
on the parameter #e.p.4

At näıve glance, Φ(#e.p) must be the predicate labeling the first branch outcoming from
the root, while the second branch must be labeled by the negation of the predicate ¬Φ(#e.p).
Φ(#e.p) narrows the range of #e.p. But the problem is Φ(#e.p) cannot be represented in the
pattern language, i.e. using at most finitely many of the patterns to define a one-step program
(a result of drv(τ,’T’,R)). A recursion should be used to check whether a given input data
belongs to the truth set of Φ(#e.p). This recursion is unfolded as an infinite tree.

The multiplicity µe.x(f(e.x, e.x)) > 1 causes this problem: the system (?) implies an
equation in which the parameter #e.p plays a role of a variable and both sides of the equation
contain #e.p.

Henceforth, we basing on Example 5 impose an additional restriction on the language L:
given a program P = 〈τ,R〉 we require for all (l = r) ∈ R and for all v ∈ E(l), µv(l) = 1.
Notice that we do not impose any restriction on uses of the s-variables.

Example 6. The following program demonstrates another problem.
P = 〈τ,R〉, τ = f(#e.p ++ ’a’ ++ #e.q) and R is as follows.

f(e.x ++ ’a’ ++ e.y) = e.x ++ ’b’ ++ e.y;

f(e.x) = e.x;

The root of the tree generated by drv(τ,’T’,R) is 〈τ, ’T’〉. The extended pattern-matching
has to solve the following parameterized equation:

e.x ++ ’a’ ++ e.y = #e.p ++ ’a’ ++ #e.q

That is to say the substitutions reducing the equation to identities have to be expressed through
the parameters and we are only interested in the substitutions taking into account the semantics
of the pattern (the left-side): the value of e.x cannot contain ’a’. The character ’a’ on the
right-side of the equation is allowed to take any position in this unknown string.

4It is easy to see that its solution set is {θi(#e.p) = ’ai’ | i ∈ N}.

72

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

〈f(#e.p ++ ’a’ ++ #e.q),’T’〉

(#e.p= #e.p1 ++ ’a’ ++ #e.p2)∧¬(#e.p1 = #e.p3 ++ ’a’ ++ #e.p4)

��

¬(#e.p= #e.p5 ++ ’a’ ++ #e.p6)

rr

〈#e.p1 ++ ’b’ ++ #e.p2 ++ ’a’ ++ #e.q,¬(#e.p1 = #e.p3 ++ ’a’ ++ #e.p4)〉

〈#e.p ++ ’b’ ++ #e.q,¬(#e.p = #e.p5 ++ ’a’ ++ #e.p6)〉

Figure 1: The result of the driving drv(τ,’T’,R) from Example 6

Let us solve this equation. In the case #e.p contains the characters ’a’, we choose the first
occurrence of ’a’ and split the unknown data #e.p by this occurrence as follows #e.p1 ++ ’a’

++ #e.p2, thinking about the representation as a pattern where the parameters #e.p1, #e.p2
take a role of the variables. That implies e.x = #e.p1, where ’a’ does not occur in #e.p1, and
our equation can be reduced to e.y = #e.p2 ++ ’a’ ++ #e.q. In the case #e.p contains no
’a’, we conclude that e.x = #e.p and e.y = #e.q.

In the terms of the language L this solution set and the result of the corresponding substitu-
tions in the right-sides of R can (modulo the variables) be described by the folllowing program
P1 = 〈τ1, R1〉, where τ1 = f1(#e.p, #e.q) and R1 is as follows.

f1(#e.p1 ++ ’a’ ++ #e.p2, #e.q) = #e.p1 ++ ’b’ ++ #e.p2 ++ ’a’ ++ #e.q;

f1(#e.p, #e.q) = #e.p ++ ’b’ ++ #e.q;

Removing the sharp signs in R1, we now may obtain a program written in L. P1 is almost a
textual representation of the result tree T generated by drv(τ,’T’,R) and given in Figure 1.

Example 6 demonstrates that the unification in L may be ambiguous and motivates the
splitting transformation given in the following sections.

Example 7. Consider the following program P = 〈τ,R〉, where R is

f(s.x ++ s.x) = ’T’;

f(e.z) = ’F’;

Suppose the initial term τ = f(#s.p ++ #s.q), then the extended pattern-matching has to
solve the following parameterized equation: s.x ++ s.x = #s.p ++ #s.q;. It is equivalent to
the equation #s.p = #s.q. The driving drv(τ,’T’,R) will produce P1 = 〈f1(#s.p,#s.q), R1〉,
where R1 is

f1(#s.p, #s.p) = ’T’;

f1(#s.p, #s.q) = ’F’;

In the case τ = f(#s.p ++ ’a’) we have the equation: s.x ++ s.x = #s.p ++ ’a’;. It
is equivalent to #s.p = ’a’. The driving drv(τ,’T’,R) produces P2 = 〈f2(#s.p), R2〉, where
R2 is

f2(’a’) = ’T’;

f2(#s.p) = ’F’;

73

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

The left-sides of the first rewriting rules reflect the relations generated on the s-parameters.
Analogously, if p is a pattern in a program and v ∈ S(p), µv(p) = k, the extended matching may
produce an n-ary relation imposed on the s-parameters from the initial term, where (n ≤ k)
depends on the initial term. For example, drv(f(#s.p,#s.p),’T’,R) generates the trivial
relation (i.e. no relation at all).

4 The Driving over Strings

In this section we formulate and prove two constructive theorems being our main contribution
in this paper. The first theorem concerns the nondeterministic extended pattern-matching in
the language L∗. The second theorem deals with Markov’s rule leading to the deterministic
choice of the matching substitution (Section 2.2), and it is more subtle. Both the theorems are
of interest to the theory of the equations in the free monoid.

4.1 Driving for One Rule Programs

Here we explore the extended pattern-matching for one rule programs written in a syntactic
subset of both L∗ and L languages. The subset is characterized by the following restriction
imposed on the left-sides of the rules: given a rule, each e-variable may occur in the left-side of
the rule at most once. LetM∗ denote such a subset of L∗ andM denote the similar subset of L.
The corresponding algorithms are very similar to the Prolog unification. The main difference
is the ambiguity originating from the associative concatenation.

We describe a program transformation splitting a given one-rule program P in the language
M∗ (orM): it creates a program P1 with a number of rules, such that P1 is semantics equivalent
to P up to a simple syntactic transformation modifying the initial-term arity of P , which will
be clear from the context.

Definition 2. Let (u = q) be a parameterized equation (a predicate) such that u ∈ #V, q ∈
T (#V). We say the substitution defined by the assignment (u := q) is conjugated of the predicate
(u = q).

Definition 3. Let t be a parameterized term and π be a predicate
∧
n
i=1(ui = qi) such that for

each (1 ≤ i ≤ n), qi ∈ T (#V), ui ∈ #V(t) ∪ {
⋃ i−1
j=1

#V(qj)}; the predicates (ui = qi) are ordered
by their indices and for each (1 ≤ i ≤ n), qi may share variables with u1, . . . , ui−1. π is called
a narrowing of the parameters from #V(t) (or of the term t). Let K be either the language L
or L∗ (see Section 2.1). We say π is written in K iff for each i, qi is written in K.

Let ζi denote the substitution conjugated of (ui = qi). We denote the narrowing π by the
sequence ζ1; . . . ζn, stressing the ordering, where the semicolon sign stands both for conjunction
and formal composition due to sharing of the variables.

The substitution θ(u1) = q1ζ2 . . . ζn; . . . θ(ui) = qiζi+1 . . . ζn; . . . θ(un−1) = qn−1ζn; θ(un) =
qn; is conjugated of the predicate π and denoted by π̃. The following narrowing (u1 =
q1ζ2 . . . ζn); . . . (un−1 = qn−1ζn); (un = qn) is called a formal normal form of the predicate
π and denoted by π̌. We say π̌ is obtained from π by a formal composition.

Remark 4.1.1. The conjuncts of the formal normal form of a narrowing may still share their
variables. For example, (e.y = s.x ++ e.z); (s.u = s.x).
Remark 4.1.2. Given a narrowing π written in L, the relations defined by π and π̌ may be
different. In the case the semicolon sign is understood purely as the conjunction, the following
two narrowings have distinct satisfiability sets: π is (e.y = e.z ++ ’c’ ++ e.p); (e.p = λ) and

74

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

π̌ is (e.y = e.z ++ ’c’); (e.p = λ). In π, by the L-semantics, the variable e.z cannot take on
a string including the character ’c’, but the same variable in π̌ takes on the string ’c’ when
e.y takes on ’cc’. Another example: π is (e.y = e.z ++ ’c’ ++ e.p); (e.p = ’d’ ++ e.p1) and
π̌ is (e.y = e.z ++ ’cd’ ++ e.p1); (e.p = ’d’ ++ e.p1). Given ’ccd’ as a value of e.y, in π e.z

takes on λ, while in π̌ it takes on ’c’.5

Definition 4. We say t ∈ T (#V) matches against p ∈ T (V) iff there exists a substitution
θ : V(p) → #V such that pθ = t.6 We say t is able to be matched against p iff there exist a
narrowing π of t and a substitution θ : V(p) → T (#V(=(π̃))) such that pθ = tπ̃, where =(π̃) is
the image of π̃. π is called the narrowing of t w.r.t. p.

A narrowing π is called a most general narrowing of t w.r.t. p iff for each narrowing χ of
t w.r.t. p, tπ̃ � tχ̃ implies that χ̃ is a trivial substitution defined on #V(tπ̃) or tχ̃ equals to tπ̃
modulo parameter’s names.

Suppose p ∈ T (V), t ∈ T (#V), there may be a number of pairs – a most general narrowing
and a substitution being able to match t against p. There may be a number of substitutions
matching t against p. The following example and the examples given above show that.

Both (#e.u = #e.v ++ ’c’ ++ #e.v1) and (#e.u = #e.v ++ ’c’ ++ #e.v1 ++ #e.v2) are most
general narrowings of #e.u w.r.t. e.x ++ ’c’ ++ e.y.

4.1.1 Nondeterministic Case

Given p ∈ P(V), t ∈ P(#V), let π(p, t) denote a most general narrowing of t with respect to
p and θ(p, t) denote a substitution matching the result tπ̃ of this narrowing against p. Let
〈π, θ〉(p, t) denote this pair and Π(p, t) denote the set of the most general narrowings of t with
respect to p. In the following theorem we do not impose any restriction on the parameterized
term t. The proof below is given by induction on the length of p and can be seen as an outline
of an algorithm computing 〈Π,Θ〉(p, t).

Given 〈π, θ〉(p1, t1) and 〈Π,Θ〉(p, t), the binary operation ⊕ is defined as follows:
〈π1, θ1〉(p1, t1)⊕〈Π,Θ〉(p, t) ::= {〈π1;π, θ1; θ〉(p1 ++ p, t1 ++ t) | 〈π, θ〉(p, t) ∈ 〈Π,Θ〉(p, t)}, where
the semicolon sign is used for the concatenation meaning a composition.

Theorem 1. For any p ∈ P(V), t ∈ P(#V) such that for all v ∈ E(p), µv(p) ≤ 1, there exists
a finite set Π(p, t) s.t. each π ∈ Π(p, t) written in L∗ and for each, written in L∗, narrowing φ
of t w.r.t. p there exists π ∈ Π(p, t) such that tφ̃� tπ̃.

Proof. Starting with 〈π, θ〉(p, t) := 〈λ, λ〉, we will sequentially add conjuncts to the definition
of π(p, t) and assignments to the definition of θ(p, t). By default, we assume that such a
narrowing exists, otherwise we explicitly indicate the opposite. 〈Π,Θ〉(p, t) stands for the set of
the generated 〈π, θ〉(p, t). Its initial value is the empty set. Let c possibly subscripted denote a
character.

The base case 1: ln(p) = 0.
We have an equation λ = t implying the following narrowings for all v ∈ #E(t), πv := (v = λ),

and requiring ln(tπ̃t) to be zero, where π̃t(v) = λ. Let ω be the sequence of all 〈πv, λ〉, then
〈π, θ〉(p, t) := ω; and 〈Π,Θ〉(p, t) := {〈π, θ〉(p, t)}. If ln(tπ̃t) > 0, then 〈Π,Θ〉(p, t) := ∅.

5 We leave to the reader to prove that the formal composition is sound in the language L∗ and, if π is a
narrowing (u1 = q1); (u2 = q2) written in L s.t. q1 is passive and for each v ∈ E(qi), µv(qi) ≤ 1, then the formal
composition is sound for π.

6That is to say, t� p if the set V ∪ #V is considered as a variable set.

75

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

The base case 2: ln(p) = 1 and p is v ∈ E .
We have an equation e.x∗ = t implying no restriction on the parameters from t and the only

substitution e.x∗ := t defines its solution set. 〈π, θ〉(p, t) := 〈λ, (e.x∗ := t)〉 and 〈Π,Θ〉(p, t) :=
{〈π, θ〉(p, t)}.
Inductive step: Assume that for all q ∈ P(V), g ∈ P(#V) such that (µv(q) ≤ 1)∧ (ln(q) ≤ k)
the proposition statement holds (let it be denoted by Φ(q, g)) and the finite set 〈Π,Θ〉(q, g) was
generated.

We want to prove that for all p ∈ P(V), t ∈ P(#V) such that (µv(p) ≤ 1) ∧ (ln(p) = k + 1),
Φ(p, t) holds.

(1): Suppose p =̇ p1++ q, where p1 is a character c1 or v ∈ S.
(1.a) If t =̇ t1a ++ g, where t1a is a character c2 or t1a ∈ #S, then the existence
of a narrowing of t w.r.t. p implies the existence of a narrowing (maybe trivial) of
t1a w.r.t. p1. π(c1, c2) is either the tautology (π(c1, c1) = λ) or the contradiction
π(c1, c2), c1 6= c2. 〈π, θ〉(c1, #s.u∗) := 〈(#s.u∗ = c1), λ〉, 〈π, θ〉(s.x∗, c2) := 〈λ, (s.x∗ := c2)〉,
〈π, θ〉(s.x∗, #s.u∗) := 〈λ, (s.x∗ := #s.u∗)〉. Let 〈πp1 , θt1a〉 denote the pair 〈π, θ〉(p1, t1a) gener-
ated.

Given 〈π, θ〉(q, gπ̃p1) ∈ 〈Π,Θ〉(q, gπ̃p1), in the case p1 =̇ s.x∗ the assignment (s.x∗ := t1a)
must be compatible with the substitution θ(q, gπ̃p1) generated by our inductive assumption. A
clash of these two substitutions may appear only if µs.x∗(t) > 1. In such a case there exists an
assignment (s.x∗ := t2a) in θ(q, gπ̃p1). The needed narrowing of t1a exists iff these two values
of s.x∗ coincide. That gives a relation πt12 := (t1a = t2a), which may be a contradiction, a
tautology, either (#s.u∗ = #s.w∗) or (#s.u∗ = c) with c =̇ t2a, or (#s.w∗ = c2).

Let ω denote 〈πt12, λ〉 if µs.x∗(t) > 1, and λ otherwise. If a contradiction takes place, then
〈Π,Θ〉(p, t) := ∅;. Otherwise, we assign 〈Π,Θ〉(p, t) := 〈π, θ〉(p1, t1a) ⊕ 〈Π,Θ〉(q, gπ̃p1) ⊕ ω.
(1.b) If t =̇ λ, then we have the following contradiction: there is no narrowing of t w.r.t. p.
〈Π,Θ〉(p, t) := ∅;.
(1.c) If t =̇ #e.w∗ ++ g, then the unknown term #e.w∗ can be represented in one of the following

forms λ or v ++ #e.w∗1, where v ∈ #S. These forms define the following two possible narrowings
of #e.w∗: π11 := (#e.w∗ = λ), π12 := (#e.w∗ = v ++ #e.w∗1).

In the second case tπ̃12 is of the form considered in the case (1.a). We compute
〈Π,Θ〉(p, tπ̃12) following the case (1.a).

In the case #e.w∗ = λ we have to test tπ̃11 by all the three variants (1.a), (1.b), (1.c).
Notice that ln(tπ̃11) < ln(t). And we deduce that the variant (1.c) can be involved by the case
(1) at most finitely many times. We have 〈Π,Θ〉(p, t) =

⋃
i∈{1,2}{〈π1i, λ〉 ⊕ 〈Π,Θ〉(p, tπ̃1i)}.

(2): Suppose p =̇ e.y∗ ++ q ++ p1, where p1 is a character c1 or v ∈ S.
We literally repeat the steps of this proof given in the case (1), taking into account that in the
case (2) the ending terms play the role of the leading terms of the case (1) and the inductive
assumption is applied to the term e.y∗ ++ q rather than to q. This case has been considered.

(3): Suppose p =̇ e.y∗ ++ c ++ q ++ e.z∗, where c is a character.
If the multiplicity µc(t) > 0, then there exist tc[i], gc[i] ∈ P(#V) such that t =̇ tc[i] ++ c[i] ++ gc[i]

where both tc[i] and gc[i] may be λ, and the indexed c[i] indicates the i-th occurrence of c in
t (from the left to the right), while tc[i], gc[i] stand for its neighbors. The inequality ln(p) >
ln(q ++ e.z∗), by the induction assumption, implies that 〈Π,Θ〉(q ++ e.z∗, gc[i]) can be computed
and (〈λ, (e.y∗ := tc[i])〉 ⊕ 〈Π,Θ〉(q ++ e.z∗, gc[i])) ⊂ 〈Π,Θ〉(p, t).

Given v ∈ #V, if the multiplicity µv(t) > 0, then there exist tv[i], gv[i] ∈ P(#V) such that
t =̇ tv[i] ++ v[i] ++ gv[i].

Suppose v is #s.u∗, then let πv denote (#s.u∗ = c). For each (0 < i ≤ µv(t)) the set
〈πv, (e.y∗ := tv[i]π̃v)〉 ⊕ 〈Π,Θ〉(q ++ e.z∗, gv[i]π̃v) is a subset of 〈Π,Θ〉(p, t).

76

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

Suppose v is #e.w∗. The unknown string #e.w∗ may include the character c. We rep-
resent such a relation by the following syntax #e.w∗ = #e.w(v[i],c[∗]) ++ c[∗] ++ #e.r(v[i],c[∗])
(denoted by κv) meaning that c may take any position in the unknown string #e.w∗,
where #e.w(v[i],c[∗]), #e.r(v[i],c[∗]) are fresh parameters. For each (0 < i ≤ µv(t)) the set
〈κv, (e.y∗ := tv[i]κ̃v ++ #e.w(v[i],c[∗]))〉 ⊕ 〈Π,Θ〉(q ++ e.z∗, #e.r(v[i],c[∗]) ++ gv[i]κ̃v) is a subset of
〈Π,Θ〉(p, t).

We now are ready to compute the set 〈Π,Θ〉(p, t). It is as follows.

〈Π,Θ〉(p, t) =
⋃

1≤i≤µc(t)(〈λ, (e.y∗ := tc[i])〉 ⊕ 〈Π,Θ〉(q ++ e.z∗, gc[i])) ∪⋃
v∈#S(t)(

⋃
1≤i≤µv(t)(〈πv, (e.y∗ := tv[i]π̃v)〉 ⊕ 〈Π,Θ〉(q ++ e.z∗, gv[i]π̃v))) ∪⋃

v∈#E(t)(
⋃

1≤i≤µv(t)(〈κv, (e.y∗ := tv[i]κ̃v ++ #e.w(v[i],c[∗]))〉
⊕ 〈Π,Θ〉(q ++ e.z∗, #e.r(v[i],c[∗]) ++ gv[i]κ̃v)))

The case (3) has been proved: the set 〈Π,Θ〉(p, t) is finite.

(4): Suppose p =̇ e.y∗ ++ s.x∗ ++ q ++ e.z∗. Let τ denote c ∈ C or v ∈ #S.

This case follows by arguments similar to the previous case, differing only by the following
two details. If µs.x∗(p) = 1, then this s-variable does not impose any narrowing on a given or
unknown character τ , producing the only assignment 〈λ, (s.x∗ := τ)〉. If µs.x∗(p) > 1, then
each 〈π, θ〉(q ++ e.z∗, gτ [i]) includes a pair of the kind 〈ρ, (s.x∗ := τ2)〉, where τ2 ∈ C ∪ #S, and
we have to take into account the narrowing which corresponds to the relation (τ = τ2).

The reader being not interested in all the details of the algorithm computing the set
〈Π,Θ〉(p, t) may skip to the case (5). The concrete details are given in Appendix A.

The only possibility we have not yet considered is the following.

(5): Suppose p =̇ e.y∗ ++ v ++ q, where v ∈ E.

Since µe.y∗(p) = µv(p) = 1 we deal with this case as follows. We replace the term
e.y∗ ++ v with a fresh variable e.y∗1. By the induction assumption, one can compute R =
〈Π,Θ〉(e.y∗1 ++ q, t) since ln(p) > ln(e.y∗1 ++ q). For each sequence ρ = 〈π, θ〉(e.y∗1 ++ q, t) ∈
R, we replace 〈πt1 , (e.y∗1 := t1)〉 by 〈πt1 , (e.y∗ := tς11)〉; 〈λ, (v := tς12)〉, where ς denotes an
arbitrary splitting of t1 = tς11 ++ tς12, including all semantics splittings similarly to the case
(4). Denote the obtained sequence by ρς . Denote the union of ρς over all ς by Rρ. The set
〈Π,Θ〉(p, t) is the union of Rρ over all ρ. The current case is considered.

The inductive step has been proved. This completes the proof. 2

Remark 4.1.3. Both the definition of the narrowing and the proof of Theorem 1 expose duality
of the narrowing and the substitution. These notations are inverted one to the other.

Remark 4.1.4. Given an equation p = t where p ∈ P(V), t ∈ P(#V) s.t. for all v ∈ E(p),
µv(p) = 1, its solution set is described by {〈π̃, θ〉 | 〈π, θ〉(p, t) ∈ 〈Π,Θ〉(p, t)}.
Remark 4.1.5. In 1977 G. S. Makanin presented a nontrivial decision algorithm solving the
satisfiability problem for word equations [12] (see also [4]). In fact, Makanin’s algorithm is a
semidecision procedure which enumerates solutions of word equations with constants. In the
paper [9] Jaffar described Makanin’s algorithm in explicit (transparent) terms. His procedure
generates, given a word equation, a minimal and complete set of unifiers describing the set of
all solutions. It stops if this set is finite. There are a number of simple algorithms dealing
with specific classes of the equations in the free monoid. Given a word equation, they describe,
in a certain way, the corresponding solution set. For example some of them generate finite
graphs describing this set. Here the major problem is to create a formal description language
which is both clear in details and allowing us to represent some infinite solution sets in finite
terms. For instance any word equation itself is a description of its solution set, but, as a
rule, such a description is very obscure. As far as we know, there exist no papers using the
nondeterministic pattern matching as such a language and none considered the class of the

77

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

equations characterized in Theorem 1, namely the variables separated by the two equation
sides such that at least one of the sides has at most one occurrence of each word variable.7

Remark 4.1.6. Of interest to us are the s-variables: they allow us to compare unknown characters
and to work with an unknown alphabet.

The nondeterministic driving. Recall that M∗ denotes a subset of L∗ such that for any
program P ∈ M∗, for each rule (l = r;) from P and for each v ∈ E(l), µv(l) = 1 holds.
The constructive proof of Theorem 1 is the principal part of the driving algorithm for one-
rule programs written in M∗. We denote the proof by Φ1(℘) where ℘ is the set 〈Π,Θ〉 being
transformed by the proof. So the computation included in the proof may be represented by
the assignment ℘2 := Φ1(℘1) meaning that Φ1 takes the initial set ℘1 = 〈λ, λ〉 as an input
argument and results in ℘2.

Let a program P = 〈τ,R〉 written in M∗ be given, where τ = f(t1,...,tn) and R is
f(p1,...,pn) = r;. Recall that the patterns p1,...,pn may share some s-variables. Let
g1,...,gm be a certain enumeration of the set #V(τ). The driving algorithm drv(τ,’T’,R)
works as follows: (1) ℘1 := 〈λ, λ〉; (2) for each (1 < i ≤ n), ℘i := Φ1(℘i−1); (3) Given
〈π, θ〉 ∈ ℘n, let for each (1 ≤ i ≤ m), qi denotes the right-side of the narrowing imposed on
the parameter gi in π̌8, if such a narrowing imposed on gi exists; otherwise (i.e. the narrowing
imposed on gi is a tautology) qi =̇ gi. Let R1 be the union of the rules of the following kind
f2(q1,..., qm) = rθ; over all 〈π, θ〉 ∈ ℘n. Let τ2 be f2(g1,..., gm).

The algorithm drv(τ,’T’,R) results in the program P2 = 〈τ2, R2〉 where the set R2 is
obtained from R1 by removing all the sharp signs.

4.1.2 Deterministic Case

Let us now turn to the language L. We are interested in the subset of L denoted above by M
(see Section 4.1).

Definition 5. Let Π(p, t) denote the ordered set (the sequence {πn(p, t)}) of the most general
narrowings, written in L, of t with respect to p.9

Let for each n %n(p, t) be the predicate (
∧ n−1
i=1 ¬πi(p, t))∧πn(p, t) (denoted by ~πn(p, t)). The

sequence {%n(p, t)} is called a Markov sequence (or ordered set) of the most general narrowings

of t with respect to p and denoted by
→
Π (p, t). In the sequel we omit the negation part of %n(p, t)

since order allows us to unambiguously restore this part of this predicate.

The following theorem is a deterministic version of Theorem 1. To deal with this issue we
introduce three additional operations �, ⊗, ⊗̌ as follows.

Given two finite sequences (two ordered sets), the concatenation of the sequences
{a1, . . . , an} � {b1, . . . , bm} is the following sequence {c1, . . . , cn+m} = {a1, . . . , an, b1, . . . , bm}.

Given v ∈ E , 〈π1, (v := t1)〉 ⊗ 〈
→
Π,Θ〉(v ++ q, g) is defined as the ordered set of all elements of

〈
→
Π,Θ〉(v ++ q, g), in which the pairs 〈π2, (v := t2)〉 are replaced by 〈π1, λ〉; 〈π2, (v := t1 ++ t2)〉.

I.e. we lengthen the value of the e-variable v, and the ordering on this set remains unchanged.

7There exists a well-known equation class (named quadratic equations) where, given an equation, each
variable occurs at most twice in the equation. The corresponding solution sets are described by a simple
algorithm, in terms of finite graphs. See, for example, [4].

8The formal normal form of π, see Section 4.1.
9Hence for each i the pattern-matching relation πi(p, t) follows Markov’s rule (Section 2.2) choosing at most

one witness of the πi(p, t) satisfiability.

78

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

If the arguments of the operator ⊗ are not of the form above, then this operator coincides with
⊕.

The binary operation 〈π1, θ1〉 ⊗̌ 〈
→
Π,Θ〉(p, t) results in an ordered set of the narrowings being

the formal normal forms of all elements of 〈π1, θ1〉 ⊗ 〈
→
Π,Θ〉(p, t). This operation saves the

ordering on this set.

Theorem 2. For any p ∈ P(V), t ∈ P(#V) such that for all v ∈ E(p), µv(p) ≤ 1, there exists a

finite
→
Π (p, t), corresponding to Π(p, t), such that for each Markov’s narrowing φ of t w.r.t. p

there exists π ∈ Π(p, t) such that tφ̃≪ tπ̃ (see Section 2.1).

Proof. The proof below is a simple specialization of the proof of Theorem 1. Throughout this
proof one has to interpret the narrowings being considered as written in the language L. That is
to say, the pattern matching follows Markov’s rule (Section 2.2). First, we specialize the syntax,
removing all the asterisk signs from the indices of both the variables and the parameters. We
will apply the deterministic semantics of L to our scenario given above for the nondeterministic
case.
Inductive step:

The cases (1) and (2) are almost deterministic. To obtain 〈
→
Π,Θ〉(p, t) we just need to

order the two sequences generating 〈Π,Θ〉(p, t) in the subcase (1.c). They may be ordered, for
example, according to the second indices of π1i (or in the opposite order since the satisfiability
sets of the narrowings π11 and π12 are disjoint).

The other cases take more effort to be proved. Let R denote 〈
→
Π,Θ〉(p, t).

(3): Suppose p =̇ e.y ++ c ++ q ++ e.z, where c is a character.
According to Markov’s rule for the search of the first occurrence of c in an unknown string

we have to order the set 〈Π,Θ〉(p, t), excluding the irrelevant narrowings from this set. Thus we
scan the parameterized term t from the left to the right and order the narrowings according to
the times when they were generated. Recall that such a decomposition of Markov’s narrowings
is not sound (see Remark 4.1.2), so we have to compose the constructed sequences π back to
the formal normal form π̌.
(3.a) If t =̇ λ, then 〈

→
Π,Θ〉(p, t) = ∅.

(3.b) If t =̇ c ++ g, then, by the inductive assumption, we can compute

〈λ, (e.y := λ)〉 ⊕ 〈
→
Π,Θ〉(q ++ e.z, g) which may be empty. Hence we have to lengthen the

value of e.y and take into account the set 〈
→
Π,Θ〉(p, g). That yields

R := (〈λ, (e.y := λ)〉 ⊕ 〈
→
Π,Θ〉(q ++ e.z, g)) � (〈λ, (e.y := c)〉 ⊗ 〈

→
Π,Θ〉(p, g)).

By similar arguments one can consider the remaining alternatives as follows.

If t =̇ c1 ++ g where c 6= c1 ∈ C, then R := 〈λ, (e.y := c1)〉 ⊗ 〈
→
Π,Θ〉(p, g).

If t =̇ v ++ g where v ∈ #S, then let 〈π, θ〉 := 〈(v = c), (e.y := λ)〉 and

R := (〈π, θ〉 ⊕ 〈
→
Π,Θ〉(q ++ e.z, gπ̃)) � (〈λ, (e.y := v)〉 ⊗ 〈

→
Π,Θ〉(p, g)).

Computing the set 〈
→
Π,Θ〉(p, g) we have to test g by all the variants of the case (3). Since

ln(g) < ln(t), the variant (3.b) can be involved by the case (3) at most finitely many times.
(3.c) If t =̇ #e.w ++ g, then let π be the following Markov relation
(#e.w = #e.wc[1] ++ c ++ #e.rc[1]), where #e.wc[1], #e.rc[1] are fresh parameters.

By the inductive assumption, we can compute the set R1 = 〈
→
Π,Θ〉(q ++ e.z, #e.rc[1] ++ gπ̃),

but the pure concatenation of two narrowings π and π1 from R1 may lead to an incorrect
narrowing π; π1 since, by Markov’s rule, the unknown string #e.wc[1] does not contain the
character c and this restriction may contradict to π1 and the semantics of p (see Section 4.1

79

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

for examples). The formal composition of π; π1 constructs (recovers) the correct narrowing of
t w.r.t. p, provided that the restriction imposed on the value of #e.wc[1] is declined and hence
the value may be lengthened, if that is required by p and t. Thus we make the only step of the
L-machine being responsible for the search for the value of the variable e.y.

R := (〈π, (e.y := #e.wc[1])〉 ⊗̌ R1) � (〈λ, (e.y := #e.w)〉 ⊗ 〈
→
Π,Θ〉(p, g)).

The narrowings from the second argument of � are semantics relevant and correspond to
lengthening behind the whole unknown string #e.w, since #e.w is allowed to be without c.

The case (3) has been proved: the set R = 〈
→
Π,Θ〉(p, t) is finite.

(4): Suppose p =̇ e.y ++ s.x ++ q ++ e.z.

This case follows by arguments similar to the case (3), differing only by the two details
mentioned in the proof of Theorem 1. We now consider the last possibility.

(5): Suppose p =̇ e.y ++ v ++ q, where v ∈ E.

Since µe.y(p) = µv(p) = 1 we have 〈
→
Π,Θ〉(p, t) = 〈λ, (e.y := λ)〉 ⊕ 〈

→
Π,Θ〉(v ++ q, g).

The inductive step has been proved. This completes the proof. 2

Remark 4.1.7. The set 〈
→
Π,Θ〉(p, g) generated by the proof above is not minimal. Given

〈πn, θn〉(p, g) ∈ 〈
→
Π,Θ〉(p, g) where n is the ordering number, if πn is a tautology, then

〈
→
Π,Θ〉(p, g) may be reduced to the following sequence 〈π1, θ1〉(p, g), . . . 〈πn, θn〉(p, g). More

subtle cleaning of the set is a subject for future work.

The deterministic driving. Similar to the proof Φ1 of Theorem 1, the proof of Theorem
2 (denoted by Φ2) is the major part of the driving algorithm for one-rule programs written in
M ⊂ L. Let us use denotations analogous to the ones introduced for the description of the
nondeterministic driving (see Section 4.1.1). We refer to the proof above as Φ2(℘) where ℘ is

the set 〈
→
Π,Θ〉 being transformed by the proof.

Let a program P = 〈τ,R〉 written in M be given, where τ = f(t1,...,tn) and R is
f(p1,...,pn) = r;. The deterministic driving algorithm drv(τ,’T’,R) differs from the non-
deterministic one only in the following two details: (1) replace Φ1(℘) by Φ2(℘); (2) enumerate
the rules R1 of the resulting program according to the original enumeration of the narrowings
from which these rules were produced. By default, the L-semantics bears in mind the removed
negation parts of the narrowings.

5 Concluding Remarks

Suppose P = 〈τ,R〉 is an arbitrary program written in M. Let τ = f(t1,...,tn) and R is
a finite sequence of the rules l1 = r1;...lk = rk; where for each (1 ≤ i ≤ k), (li = ri;) is
f(p1i,...,pni) = ri; (denoted by Ri) and for each v ∈ E(li), µv(li) = 1. Let g1,...,gm be
a certain enumeration over the set #V(τ). The driving algorithm drv(τ,’T’,R) may work as
follows: (1) For each (1 ≤ i ≤ k), Qi := drv(τ,’T’,Ri); where each rule from Qi is of the form
f2(q(1,ij),..., q(m,ij)) = rij; (2) Let Q denote the sequence obtained by concatenation of
all the sequences Qi according to their numbering. Let τ2 be f2(g1,..., gm). The algorithm
drv(τ,’T’,R) results in the program P2 = 〈τ2, Q〉.

In this paper we have suggested two algorithms for one-step unfolding of the programs be-
longing to the languages M and M∗. The deterministic programming language M is Turing-
complete. Given a word equation, the algorithm suggested for one-step unfolding of the pro-

80

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

grams written in the nondeterministic languageM∗ results in a finite description of the solution
set of the equation.

As far as we know there exist no papers using the nondeterministic pattern-matching as a
language for such a description and none considered the class of the equations characterized by
Theorems 1, 2 above, namely the variables separated by the two equation sides such that at
least one of the sides has at most one occurrence of each word variable.

The author is grateful to Alexei Lisitsa and Antonina Nepejvoda for friendly and very fruitful
discussions inspired him to write this article.

References

[1] N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analysis for string-manipulating
programs. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2009),
volume 5505 of LNCS, pages 307–321. Springer Berlin Heidelberg, 2009.

[2] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of string expressions. In
10th Int. Static Analysis Symposium (SAS 2003), volume 2694 of LNCS, pages 1–18, 2003.

[3] A. Colmerauer. An introduction to Prolog III. Communications of the ACM, 33(7):69–90, 1990.

[4] V. Diekert. Makanin’s algorithm, chapter 12. In M. Lothaire, editor, Algebraic Combinatorics
on Words, pages 387–442. Cambridge University Press, 2002.

[5] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for database applications.
In the Proc. of ISSTA’07, pages 151–162. ACM, 2007.

[6] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, , and L. Tao. A static analysis framework for
detecting SQL injection vulnerabilities. In COMPSAC’07, pages 87–94. IEEE, July 2007.

[7] M. Gabbrielli, M. Ch. Meo, P. Tacchella, and H. Wiklicky. Unfolding for CHR programs. Theory
and Practice of Logic Programming, FirstView:1–48, October 2013.

[8] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox fuzzing. In PLDI’08, pages
206–215. ACM, 2008.

[9] J. Jaffar. Minimal and complete word unification. Journal of the ACM, 37(1):47–85, Jan. 1990.

[10] Neil D. Jones. The essence of program transformation by partial evaluation and driving. In
M. Sato, N. D. Jones, and M. Hagiya, editors, Logic, Language and Computation, a Festschrift in
honor of Satoru Takasu, pages 206–224. Springer-Verlag, April 1994.

[11] A. P. Lisitsa and A. P. Nemytykh. Reachability analysis in verification via supercompilation.
International Journal of Foundations of Computer Science, 19(4):953–970, August 2008.

[12] G. S. Makanin. The problem of solvability of equations in a free semigroup. (in Russian). Matem-
aticheskii Sbornik, 103(2):147–236, 1977. Translation in: Math. USSR-Sb., 32, pp: 129–198, 1977.

[13] A. A. Markov. The theory of algorithms. AMS Translations, 2(15):1–14, 1960.

[14] A. Pettorossi, M. Proietti, and S. Renault. Enhancing partial deduction via unfold/fold rules. In
J. Gallagher, editor, Proceedings of Logic Program Synthesis and Transformation, 6th International
Workshop, volume 1207 of LNCS, pages 147–168. IEEE Computer Society, 1997.

[15] H. Ruan, J. Zhang, and J. Yan. Test data generation for c programs with string-handling functions.
In TASE’08, pages 219–226. IEEE, 2008.

[16] D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshid. Abstracting symbolic execution with
string analysis. In Testing: Academic and Industrial Conference Practice and Research Techniques-
MUTATION, pages 13–22. IEEE, Sept. 2007.

[17] M. H. Sørensen, R. Glück, and N. D. Jones. A positive supercompiler. Journal of Functional
Programming, 6(6):811–838, 1996.

[18] V. F. Turchin. The language Refal – the theory of compilation and metasystem analysis. Technical
Report 20, Courant Institute, New York University, February 1980.

81

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

[19] V. F. Turchin. The concept of a supercompiler. ACM Transactions on Programming Languages
and Systems, 8(3):292–325, 1986.

[20] V. F. Turchin. Refal-5, Programming Guide and Reference Manual. New England Publishing Co.,
Holyoke, Massachusetts, 1989. E-version: http://www.botik.ru/pub/local/scp/refal5/, 2000.

[21] V. F. Turchin. Program transformation with metasystem transitions. Journal of Functional
Programming, 3(3):283–313, 1993.

[22] V. F. Turchin, D. V. Turchin, A. P. Konyshev, and A. P. Nemytykh. Refal-5: Sources, executable
modules. [online], 2000. http://www.botik.ru/pub/local/scp/refal5/.

[23] G. Wassermann and Z. Su. Sound and precise analysis of web applications for injection vulnera-
bilities. In PLDI’2007, pages 32–41. Springer-Verlag, June 2007.

A The Proof of the Case (4), Theorem 1

(4): Suppose p =̇ e.y∗ ++ s.x∗ ++ q ++ e.z∗. Let τ denote c ∈ C or v ∈ #S.
Let us turn to the concrete details.
If µτ (t) > 0, then there exist tτ [i], gτ [i] ∈ P(#V) such that t =̇ tτ [i] ++ τ[i] ++ gτ [i], where we

use the denotations introduced in the previous case. We can compute the following set of the
narrowings B = 〈Π,Θ〉(q ++ e.z∗, gτ [i]).

Suppose µs.x∗(p) > 1, then each 〈π, θ〉(q ++ e.z∗, gτ [i]) includes a pair of the kind

〈ρ, (s.x∗ := τ2)〉, where τ2 is a character c2 or v2 ∈ #S.
Let πτ denote the relation (τ = τ2), which may be a contradiction, a tautology (denoted by

λ), either (#s.u∗ = #s.u∗2) or (#s.u∗ = c2) or (#s.u∗2 = c). Here the numbered terms are the
instances of τ2, while the non-numbered terms are the instances of τ .

Let B|(s.x∗:=τ) denote the subset of the matching substitutions from B compatible with

(s.x∗ := τ). (〈πτ , (e.y∗ := tτ [i]π̃τ)〉 ⊕ 〈Π,Θ〉(q ++ e.z∗, gτ [i]π̃τ)
∣∣
(s.x∗:=τ)

) ⊂ 〈Π,Θ〉(p, t).10

If µs.x∗(p) = 1, then (〈λ, (e.y∗ := tτ [i])〉; 〈λ, (s.x∗ := τ)〉 ⊕ 〈Π,Θ〉(q ++ e.z∗, gτ [i])) ⊂
〈Π,Θ〉(p, t).

If τ is #e.w∗ (τ ∈ #E), µτ (t) > 0 and the unknown string #e.w∗ is not λ, then it includes
an unknown character. Let #e.w(τ [i],#s.u[∗]), #s.u(τ [i],[∗]), #e.r(τ [i],#s.u[∗]) be fresh parameters,
then #e.w∗ = #e.w(τ [i],#s.u[∗]) ++ #s.u(τ [i],[∗]) ++ #e.r(τ [i],#s.u[∗]) (denoted by κ(τ,#s.u(τ[i],[∗]))) mean-
ing that the unknown character #s.u(τ [i],[∗]) may take any position in the unknown string #e.w∗.
For each (0 < i ≤ µτ (t)) the set
〈κ(τ,#s.u(τ[i],[∗])), (e.y∗ := tτ [i]κ̃(τ,#s.u(τ[i],[∗])) ++ #e.w(τ [i],#s.u[∗]))〉; 〈λ, (s.x∗ := #s.u(τ [i],[∗]))〉

⊕ 〈Π,Θ〉(q ++ e.z∗, #e.r(τ [i],#s.u[∗]) ++ g#s.u∗[i]κ̃(τ,#s.u(τ[i],[∗])))
is a subset of 〈Π,Θ〉(p, t).

We now compute the set 〈Π,Θ〉(p, t). If µs.x∗(p) = 1, then it is⋃
τ∈{b|(b∈C)∧(µb(t)>0)}∪ #S(t)(

⋃
1≤i≤µτ (t)(〈λ, (e.y∗ := tτ [i])〉; 〈λ, (s.x∗ := τ)〉

⊕ 〈Π,Θ〉(q ++ e.z∗, gτ [i]))) ∪⋃
τ∈#E(t)(

⋃
1≤i≤µτ (t)(〈κ(τ,#s.u(τ[i],[∗])), (e.y∗ := tτ [i]κ̃(τ,#s.u(τ[i],[∗])) ++ #e.w(τ [i],#s.u[∗]))〉;

〈λ, (s.x∗ := #s.u(τ [i],[∗]))〉
⊕ 〈Π,Θ〉(q ++ e.z∗, #e.r(τ [i],#s.u[∗]) ++ g#s.u∗[i]κ̃(τ,#s.u(τ[i],[∗])))))

If µs.x(p) > 1, then it is⋃
τ∈{b|(b∈C)∧(µb(t)>0)}∪ #S(t)(

⋃
1≤i≤µτ (t)(〈πτ , (e.y∗ := tτ [i]π̃τ)〉

⊕ 〈Π,Θ〉(q ++ e.z∗, gτ [i]π̃τ)
∣∣
(s.x∗:=τ)

) ∪

10Notice that we do not insert the corresponding new assignment to s.x∗. The old assignment to s.x∗
generated by the inductive assumption is compatible with the new one. Hence for each variable v ∈ V(p) and
for each narrowing δ from 〈Π,Θ〉(p, t) there is at most one assignment to v in δ.

82

http://www.botik.ru/pub/local/scp/refal5/
http://www.botik.ru/pub/local/scp/refal5/

On Unfolding for Programs Using Strings as a Data Type Andrei P. Nemytykh

⋃
τ∈#E(t)(

⋃
1≤i≤µτ (t)(〈πτ , λ〉;

〈κ(τ,#s.u(τ[i],[∗])), (e.y∗ := tτ [i]κ̃(τ,#s.u(τ[i],[∗])) ++ #e.w(τ [i],#s.u[∗]))〉
⊕ 〈Π,Θ〉(q ++ e.z∗, #e.r(τ [i],#s.u[∗]) ++ g#s.u[i]κ̃(τ,#s.u(τ[i],[∗])))))

Here πτ was defined above and, because of the parameters’ freshness, in the union over τ ∈ #E(t)
all the substitutions created by the inductive assumption are unconditionally compatible with
(s.x∗ := τ). The case (4) has been proved: the set 〈Π,Θ〉(p, t) is finite.

83

	Introduction
	Preliminaries
	The Presentation Language
	On Semantics of the Pattern Matching
	Mutual Instances of the Terms

	Examples Related to the Associative Concatenation
	The Driving over Strings
	Driving for One Rule Programs
	Nondeterministic Case
	Deterministic Case

	Concluding Remarks
	The Proof of the Case (4), Theorem 1

