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Abstract

We present a benchmark example of an automotive powertrain control system con-
verted to a hybrid system with piecewise-affine (PWA) continuous dynamics. The purpose
is to provide an example of an industrial nonlinear system that is amenable to existing
software tools for performing verification of safety properties for hybrid systems. Existing
algorithmic approaches to hybrid system verification require that system representations
are restricted to specific classes of models. Therefore, it is important to develop and evalu-
ate techniques to generate approximate models that adhere to the required class of systems
without introducing an unacceptable amount of approximation errors. The example we
present is intended to demonstrate a symbolic method to automatically approximate a
nonlinear model with a PWA approximation while respecting a given bound on the ap-
proximation error. While existing tools are applicable to the resulting model, the scale of
the PWA model is intended to challenge the capabilities of these tools. We conduct an ex-
perimental comparison between the original and PWA models and present our observations
and discuss challenges for the research community.

Category: Industrial Difficulty: High

1 Introduction

A large body of extant literature in control theory and hybrid systems theory relies on a
linear/affine or piecewise-affine (PWA) representation of the underlying systems for design or
analysis. In industrial-scale systems, such as those found in the automotive domain, such
an assumption is usually unrealistic, as high-fidelity models for physical processes are often
nonlinear. In order to apply the rich set of analysis and design techniques for affine and PWA
systems, we then have to make further approximations, and translate the nonlinear dynamical-
systems models to linear or PWA models.
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There are numerous tools and techniques for generating PWA approximations of nonlinear
models [2, 14]. A typical challenge faced by many of these techniques is a tradeoff between
complexity (i.e., the number of affine regions in the resulting model) and accuracy (i.e., the
maximum error between the original nonlinear model and the PWA model in any given region).
While accuracy is a serious consideration if the PWA model is to be used for any meaningful
analysis or design, a representation with too many regions will usually render any analysis
technique too slow to be practical.

PWA models are of special interest when applying formal verification approaches such as
reachability analysis. Given a set of initial states, and a time horizon T , reachability analysis
computes a conservative approximation of the set of states reachable from time 0 to time T .
Several software tools have been developed to verify safety properties for hybrid systems. Tools
such as Kronos [15] and UPPAAL [9] apply to timed systems, i.e., systems whose continuous
dynamics are given by clocks. The HyTech tool extends to systems with continuous dynamics
given by constant derivatives [6].

In this paper, we evaluate two methods: a simplex-partitioning method that imposes a
simplicial decomposition on the global state space, and a nested method that performs local
PWA approximations for nonlinear subexpressions appearing in the dynamical equations for
the system under consideration. Both methods are provided by a proprietary package from
Maplesoft [5]. Our experiments target the SpaceEx tool, which is a tool for verifying safety
properties of linear hybrid systems [4]. SpaceEx allows the designer to specify a hybrid system
and a property to be verified, in the form of a temporal logic formula. SpaceEx handles hybrid
systems with affine continuous dynamics and polytopic guards and invariant sets. SpaceEx is
based on the PHAver technology, which uses infinite precision representations of polytopic sets
to perform the reachable set estimation [3]. SpaceEx incorporates several recent advances in
reachable set estimation, such as zonotope [1] representations and support functions [10], which
can increase the efficiency and accuracy of the reachable set estimations.

2 A/F Ratio Control Model

In this section, we present a brief review of the air-fuel control model; in the sequel, we present
two models obtained by piecewise-affine approximations. The model we present is a closed-
loop model, i.e., it contains a model of the plant and a model of the controller. This model is
unchanged from the one that appeared before in [7] and [8].

Plant Model. The plant model contains a representation of the throttle, the intake manifold,
the cylinder subsystem and the exhaust subsystem. Several physical phenomena such as fuel
injection dynamics (e.g. fuel puddling after injection), exhaust system dynamics (e.g. exhaust
gas transport dynamics), and sensor dynamics (e.g. the O2 sensor dynamics) are assumed to
be either removed or replaced with first-order approximations. Furthermore, we replace look-
up tables in the plant that model nonlinear relationships between system parameters and the
operating conditions with polynomial approximations. The result is a nonlinear, continuous-
time model with two exogenous inputs: the throttle angle in degrees (denoted θ) and the engine
speed in rad/sec (denoted ω), and two continuous states: the intake manifold pressure in bars
(denoted p) and the measured air-fuel ratio (denoted λ). The actual equations are presented
in the appendix.

Controller. The controller contains two parts, the first is an open-loop feedforward component
that estimates the intake manifold pressure p by observing the mass of the air (ṁaf ) flowing
into the manifold. This is then used to compute the mass of the air flowing into the cylinder
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that is used during the combustion process. In a real system, such an estimator is designed to
compensate for phenomena such as parameter variation and sensor noise by using, for example,
an extended Kalman filter. For simplicity, we choose a naive observer that assumes nearly
perfect knowledge of the nonlinear function modeling the relationship between ṁaf and p.
The second component is the Proportional + Integral (PI) controller that regulates the air-
fuel ratio. Thus, the controller is assumed to have two states: the estimated intake manifold
pressure (denoted pest), and the state of the integrator in the PI controller (denoted i).

In the actual system, the control software is modeled as a discrete-time system that operates
a single task at a fixed frequency. In order to facilitate PWA approximation, we further simplify
the closed-loop model by considering a continuous-time controller, while retaining the nonlin-
earities in the plant. Finally, we fix the inputs to the closed-loop model to constant values: 15◦

for the θ input, and 200 rad/sec for the ω input. The resulting closed-loop model is thus an
autonomous model with four continuous states (p, λ, pest , i) evolving according to differential
equations with continuous, nonlinear dynamics.

3 Piecewise Affine Approximations

In this section, we present PWA approximations of the system dynamics described in Sec. 2. We
first state the problem definition: Consider a nonlinear system of the form: ẋ = f(x), x ∈ Rn.
The objective is to find a good PWA approximation, which can be defined as the set of PWA
dynamical systems as follows: ẋ = Aix+ci, x ∈ Ri. Here, Ai ∈ Rn×n, ci ∈ Rn, and Ri ⊆ Rn.
Furthermore, the sets Ri are disjoint, i.e., for any i, j, Ri∩Rj = ∅1. A good PWA approximation
is one in which the approximation error is acceptable. Formally, the approximation error ei
for region Ri is defined as: ei = max

x∈Ri

‖f(x) − (Aix + ci)‖. Here ‖.‖ denotes a norm in a

suitable topological space, such as the L2 norm over Rn. Another metric of the utility of a
given PWA approximation is the number of regions Ri. A high number is typically indicative
of a more precise approximation; however, a high number is not always desirable, especially
when performing reachability analysis with tools such as SpaceEx.

In what follows, we give a brief description of two methods that we used to benchmark the
PWA approximation models generated using the PWATools package developed by Maplesoft
for Toyota [5].

PWA approximations with the simplex-partitioning method. The objective of the
simplex-partitioning approach is to compute a PWA approximation that is continuous and has
a manageable number of regions (even for higher dimensional spaces). Here, we consider PWA
approximations with polytopic regions that are simplices. A simplex is a polytope with n + 1
vertices for a system with n dimensions. In a simplectic decomposition, an affine approximation
over a given simplex Ri can be computed by equating the value of the affine expression to the
value of the given nonlinear function at the (n+ 1) vertices of the simplex. If all the local PWA
approximations are computed in this fashion, the vector field across the partition boundaries is
continuous, which is advantageous with regards to the reachable set estimation computations.
Maplesoft’s tools provide a number of simplex-partitioning algorithms; we chose the scheme
known as regular edge bisection.

The goal of the regular edge bisection method is to produce a limited family of simplices
that are not degenerate (e.g. having unit normal vectors whose inner product is close to 1)

1Note that in a hybrid automaton model of the PWA, a location (mode) is assigned to each Ri, whose
invariant set is the closure of Ri and whose outgoing guard sets are defined on the boundary of the closure of
Ri.
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Figure 1: Regular edge bisection method for simplicial decomposition. Green lines denote the
domain of interest, and the brown lines show the simplicial decomposition.

using the simplex bisection scheme by Maubach [13]. Fig. 1 depicts the result of applying the
regular edge bisection procedure on a two-dimensional example.

PWA approximations with the nested method. The nested method computes the approx-
imation to nonlinear vector functions by hierarchically approximating the functions according
to the structure of their subexpressions, which can produce a smaller relative number of parti-
tion elements than other techniques. This technique can be useful for higher dimensional spaces
(e.g., n ≥ 6), where the number of partition elements required to achieve a desired error bound
is often prohibitively high.

Essentially, this approach computes a PWA approximation of the nonlinear vector field
function using nested univariate PWA functions. The method utilizes three key ideas: (1) PWA
approximation of the sum of nonlinear functions is defined as the sum of PWA approximations
of individual functions, (2) the PWA approximation of the composition of nonlinear functions is
defined as the composition of PWA approximations of individual functions, and (3) multivariate
nonlinear terms can sometimes be decomposed into a sum of univariate expressions by applying
transformations and introducing new intermediate variables. This allows dividing the overall
problem into several smaller problems over the domains of the embedded univariate nonlinear
expressions. Basically, this approach follows the method introduced in [12] for deriving optimal
PWA of nonlinear systems with known analytic form.

A natural way to think about the nested PWA model obtained by the nested method is to
think of it as a composition of several components. If we represent each univariate subexpression
as an intermediate variable, then the PWA approximation of this expression is a component
whose input is the variable appearing in the expression, and the output is the intermediate
variable. Global behavior can then be understood in terms of parallel composition of these
components.

The simplex-partitioning approach neglects the structure of the function, seeking to con-
struct an acceptable PWA approximation by strategically splitting the domain to minimize
the number of regions required to achieve a desired accuracy. In contrast, the nested method
does not limit the number of global regions, but exploits the structure of the function itself.
In general, there is little control over the number of global polytopic partitions of the domain
that may be formed by the nested method. As we decrease the tolerated error, the number of
regions generated increases exponentially.

In spite of the high number of regions that the nested method may generate, reachability
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State RMS error
Mpwa

simplex Mpwa
nested

p 0.22 0.04
λ 1.493 0.17
pest 0.75 0.35
i 1.56 0.17

Table 1: Comparison of the simplex-
partioning method and the nested meth-
ods.

Error PWA regions/expression
Tolerance Min Max Average

0.1 1 2 1.1
0.01 2 5 2.5
0.001 4 15 7.1
0.0001 12 46 21.1

Table 2: Distribution of the num. of
approximations across expressions for the
nested PWA method.

analysis tools could still scale to nested PWA models, as long as the projection of the reachable
sets on individual univariate subexpressions do not span multiple regions. The representation
of the nested PWA model is also succinct as it avoids computing the partition imposed on the
global state-space by the Cartesian product of the local PWA regions. Note that a tool such
as SpaceEx that supports component-based modeling may be able to run on such a succinct
representation directly. Translation to models in the SpaceEx format remains an important
part of the future work. Another promising direction is to try on-the-fly generation of linear
regions, i.e. a linear region is only generated when it is reached [11].

4 Experimental Evaluation and Conclusion

In this section, we evaluate the two PWA approximation methods. In the first experiment, we
compare the results of simulating the three models: the original nonlinear model Mnonlinear, the
PWA model obtained by simplex-partitioning method Mpwa

simplex, and the PWA model obtained
by the nested method Mpwa

nested. All simulations reported in the sequel were performed using
MapleSim. For the approximation from Mnonlinear to Mpwa

simplex, there is one approximation
parameter that the user controls: the maximum number of allowed PWA regions. For this
experiment, we picked the number to be 500, and after the approximation was finished, the
number of simplices generated was reported as 453. For the approximation from Mnonlinear

to Mpwa
nested, there are two approximation parameters that the user controls: the allowed error

tolerance (per region associated with a subexpression), and the maximum number of PWA
regions per nonlinear expression. For this experiment, we chose an error tolerance of 0.01, and
the maximum number of regions to be 64. Upon termination of the approximation procedure,
the maximum number of possible regions in the composed and flattened PWA model was
27, 824.2

To compare the two models, we randomly choose 10 initial conditions for each state variable
from the following intervals: p: [0.8, 1.0], λ: [14.0, 15.4], pest : [0.9, 1.2], i: [−0.5, 0.5]. We then
simulate the 3 models for a duration of 5.0 seconds, and measure the RMS error between the
trajectories of models Mpwa

simplex and Mpwa
nested with the corresponding trajectories of the model

Mnonlinear. We then compute the average RMS error across the 10 randomly chosen simulations,
and report the results in Table 1. We show sample plots comparing the 4 states in Fig. 2.

As can be seen from Table 1, the nested method is more accurate than the simplex-
partitioning method. The error in the states having transient behavior is worse for the simplex-
partitioning method. We remark that for the simplex-partitioning based approximation with

2Note that many of the potential regions in the composed model are empty, but it is difficult to identify
empty regions.
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(a) p(t) (b) λ(t)

(c) pest (t) (d) i(t)

Figure 2: State trajectories comparison. For Mpwa
simplex, Nmax = 500, for Mpwa

nested, δ = 0.01.

a maximum of 500 simplices allowed, we are able to finish the simulation starting from each
of the 10 randomly chosen initial conditions. This is not true in general, as we often obtain
an approximation such that the resulting PWA dynamics are unstable in some regions. This
causes the state variables to grow exponentially in such a region. In these cases, the RMS error
approaches ∞.

Next, we study the effect of increasing the maximum number of allowed simplices (Nmax)
for the simplex-partitioning method, and decreasing the allowed error tolerance (δ) for the
nested method. For the nested method, as δ is decreased, the average number of PWA regions
required to approximate each nonlinear expression increases (shown in Table 2). We report
the average RMS error on the state λ (A/F ratio) for each of the models in Table 3. For each
model, we let N represent the final number of PWA regions generated by the method if its
hierarchical structure were flattened. We show the effect of different levels of approximation on
the trajectories of state λ in Fig. 3.

As expected, the RMS error decreases with increasing level of precision for both methods.
The cost-to-benefit ratio, however, sharply declines for the simplex-partitioning method. As can
be observed, the simulation time increases nearly 10x from 500 simplices to 2, 000 simplices.
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(a) Nmax = 100, δ = 0.1 (b) Nmax = 500, δ = 0.01

(c) Nmax = 1000, δ = 0.001 (d) Nmax = 2000, δ = 0.0001

Figure 3: Effect of using different levels of approximation in both methods.

The nested method scales much better with increasing demands on precision. Furthermore,
even the least precise run of the nested method produces a better average RMS error than the
most precise run of the simplex-partitioning based method. This is mainly due to the ability of
the nested method to exploit formula structure. Unlike the simplex-partitioning method, the
nested method is not constrained to have vector fields continuous across neighboring regions.
Discontinuous approximations usually happen if the original model contains complex nonlinear
subexpressions such as piecewise functions or mathematical functions of more than one variable
(e.g., log(x+y). The freedom to have discontinuous approximations could potentially contribute
to the superior accuracy exhibited by the nested method.

Acknowledgements. We thank the anonymous reviewers for their feedback.
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N Approximation Avg. Sim. RMS error
Time Mem. Time for λ(t)
(secs) (GB) (secs)

Mpwa
simplex

Nmax = 100 99 27 1.8 9.7 ∞
Nmax = 500 453 117 7.7 40.2 1.493
Nmax = 1000 990 260 16.8 128 0.97
Nmax = 2000 1968 535 33.4 423 0.96

Mpwa
nested

δ = 0.1 2 1.2 0.017 2.09 0.18
δ = 0.01 2.8x104 2.1 0.074 2.42 0.17
δ = 0.001 1.5x1010 5.9 0.322 3.27 0.06
δ = 0.0001 1.8x1015 31 1.75 9.46 0.04

Table 3: Effect of increasing precision for the simplex-partitioning and the nested PWA ap-
proximation methods.
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A Appendix

A.1 Nonlinear Model Equations

In this section, we outline the equations for the model described in Sec. 2.
The function encoding the geometry of the throttle is given as a function of the throttle

angle θ:

θ̂ = c6 + c7θ + c8θ
2 + c9θ

3. (1)

The inlet air mass flow rate ṁaf is then given by the product of the above function, and a
function encoding a physical phenomenon relating the atmospheric pressure (c10) to the intake
manifold pressure p:

ṁaf = 2θ̂

√
p

c10
−
(
p

c10

)2

. (2)

The pumping polynomial is a function of the engine speed ω (in rad/sec) and the intake
manifold p:

ṁc = c12

(
c2 + c3ωp+ c4ωp

2 + c5ω
2p
)
. (3)

Finally, the ODE for the intake manifold pressure is described as follows:

dp

dt
= c1

2θ̂

√
p

c10
−
(
p

c10

)2

− c12

(
c2 + c3ωp+ c4ωp

2 + c5ω
2p
) . (4)

The ODE governing the measured A/F ratio λ is given below.

dλ

dt
= c26(

ṁc

c25Fc
− λ). (5)

The state equation for the manifold pressure estimator is as given below.

dpest
dt

= c1 ·
(
c23

ˆ̇maf − ˆ̇mc

)
(6)

In the above equation, ˆ̇mc denotes the estimated air entering the cylinder, as computed
from the estimated intake manifold pressure. This quantity is given by the following equation:

ˆ̇mc = c27 ·
(
c2 + c3ωpest + c4ωp

2
est + c5ω

2pest
)
. (7)

The feedback PI controller update equation is given by

di

dt
= c14(c24λ− c11). (8)

The fuel command (Fc) output by the controller is given by:

Fc =
1

c11
· (1 + c13(c24λ− c11) + i) · ˆ̇mc (9)

Table 4 provides a list of the model parameter values.
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Table 4: Model Parameters.

Param Value Unit Description
c1 0.41328 RT/Vm
c2 −0.366 Coefficient for Pumping polynomial
c3 0.08979 Coefficient for Pumping polynomial
c4 −0.0337 Coefficient for Pumping polynomial
c5 0.0001 Coefficient for Pumping polynomial
c6 2.821 Coefficient for f(θ) polynomial
c7 −0.05231 Coefficient for f(θ) polynomial
c8 0.10299 Coefficient for f(θ) polynomial
c9 −0.00063 Coefficient for f(θ) polynomial
c10 1.0 bar Atmospheric pressure
c11 14.7/12.5 Desired air-fuel ratio (all other modes / power mode)
c12 0.9 Manifold pressure estimate error factor
c13 0.05 Proportional gain for PI controller
c14 0.03 Integral gain for PI controller
c23 1.0 MAF sensor constant error factor
c24 1.0 Oxygen sensor constant error factor
c25 1.0 Fuel injector actuator error factor
c26 4.0 First-order transfer function constant
c27 0.9 Observer error factor
u1 degrees Throttle angle
u2 rad/sec Engine speed

A.2 Details on the PWA approximation methods

The following Lorenz attractor example is used to illustrate how the methods approach the
approximation problem at a system level and the structure of the approximated models.

Example application: the Lorenz attractor. The Lorenz attractor is given by:

ẋ1 =σ(x2 − x1)

ẋ2 =ρx1 − x2 − x1x3

ẋ3 =− βx3 + x1x2, (10)

where σ = 10, ρ = 28 and β = 8
3 . The domain considered is

X = {(x1, x2, x3)| − 25 ≤ x1 ≤ 25,−25 ≤ x2 ≤ 25, 0 ≤ x3 ≤ 50}. (11)

The simplex-partition method approximates the system (10) by grouping the right hand
sides of the differential equations as the vector field f :

f =

 10(x2 − x1)
28x1 − x2 − x1x3

−2.67x3 + x1x2

 (12)

Only the nonlinear portion of (12) needs to be approximated, so f is partitioned into its
linear (flin) and non-linear (fnonlin) components as follows:

f = flin + fnonlin, (13)

flin =

 10(x2 − x1)
28x1 − x2

−2.67x3

 (14)

fnonlin =

 0
−x1x3

x1x2

 . (15)
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The simplex-partition approach approximates fnonlin as f̃nonlin so that the approximation
to the original vector field is then f̃ = flin+ f̃nonlin. The nonlinear portion fnonlin is a function
of three variables and will be approximated as such, even though the structure of the system
only has products of two variables. Using 1,000 regions for the vector field’s approximation, the
resulting expression for f̃nonlin is far too large for inclusion here. It consists of nested binary
piecewise functions whose branch values and switching conditions are affine expressions in the
model’s state variables.

The nested PWA approach first processes the model to extract the nonlinear terms into
separate equations. The multivariate nonlinear expressions are broken down into sums of uni-
variate nonlinear expression and then many lower dimensional approximations are computed, as
opposed to the simpex-partition’s approach of computing one high dimensional approximation.
For the Lorenz system, the model is transformed into

z1 = −x1x3

z2 = x1x2

ẋ1 = 10x2 − 10x1

ẋ2 = 28x1 − x2 + z1

ẋ3 = −2.67x3 + z2. (16)

There are four piecewise functions with affine switching conditions and two branches each,
giving 16 regions in the domain X .

The initial conditions of x1(0) = 10, x2(0) = 10 and x3(0) = 10 gives the simulation
results in Figure 4 for the original nonlinear system, the simplex-partition approximation and
the nested PWA approximation. Even though the nested PWA model has only 16 regions
compared to the 1,000 regions of the simplex-partition model, the nested results in Figure 6
better reproduce the behaviour of the original system in Figure 4, as the simplex results in
Figure 5 settles to an equilibrium point while the other systems continue to oscillate.
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Figure 4: Simulation of the exact nonlinear Lorenz attractor.
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Figure 5: Simulation of the simplex-partition approximation to the Lorenz attractor.
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Figure 6: Simulation of the nested PWA approximation to the Lorenz attractor.
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