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Abstract

In the field of Human Computer Interaction and Psychology, it is accepted that spatial
visualization (VZ) is one ability that can indicate individual’s performance on computer
applications. Since users with different levels of VZ seem to prefer different types of user
interfaces (UI), knowing a user’s level of VZ provides a great opportunity for application
developers to design software with higher satisfaction and usability. In this paper, we
proposed three models to predict a participant’s level of VZ based on the participant’s
actions (taps) on the tablet screen while doing an address verification task in the neighbor-
hood using the tablet. After applying the proposed prediction models with data of thirty
participants, they yielded an optimal accuracy of 93.33%.

1 Introduction

Spatial visualization (VZ) was defined by Salthouse et al. [19] as “mental manipulation of
spatial information to determine how a given spatial configuration would appear if portions of
that configuration were to be rotated, folded, repositioned or otherwise transformed” [Salthouse,
Timothy A., et al. “Sources of individual differences in spatial visualization ability.” Intelligence
14.2 (1990): 187-230]. It has been known to be an ability that determines usage performance
of a user [19]. For example (but not limited to), the time a user uses to understand a UI
of a software application. Another fact about VZ is that people with different levels of VZ
prefer different types of UI to work with [1, 14, 15, 17]. Therefore, aiming at optimal usage
performance requires an application to provide different Uls that fit each different VZ level,
which is basically the idea of adaptive UI application [3]. Since asking users to complete the
VZ test, e.g., Paper Folding Test (VZ-2) [8], every time they use the application (to assess
their VZ level) is not practical, predicting the VZ level from a user’s interaction with a Ul in
real-time is one feasible answer. We proposed these new prediction models for predicting a
user’s level of VZ while he/she is doing an address verification task in the actual neighborhood,
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using a location-based software application on a tablet. The main contribution of this paper
is the development of a new feature set for VZ prediction in address verification software. The
new feature set allowed us to predict the VZ category of participants at a higher rate than was
shown in Batinov [2]. To test the power of the new feature set, we compared it to two other
feature sets derived from Batinov [2].

We organized this paper as follows: Section 2 examines related literature. Section 3 describes
the methodology that we used to design and implement the models. Section 4 shows the
improvement of accuracy when we executed the new models with some discussion. Finally,
Section 5 summarizes the contribution described in this paper.

2 Related Work

VZ is one ability that belongs to the set of human spatial ability. Several scientists discovered
that VZ provides an indicator of the performance of a user using computer software [4, 7, 12].
Other studies also show that VZ might be used to predict the level of success a user has while
using software [10, 11]. Furthermore, it was also known that users with a high VZ level tend to
perform better than users with low VZ level when it comes to software usage performance [6].
Batinov et al. showed that the effect of VZ also holds in the task of address verification [1].
Batinov [2] proposed a prediction model that can predict an individual’s level of VZ (either
high or low). We built on his work in our proposed work, which we describe in Section 3.

3 Methodology

Batinov [2] created a prediction model that predicts an individual’s level of VZ using the actions
that the user performed while using the application. We denote Batinov’s model by IMg. In his
study, he asked participants to verify addressing units whether or not they were located in the
correct location. A participant was equipped with the location-based software application that
contained a map of focused neighborhood, a list of addresses to be verified, and necessary map
operations, e.g., pan & zoom. Every time a participant performed an action on application UI,
the action was logged. He then extracted data from the log file to create instances for M.

In My, a set of features of each participant, denoted by FF(IMyp), consists of twenty-two
features and one class attribute. Particularly, for each participant, IF(IMg) contains six numbers
he/she specifically changed a focus to addresses 1, 2, 3, 4, 5, or 6, respectively (Note that
Batinov had six addresses in his study), a number he/she changed a focus to any address, a
number he/she clicked zoom-in icon, a number he/she reset the map, a number he/she panned
up, a number he/she clicked zoom-out icon, a number he/she attempted to pan beyond the
map, a number he/she did 1-level zoom out by slider, a number he/she clicked center zoom, a
number he/she panned right, a number he/she panned left, a number he/she panned down, a
number he/she did 3-level zoom in by slider, a number he/she did 1-level zoom in by slider, a
number he/she did 2-level zoom out by slider, a number he/she did 2-level zoom in by slider, a
number he/she did 3-level zoom out by slider, and a class attribute. The class attribute specifies
the actual level of VZ (high/low). The classifier that was implemented is Bagging [5]. The base
classifier of Bagging is REPTree, which is a default base classifier for Bagging in Weka.

We applied My to our data we gathered during the field study to observe the accuracy of
prediction. Particularly, our study was also an address verification. We asked thirty participants
to verify ten addresses in the neighborhood near the central campus of Iowa State University
using Android tablet [14]. The study was divided into two phases. A difference between
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both phases was a type of Ul of the software application. Every participant was randomly
assigned either traditional Ul or adaptive Ul to be used for verification in the first phase. If the
traditional Ul was selected for the first phase, the adaptive UI then was assigned for the second
phase and vice versa. The traditional Ul was a UI that contained only necessary tools such
as zoom buttons, pan buttons, real-time location (GPS), Object-Indexing [16], and etc. The
adaptive Ul was a Ul that contained both necessary tools and additional Ul features that were
evidently useful for participants with different levels of VZ. An example of those Ul features
was a landmark on the map, which increased usage performance of participants whose VZ level
was low [13, 18, 21]. Figure 1 shows the application Ul in our study (traditional UT).

After applying My with data set gathered from our study, we retrieved the prediction
accuracy of 83%. Although 83% is highly acceptable, we decided to improve the model further
with the goal to maximize prediction accuracy as much as possible. We came up with three
new prediction models: Prediction Models I, II, and III, which are denoted by M;, M5, and
M3, respectively.
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Figure 1: Application UI (Traditional).

3.1 Prediction Model I (M)

For the first model, M;, we replaced the base classifier of Bagging with J48 rather
than REPTree. We defined a new set of features, denoted by F(IM;), as F(IM;) =
{TT,ET,PT,ZT,10,0I,LR,RL, UD,DU, TR, VZ}. Table 1 describes F(IM;).

F(IM;) consists of eleven features and one class attribute. 7T stores a number of total
taps that a participant made on the application Ul. ET stores a number of error taps that a
participant made, particularly, an error tap is a tap on any non-sensitive region [20] of UI. PT
and ZT store numbers of pans (left, right, up, or down) and zooms (in or out), respectively.
Next six features (IO, OI, LR, RL, UD, and DU) represents numbers of reversals that a
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H Feature Description H
TT Total taps a participant made on Ul
ET Total error taps a participant made on Ul
PT Total pans a participant panned the map
ZT Total zooms a participant zoomed the map
10 Total in-out reversals a participant made
0]} Total out-in reversals a participant made

LR Total left-right reversals a participant made
RL Total right-left reversals a participant made

UD Total up-down reversals a participant made
DU Total down-up reversals a participant made
TR Total reversals a participant made on Ul
VZ Level of VZ

Table 1: A Set of Features of My (F(IM;)).

participant made. A reversal is a series of map operations that, finally, yields the same result
as the original map before performing those operations [1]. For instance, a participant pans right
and pans left the map, which results the same map area before panning. IO stores a number of
in-out reversals, which is a reversal caused by zooming in the map followed by zooming out the
map. Similarly for OI, it stores a number of out-in reversals. LR, RL, UD, and DU focus on
reversals by panning. LR stores a number of left-right reversals, which caused by panning left
followed by panning right. Similarly, RL, UD, and DU store numbers of right-left reversals,
up-down reversals, and down-up reversals, respectively. The last one, VZ, is the class attribute
specifying level of VZ (low/high).

3.2 Prediction Model IT (IM5)

The second model, M5, inherited classifier and base classifier from IM;, which are Bagging with
J48 as base classifier, respectively. We defined a set of features for My (IF(IMg)) as F(IM3) =
{TT,ET,PT,ZT,10,0I,LR,RL, UD,DU, TR, +, —,<,>,A,V,Z, HOR,, HORy, VZ}. Ta-
ble 2 describes FF(IMy).

For IF(M3), it contains twenty features and one class attribute. First eleven attributes
(T'T,ET,PT,ZT,I0,0I,LR,RL, UD,DU, TR) are borrowed from IF(IM;). Furthermore, we
added seven more features that we extracted from My into IF(IMs). Those seven features are
+,—,<,>, A, V,and Z. + represents how many times a participant tapped zoom-in button
to zoom in the map. — represents how many times a participant tapped zoom-out button to
zoom out the map. < represents how many times a participant tapped pan-left button to pan
left the map. > represents how many times a participant tapped pan-right button to pan right
the map. A represents how many times a participant tapped pan-up button to pan up the
map. V represents how many times a participant tapped pan-up button to pan up the map.
Z represents how many times a participant changed a working address. Since there are ten
addresses that a participant needed to verify, he/she could arbitrarily switch to any address on
the fly. However, there are two features that we added to F(IMz), which are HOR; and HOR,.
HOR, and HOR> store numbers of high-order reversal — degree 2 in Phases 1 and 2 of
the study, respectively. A high-order reversal is a special case of reversal where a series of map
operations contains more than one pair of reversal without any other tap is done in between.
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H Feature Description H
TT Total taps a participant made on Ul
ET Total error taps a participant made on Ul
PT Total pans a participant panned the map
ZT Total zooms a participant zoomed the map
10 Total in-out reversals a participant made
0]} Total out-in reversals a participant made

LR Total left-right reversals a participant made
RL Total right-left reversals a participant made

UD Total up-down reversals a participant made
DU Total down-up reversals a participant made
TR Total reversals a participant made on Ul
+ Total times a participant zoomed in
— Total times a participant zoomed out
< Total times a participant panned left
> Total times a participant panned right
A Total times a participant panned up
V Total times a participant panned down
Z Total times a participant changed address
HOR; Total high-order reversals in Phase |
HOR, Total high-order reversals in Phase II
VZ Level of VZ

Table 2: A Set of Features of My (F(IMy)).

Previously in IM;, we focused on a reversal that consisted of exactly two map operations, for
example, pan up & pan down or zoom in & zoom out. However, after taking more closer look
at log file of every participant, we found an interesting pattern. This pattern was a series of two
pairs (four map operations) of reversal such that any single map operations in the series can
be arranged in any permutation as long as the series preserved reversal property, i.e., a result
after performing all those map operations in the series is the same as the original map before
performing. We named this pattern as high-order reversal — degree 2 since it contained two
pairs of reversal. Examples of high-order reversal — degree 2 are {pan-up, pan-down, zoom-in,
zoom-out} or (pan-left, pan-left, pan-right, pan-right). For the latter, two map operations from
the same pair of reversal do not need to be contiguous to each other, e.g., pan-right does not
need to follow pan-left. The last attribute, VZ, is the class attribute specifying level of VZ.

3.3 Prediction Model IIT (IM;)

After we have got two prediction models, IM; and M5, we would like to see how the additional
features that we added to IF(IMy) affected the prediction accuracy. Therefore, we created the
last prediction model, denoted as Ms, such that F(IM3) = F(IMy) \ F(M;) = {+, —, <,>
LA, V,Z,HOR1, HORy, VZ} Hence, F(M3) C F(IM3). Table 3 describes F(IM3).

After we designed those three models, My, M5, and M3, we implemented them using Weka
[9]. Results of implementation are discussed in Section 4.
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H Feature Description H
+ Total times a participant zoomed in
— Total times a participant zoomed out
< Total times a participant panned left
> Total times a participant panned right
A Total times a participant panned up
Vv Total times a participant panned down
Z Total times a participant changed address
HOR; Total high-order reversals in Phase I
HOR5 Total high-order reversals in Phase II
VZ Level of VZ

Table 3: A Set of Features of Mg (F(IM3)).

4 Results and Discussion

My, M;, M5, and M3 were implemented and tested using data set from our study, which
consisted of thirty instances. Each instance represents features of each participant. Every
feature and class attribute are non-identifiable data with respect to the protocol of IRB [14].
For each model, the classifier was Bagging with 10 iterations and J48 as base classifier.

4.1 Classification Results of M,

Batinov [2] ran multiple tests to test his IMy. There were twenty-two tests. For each test, it
had thirty-one instances representing thirty-one participants. The difference between each test
was a recessed radius when he logged (but we will not go into detail about it in this paper).
The average accuracy were around 82%.

Although M, did not perfectly fit with our data due to the difference between Uls of
Batinov’s software [2] and ours, e.g., some features such as a number of zoom-in by slider would
be 0 because our Ul has no slider, we still applied IMy with our data for observation. My yielded
an accuracy of 90% (27 correctly predicted participants). One participant who tested low VZ
was classified as high VZ and two participants who tested high VZ were classified as low VZ.

4.2 Classification Results of IM;

There were twenty-eight correctly classified instances, which was around 93.33%. Two partic-
ipants who tested low VZ were classified as high VZ. Tables 4 and 5 show the summary and
confusion matrix, respectively.

Correctly Classified Instances 28 93.3333 %
Incorrectly Classified Instances 2 6.6667 %
Kappa statistic 0.8421

Mean absolute error 0.1373

Root mean sguared error 0.2279

Relative absolute error 44,337 %

Root relative sguared error 55.0762 %

Total Number of Instances 30

Table 4: Summary of IM;.
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Table 5:

Confusion Matrix of IM;.

4.3 Classification Results of M,

PatanasakPinyo et al.

For evaluation on training data, there were twenty-eight correctly classified instances, which was
93.33%. Two participants who tested low VZ were classified as high VZ. Furthermore, those
misclassified two were the same participants who were incorrectly classified in IM;. Tables 6
and 7 show the summary and confusion matrix, respectively, for the 30 participants.

Kappa statistic

Mean absolute error
Root mean sguared error
Relative absolute error

Correctly Classified Instances 2
Incorrectly Classified Instances

Root relative sguared error
Total Number of Instances

(SR

.5421
.1432
-2317
L2283 %
088 %

93.3333 %

Table 6: Summary of IMs.

<-- tlassified as

a=H
b=1

a b

20 0

2 8
Table 7:

Confusion Matrix of IMs.

4.4 Classification Results of M3

There were twenty-eight correctly classified instances, which, again, was 93.33%. Tables 8 and
9 show the summary and confusion matrix, respectively. According to Table 9, there was one
participant who tested low VZ but classified as high VZ. This participant was the same one
who was misclassified in both IM; and IM;. There was another participant who tested high VZ

but classified as low VZ.

Kappa statistic

Mean absolute error
Root mean sguared error
Relative absolute error
Root relative sguared e
Total Number of Instanc

Correctly Classified Instances g
Incorrectly Classified Instances 2

rror
£3

=

-1583
-2396
L0894 %
-1317 &

Table 8: Summary of IMs.
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a b c <-- classified as

19 1 0] a=H
1 9 0] b=1L
00 0] =M

Table 9: Confusion Matrix of IM3.

At first, we expected to see better prediction result from My because My was the extended
version of IM;. However, the actual outcome was opposite. There are potentially two causations
that we were curious. One causation is that the number of our instances was not big enough.
From thirty participants, there were participants that tested high VZ but his/her actual behav-
ior was more like low VZ (and another way around). For example, one participant might test
high VZ but he/she created a reversal, which is a behavior of low VZ participant when getting
lost [1], multiple times in the field. Perhaps his/her intention was just to explore the UL This
incident plausibly reduces the performance of IMs.

Another causation that is worth taking a look is the difference between IM; and IMs. As
mentioning earlier, we created a new model, M3, where F(M3) = F(Ms) \ F(IM;). An inter-
esting result of M3 is that it incorrectly classified two instances. One misclassified instance
was a participant who tested high VZ. Another one was a participant who tested low VZ. The
result of classification of IM3 was different compared to IM; and IMs in term of there existing
a participant who tested high VZ but classified as low VZ, which never existed in previous
two models. This misprediction was potentially caused by the same incident we have already
mentioned: a participant that tested high VZ but his/her actual behavior was more like low
VZ.

With this observation, a potential improvement that we would like to mark as a guideline
for future work is to increase a number of instances and allow high-order reversal with degree
higher than 2 to be included. Although it can affect a process of UI design such as total levels
of zoom must be deeper to make a series of zoom tap relevant and significant, this guideline
would help creating a new model of VZ prediction on location-based application with higher
accuracy.

5 Conclusion and Future Work

We proposed three prediction models, IM;, IMs, and M3, that predicted level of VZ of par-
ticipants when they used the location-based software application to verify addresses in the
neighborhood. A difference between those three is a set of features. Features of IM; consists of
metrics of map operations such as total taps or total zooms. It also contains numbers of rever-
sal pair such as left-right reversal. M5 is the extended model of IM;. We added some features
from Batinov’s model [2] into F(IMs) such as number of zoom-in. We also added numbers of
high-order reversal into IF(IMy).

After we applied both IM; and IMs on data that we gathered from thirty participants in the
address verification task using location-based software application, they returned same accuracy
rate, which is 93.33%. 93.33% was the first contribution of our proposed work since we are not
aware of a prediction model that could predict VZ level of user from user’s set of map operations
and yielded more than 90% accuracy rate.

Another contribution takes place when we created M3, F(IM3) = F(IMs) \ F(IM;), to justify
whether or not extra features that were added to IMs matter. The outcome showed that Mg
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also yielded the accuracy of 93.33% with dissimilar classification result.

The work described here will be incorporated into the address verification software used in

[14]. The software will be used to test the impact on the workflow of the higher VZ prediction
rates.
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