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Abstract

In recent years, a lot of effort has been expended in determining if SAT solver per-
formance is predictable. However, the work in this area invariably focuses on individual
machines, and often on individual solvers. It is unclear whether predictions made on a
specific solver and machine are accurate when translated to other solvers and hardware. In
this work we consider five state-of-the-art solvers, 26 machines and 143 feature instances
selected from the 2011 to 2014 SAT competitions. Using combinations of solvers, machines
and instances we present four results: First, we show that UNSAT instances are more pre-
dictable than corresponding SAT instances. Second, we show that the number of cores
in a machine has more impact on performance than L2 cache size. Third, we show that
instances with fewer reused clauses are more CPU bound than those where clause reuse
is high. Finally, we make accurate predictions of solution time for each of the instances
considered across a diverse set of machines.

1 Introduction

Despite the focus, within the SAT community, on determining the predictability of SAT in-
stances, there are few works concerning the effectiveness of predictions made on one machine
when executing instances on a second machine. This has led to two problems. First, any
tools that make predictions of solver performance can only make them based on instances that
have been solved on the same machine the predictions are to be valid on. Secondarily, it is
virtually impossible to compare results of past publications in this field without first repeat-
ing the experiments on the same hardware. Cross machine models will enable practitioners to
make predictions of solver performance on new hardware without first having to run known
benchmarks, reducing overall effort. Additionally, if it is possible to determine an “absolute”
solution time for an instance — regardless of hardware used — it will be possible to combine
benchmarking data from multiple sources. This will allow larger, more comprehensive studies
of SAT solver performance to be undertaken without duplication of effort.

2 Experimental setup

The experiments included here were run on the Datamill [1] platform. Datamill is designed to
run sets of experiments on a heterogeneous set of hardware, and optionally varies system level
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properties on execution. All machines on the Datamill platform run Gentoo Linux with kernel
version 3.3.8, and GCC 4.5.3. A full listing of the machines used is available in Appendix A.

Due to memory constraints within the different machines, and timing constraints for data
gathering, it was not possible for every machine, instance, solver combination to complete
successfully. To mitigate any bias this may cause in our analysis, we limit ourselves to the set
of machines, instances and solvers such that every machine solved every instance in the set
on at least one solver. This reduced the number of trials (individual combinations of solvers,
machines and instances) available for analysis from 15 588 to 13 648. The number of machines
reduced to 21 while the number of instances remained unchanged.

For each machine-based parameter px and instance i, we used a standard linear regression
with Equation 1 to calculate the adjusted R2 value ri,px

for all trials t using the instance i. As
such, the value ri,px expresses the amount of variability in solution time of instance i accounted
for by factor px. The adjusted R2 metric ranges from zero to one, with one being a perfect model
and zero indicating that the provided model does not explain the response variable (time). For
brevity, the remainder of this document will use the notation time ∼ p in place of Equation 1.

timet ∼ β0 + β1px,t + εt (1)

We then consider different instance based characteristics cy to determine whether classes of
instances (identified as having similar cy values for specified values of y) are more or less reliant
on different machine parameters.

In total, we considered 34 instance characteristics and 7 machine parameters. While not
all of them were found to be significant, those that were are discussed in this work. The
machine parameters considered were: CPU speed, CPU architecture, CPU manufacturer, CPU
cores, FSB speed, RAM size and L2 cache size. In the future, we intend to increase this set
of features, particularly concerning cache sizes and RAM speeds. However, this information is
not available for the machines at this time. Modern CPU’s express their FSB speed in GT/i
whereas older CPUs utilise MHz. GT/i is considered a more accurate measurement, which
describes not only the clock speed of the bus but the data width. As such, we converted all
measurements of FSB speed to GT/i. We included CPU Model to determine if CPUs from
different models/manufacturers with similar specifications perform differently. A reason for
this could be cache replacement policies and implementation specific timing characteristics,
such as the proportion of integer vs floating point cores within the CPU. The data in this paper
is available online [2].The instance characteristics considered are listed in Appendix B.

The five solvers considered were MiniSAT 2.0 [3], Glucose 3.0 [4], Lingeling [5], Plingeling
[6] and SWDiA5BY 2.3. These were the silver and gold medal winners of the 2013/2014 SAT
competitions for the application category. While PeneLoPe was also a medal winner, it was
excluded as it did not compile on the target environment.

We randomly selected instances from the 2011 to 2014 SAT competitions for these exper-
iments. They were selected using a stratified random sampling technique to ensure that we
included a diverse set of instances in the sample. The stratified sample considered values of Q,
|Co|, |V |, |Cl|, CVR and solution time. At most three instances were selected for each range
of the measured property.

Each pair of instance and solver was then run on each of the 26 machines. Each trial was
allowed a maximum of two hours for completion and trials were executed in batches. Each
batch contained no more than 18 trials to keep the batch time (including installation, setup,
solving and collection) under two days, which is a requirement of DataMill. Each machine ran
40 batches, the order of trials was randomized prior to batching, as such each batch for each
machine contained the same instances, additionally machines ran batches in a random order.
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Prior to running the experiment, we expected that memory size, CPU clock speed and cache
size were going to be significant contributing factors. However, as shown in [7] memory layout
as well as other factors can have a significant impact on any execution times, including that of
a SAT solver. It was for this reason we decided to utilise DataMill [1].

Due to the heterogeneous nature of the hardware used, it was not possible to run all solvers
on all machines. We found that the ARMV7 machines (machines 22-25 in Appendix A) were
only able to run Lingeling. All the other solvers (including pLingeling) failed to compile due to
a floating point library not being present in the ARM version of the operating system. Each
machine was dedicated to running only the experiment given and is not virtualised or shared
in any way.

To remove the possibility that these timing differences were the result of randomness in the
solver, we pre-simplified the instances then turned off simplification on the solvers. This is to
resolve the known issue that clause (and variable) ordering has an effect on solution time [8].
In addition to this we set a fixed random seed for all the solvers on all machines (with the
exception of pLingeling that did not support this option). In doing so, we ensure that a single
instance/solver pair should have identical performance on an identically specified machine.

The complete set of all combinations of solvers, workers and instances would have created
approximately 18 500 trials. Unfortunately even with the time-outs and batching we imposed,
DataMill was unable to complete all of these trials within the required time frame. As such
we are limited to analysing those results which were gathered, approximately 15 500 of them.
Within these results approximately 1 600 were unable to run due to a lack of support in the
ARM kernel, as mentioned previously. Leaving a total of 13 825 instances available for analysis.
The majority of our analysis looks at aggregate results, either across the instances, solvers
or workers. We only analysed the complete set of workers and instances, by which we mean
that every worker in our final dataset solved every instance at least once. We chose to do this
to ensure that no bias has been introduced by certain combinations of workers/instances not
completing. To accomplish this we used an implementation of maximal biclique enumeration
algorithm from Alexe et al [9] where the workers are one half of the graph and the instances
are the other. The resulting clique included 13 648 trials. Unless otherwise stated this is the
set used in all results presented. Similarly, unless otherwise stated, time refers to the wall clock
time.

3 Results

The following sections detail the results mentioned above. In each of the four sections we discuss
a single result, providing evidence and levels of confidence of it, and discuss the consequences
of that result.

3.1 UNSAT instance performance is more predictable than SAT

When analysing the set of all trials, regardless of solver, a clear trend can be observed re-
garding the predictability of instances. For all machine parameters considered, UNSAT in-
stances were consistently more predictable than SAT instances. For example, using the model
time ∼ CPUSpeed the maximum R2 for UNSAT instances is 0.65, whereas the maximum R2

for SAT instances is 0.64. While, in this case, the maximum R2 does not differ significantly,
17.4% of the 69 UNSAT instances had an R2 > 0.5 and 55.0% had an R2 > 0.3. This is com-
pared with SAT instances, where only 4.0% of the 74 SAT instances had an R2 > 0.5 and 24.3%
had an R2 > 0.3.
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Solver p(error(UNSAT ) < 0.2) p(error(SAT ) < 0.2) p-value Reject NULL

Minisat 47.3% 41.0% 0.001 REJECT
Glucose 49.6% 50.5% 0.674 ACCEPT
Lingeling 56.4% 52.6% 0.022 REJECT
pLingeling 46.3% 41.7% 0.011 REJECT
SWDiA5BY 47.1% 50.6% 0.95 ACCEPT

Table 1: Shows the probability that a prediction error for an instance using the model
time CPUSpeed will be less than 20% of that instances execution time. The p-value column
shows the significance level of the test.

Previous results [10] have shown that UNSAT instances have more predictable performance,
when considering different instances on the same hardware. However, our result focuses on
the predictability of the performance of individual UNSAT instances across a diverse set of
hardware.

The same trend, of UNSAT instances having a higher R2 score, can be observed for FSB
speed, RAM size, L2 size and number of CPU cores. Though it should be mentioned that SAT
instances achieved a marginally higher maximum R2 for L2 size (0.14) compared to UNSAT
instances (0.13). However, fewer SAT instances achieved an R2 > 0.05 than UNSAT.

Further results in Section 3.4 support the result that UNSAT instance performance is more
predictable than SAT instance performance. To demonstrate this, we test the following hy-
pothesis, where S is the set of solvers described in Section 2:

H1s,0 : p(error(UNSATs) < 0.2) ≤ p(error(SATs) < 0.2), ∀s ∈ S
H1s,a : p(error(UNSATs) < 0.2) > p(error(SATs) < 0.2), ∀s ∈ S

The function p returns the probability that the predictions for the set of instances provided
will be accurate to with 20% of the solution time of each instance. We then utilise a binomial
probability test to determine whether the probability of an accurate prediction is higher for
UNSAT instances than SAT, for each solver.

We performed the hypothesis test with a significance level of 0.05, as such we accept the
null hypothesis in the cases where the p-value > 0.05. Table 1 shows the results of this hypoth-
esis test. Each row in the table presents the result of the hypothesis test for a single solver,
along with the probabilities of accurate predictions for the SAT and UNSAT instances on that
solver, and finally whether we accept or reject the null hypothesis. For MiniSAT, Lingeling
and pLingeling, UNSAT instances are more predictable than SAT instances, with a p-value low
enough that we reject the null hypothesis. However, in the cases of Glucose and SWDiA5BY,
the results suggest that SAT instances are more predictable than UNSAT. It is unclear why
Glucose and SWDiA5BY should show a different result than the other solvers and requires
further experimentation at a later date.

3.2 Number of cores is more important than L2 cache size

The second result from this experiment was that we found the number of CPU cores in a
machine is more significant when determining performance than L2 cache size, for both SAT
and UNSAT instances. This was an unexpected result, as the majority of solvers tested were
sequential, as such, multi core architectures should not impact their performance.
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Solver p(L2 > 0.1) p(CPUCores > 0.1) p-value Reject NULL

MiniSAT 12.6% 94.4% <0.001 REJECT
Glucose 12.6% 96.5% <0.001 REJECT
Lingeling 3.5% 35.0% <0.001 REJECT
pLingeling 65.0% 95.0% <0.001 REJECT
SWDiA5BY 18.9% 98.6% <0.001 REJECT

Table 2: The results of the hypothesis test H2, showing the probability that the R2 for the
models time ∼ L2 > 0.1 and time ∼ CPUCores, as well as the p-value for the hypothesis test
that CPUCores > L2

The maximum R2 for the model time ∼ L2 was 0.14, compared with the maximum R2 for
the model time ∼ CPUCores which was 0.57.

To confirm the result that the number of cores is more important in determining solver
performance than L2 cache size, we test the following hypothesis. S is the set of solvers
described in Section 2 and the function p returns the probability that the provided machine
parameters R2 will exceed 0.1:

H20,s : p(L2s > 0.1) ≤ p(CPUCoress > 0.1), ∀s ∈ S
H2a,s : p(L2s > 0.1) > p(CPUCoress > 0.1), ∀s ∈ S

Table 2 shows, for each solver, the probability that the value of R2 will exceed 0.1 for
the model time ∼ L2. The probability that the value of R2 will exceed 0.1 for the model
time ∼ CPUCores. The p-value for the hypothesis test and whether we reject or accept the
null hypothesis. In every case, the solver’s performance is impacted significantly more by the
number of CPU cores than the L2 cache size.

One possible explanation for this result is the overall trend between both CPU speed and
number of cores, and RAM size and number of cores. However, there are several machines that
do not follow this trend (E.g., machines number 3,7 and 20). Another possible explanation
for this result is that L2 cache size is not representative of the overall impact of cache size
on solver performance. The L1 cache and lowest level cache (which in some cases will be L2)
are potentially more significant than L2 cache size alone. The reason for excluding the L1
and “lowest level” cache sizes is that, at present, we do not have that data for all machines
considered. This will be included in future versions of this work. A third possible explanation
for the performance increase is that overhead in the operating system takes place on one core,
while the solving of the SAT problem takes place, uninterrupted, on another. Table 3 shows
the average execution time for instances solved on machines with different numbers of cores.
The second, third columns and fourth columns show average execution times for all solvers,
sequential and parallel solvers respectively. The small decrease of the average solution time
for parallel solvers between four and eight cores would suggest that pLingeling (the only par-
allel solver considered) is either unable to utilise eight cores to their fullest potential, or some
other parameter of the machine with eight cores is reducing performance enough to mask any
improvement the additional cores provide.
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Average solution time (s)
#Cores All solvers Sequential solvers Parallel solvers

1 2 528(1.0x) 2 521(1.0x) 2 557(1.0x)
2 1 766(1.4x) 1 780(1.4x) 1 712(1.5x)
4 1 246(2.0x) 1 368(1.8x) 579(4.4x)
8 735(3.4x) 773(3.3x) 581(4.4x)

Table 3: Number of cores and the associated average execution time in seconds, the bracketed
number is the speedup relative to single core performance.

c1: 1 2 3 0
c2: -1 2 3 0
c3: 1 3 -4 0
c4: 1 -2 3 0

3.3 A negative correlation exists between clause reuse and the impact
of CPU speed on solver performance

In this section we use the term “clause reuse” to indicate sets of clauses with the same variables
with different polarity. For example, in the DIMACS below clause c1 is said to be reused two
times (in clauses c2 and c4). Clause c3 is seen only once (clause reuse of 0).

The terms max(reuse) and mean(reuse) refer to the maximum and average times any single
clause is reused. Figures 1a and 1b show, for SAT and UNSAT instances respectively, the
correlation between the average clause reuse for formula (on the x-axis) and the average R2 of
the model time ∼ CPUSpeed for those instances (on the y-axis). Each data point represents a
0.1 range of the average clause reuse.

Figures 1a and 1b show a negative correlation between the average clause reuse and the
impact of CPUSpeed as a predictor of time. This negative correlation indicates that instances,
where individual clauses contain unique sets of variables, are more CPU bound than those
which have a small set of variables that are repeatedly assigned different values in clauses.

To confirm this result, we test the following two hypothesis, where S is the set of solvers
described in Section 2:

H30,s : p(time(il, s)) ≤ p(time(ih, s)), ∀s ∈ S, Mean.Reused(il) < Mean.Reused(ih)

H3a,s : p(time(il, s)) > p(time(ih, s)), ∀s ∈ S, Mean.Reused(il) < Mean.Reused(ih)

Function p returns the predictability of the execution time of a solver on a particular instance
across all considered hardware. ih and il refer to randomly selected instances with higher, and
lower average clause reuse respectively.

For this experiment, we randomly selected 500 pairs of instances and checked whether the
instance with the lower mean(reused) value was more CPU bound than the instance with the
higher mean(reused). Table 4 shows the probability that for any randomly selected pair of
instances (where the mean(reused) differ) the alternate hypothesis holds true. It also shows the
significance level of the test, and whether we accept or reject the null hypothesis.

For all solvers, with the exception of MiniSAT, we reject the null hypothesis. This confirms
the visual result presented in Figures 1a and 1b, the more frequently a clause is reused, the
less significant CPU speed is in determining execution time. This suggests that any model that
accurately explains the performance of a single instance across diverse hardware will not only
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Figure 1: Figures showing the clause reuse against average R2 for SAT and UNSAT instances,
the line represents the moving average over a window of seven data points.

Solver % H3a holds p-value Reject NULL

MiniSAT 50.0% 0.954 ACCEPT
Glucose 61.0% 0.001 REJECT
Lingeling 63.4% 0.001 REJECT
pLingeling 63.6% 0.001 REJECT
SWDiA5BY 63.4% 0.001 REJECT

Table 4: Shows the results of the hypothesis test H3. For each solver the % of randomly selected
pairs of instances where H3a holds is given, along with the p-value of the hypothesis test.

need to consider the specification of the hardware, but also characteristics of the instance. It is
not clear why MiniSAT does not exhibit the same pattern as the other solvers considered, this
is a subject we are considering for future work.

3.4 Predicting performance

Using a standard linear regression with Equation 2 we can predict the solution time of individual
instances on specific solvers for previously untested hardware, based on their performance on
our test machines. This model results in an R2 > 0.73 for 80% of the instances considered,
across all solvers. The ⊕ notation here denotes that not only were each of the individual factors
considered but all interaction terms of the three factors as well.

timeis ∼ CPUSpeed⊕ CPUCores⊕RAM (2)

A preliminary analysis of the R2 for this model shows that Lingeling was the most predictable
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Solver Median error (s) Maximum error (s) 80% error (s)

MiniSAT 104 163894 1087
Glucose 53 1939631 665
Lingeling 46 1218864 555
pLingeling 89 2116591 999
SWDiA5BY 50 111689 641

Table 5: The predictability of different solvers, showing median, maximum and the 80% confi-
dence level of predictions, for each of the considered solvers.

solver, where 80% of instances had an R2 > 0.87. SWDiA5BY and MiniSAT were the least
predictable solvers, where in both cases 80% of instances had an R2 > 0.80. This indicates
that Lingeling’s performance is less determined by factors not included in our model, such as
RAM speed and cache sizes. Conversely, the performance of MiniSAT and SWDiA5BY may be
effected by these absent parameters.

To test these results, we performed a k-fold cross validation with k = 5. For each instance
and solver combination, we randomly partitioned the machines into five equal partitions. Four
of these are used as a training set to predict the execution time of the machines from the
one remaining partition. We repeated the analysis using the same partitioning five times,
using a different partition as the test partition each time. We repeated this entire process
ten times for each solver, with different randomly created partitions to mitigate the issue of
different prediction error depending on which machines were assigned to the training and test
sets. Table 5 shows the predictability of the five considered solvers according to their median
absolute error, maximum error and 80% confidence level. This data confirms that predictions
made for the Lingeling solver are most accurate, and that predictions made by MiniSAT are
least accurate. However, SWDiA5BY predictions were relatively accurate, while pLingeling
predictions were significantly less accurate.

This is indicated by the increased median error and 80% confidence level. The difference
between MiniSAT and pLingeling in this case is small, fifteen seconds for the median error
and 88 seconds for the 80% confidence level. One possible explanation is that machines were
assigned to folds randomly, as such it is possible that the assignment for the MiniSAT instances
was less predictive than the one used for pLingeling.

Due to the random sampling performed, results vary on depending on which machines are
assigned to each fold for the cross-validation. Had we set k = 21 this would not have been the
case. However, one of our goals is to find a small subset of machines that can be used to predict
solution times across a wide range of hardware, as such we were interested in minimising the
training set. Figures 2a and 2b show the results of the cross validated predictions for Lingeling
and MiniSAT respectively. These solvers are highlighted as they were the most and least
predictable solvers respectively.

Unfortunately, no obvious trend exists between the quality of the predictions, and any of the
34 considered instance characteristics. However, there does exist a trend between the quality
of the predictions, and the average execution time for the instances. Figure 3 shows the trend
of decreasing accuracy against average execution time. It also shows that the variability of the
predictions increases as execution time increases. The most likely explanation for this is the
number of timeouts affecting both the average execution time and the accuracy of predictions.
The more timeouts per instance, the less accurate the predictions. Approximately 14% of
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(b) For MiniSAT.

Figure 2: Figures showing the predicted solution times against actual solution times for the Lin-
geling and MiniSAT solvers for a single repetition of the k-fold cross validation. Approximately
5% of the outlier data points are omitted from these plots to improve interpretability. The
different colours represent the individual folds. The black line represents perfect predictions.

instances in this dataset timeout, of those instances, 42% were on UNSAT instances and 58%
were on SAT instances. Considering the UNSAT instances show more accurate predictions
over the increasing range of execution time and have fewer timeouts, when compared to SAT
instances, this would support our conjecture.

4 Related Work

The related work falls into two categories. First, there is significant work on predicting SAT
solver performance on sets of instances, on fixed hardware. Second, there has been significant
work outside of the SAT community in the prediction of program execution time on diverse
hardware.

In 2010, Kadioglu et al presented a method for instance specific algorithm configuration
(ISAC) [11]. This work, which encompasses algorithm selection and tuning, focused on char-
acteristics of the input instance to tune the selected algorithm and thus increase performance.
They utilise g-means to cluster the instances, working on the premise that instances that are
clustered together will behave similarly when solving.

In 2012, Malitsky and Sellmann presented the idea of using ISAC for the construction of
portfolio based SAT solvers [12]. They compare this performance against that of portfolio based
solvers, such as SATzilla [13], and show that, in many cases, ISAC outperforms them.

In 2012, an update on SATzilla was published [13] which presented the utilisation of cost-
sensitive classification models. In this version of SATzilla, feature computation is limited to 90
CPU seconds. This is a particularly interesting technique when considering community-based
algorithms such as CNM [14], as the execution time of these algorithms can be prohibitively
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Figure 3: The correlation between the 80% confidence level for predictions, and the average
solution time of the instances. The lines represent the moving average over a window of five
data, each data point represents a 10 second time interval.

high, when compared to a relatively low execution times of a solver on certain types of instance.
In 2004, Marin and Mellor-Crummey presented a work on predicting parallel application

performance across different architectures using parametrised models [15]. In this work, the
authors utilise instrumented code to predict execution times, considering factors such as the
execution count of individual sequential sections of code and memory latency on the target
architecture. This technique requires measuring specific hardware factors (such as the cost of
an L1 cache miss) at execution times to enable accurate predictions.

In 2005, Yang et al presented a work on the prediction of parallel application performance
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using partial execution [16]. This technique utilises observation based techniques and as such
has no need to consider features of the platform, such as CPU speed, memory size, etc. The
advantage of this technique is that it can be highly accurate for certain types of program, it is
unclear whether SAT solvers fall into this category. However, one drawback is, that for each
new platform, a representative set of sample applications must be ran for the predictions to be
accurate. This makes the technique more valid for large-scale parallel computing clusters that
utilise multiple instances of similarly specified hardware.

In 2006, Hoste et al presented a work on predicting application performance based on
program simplicity [17]. This work utilises the SPEC CPU2000 [18] results on 36 machines
to determine if a correlation exists between the proposed simplicity metrics and the speedup
rates published in SPEC CPU 2000. Their results show an improved worst-case and average
correlation coefficient when compared to current practice.

In 2006, Lee and Brooks presented a work on predicting application performance on the
Turandot simulator [19]. They consider 12 architectural parameters including the number of
general purpose registers, sizes of L1 and L2 cache, and memory and L2 latency. The use of a
simulator allowed high levels of control on features such as pipeline depth and memory latency
in cycles. They found that application specific models were most predictive of performance
prediction.

5 Conclusion

In this work, we have explored the relationship between different classes of instances, and
their solution times on differently specified machines and solvers. We have shown that the
solution time for a specific instance varies greatly across different machines, in ways that are
not completely predictable when considering characteristics such as CPU speed, RAM size and
cache size. We have further shown that the impact of each of these factors on the solution
time of an instance depends on the structure of the instance. In some cases, this structure is
characterised by graph theoretical concepts, and others use SAT specific concepts such as the
clause-variable ratio.

We have presented a model that can predict the solution time of SAT instances across
a diverse set of hardware with relatively high accuracy. We have also identified that, of the
observed solvers, Lingeling has the most predictable performance and UNSAT instances are gen-
erally more predictable than SAT instances. In addition to the results presented here, we have
found strong correlations between the predictability of instance performance and max(reused),
max(clause), mean(clause), max(var) as well as others. These results are omitted from this
work for the sake of brevity.

While we have not been able to produce a model that completely explains the variability in
solution time when varying the machines, we have been able to explain a large amount of it.
The remaining variability is likely to be in the factors that were only partially available in our
dataset (e.g. cache sizes, RAM speeds, etc). However, we also speculate that cache replacement
policies will be a determining factor in solution times of specific instances.

6 Future Work

The next steps for this work are to find more details on the machines used. As previously
mentioned, it was not possible to gather all levels of cache size for all machines. Similarly
RAM channels and speeds were missing in some cases. We hope this will partially solve the
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issue of un-defined variation. However, if this does not complete the model we are planning on
exploring the relationship between cache replacement policies and performance. We feel this
may be what is missing when we compare machines with different specifications, which perform
similarly — for example, the Pentium M and Pentium D machines as described above.

While it was important to perform a fair random assignment for the k-fold cross validation,
we also intend to perform a “cherry-picked” version where we select individual machines based
on their parameters as the training set. In doing so, we hope to maximise the quality of our
predictions while minimising our training set.

In this work, we chose to perform the analysis with a standard linear regression, and it
has provided some strong results. However, it is not the only analysis technique suitable for
this area. Random forests [20], non-linear regression and Bayesian inference are examples of
techniques that have been used with varying levels of success to predict the solution time of
sets of instances on fixed hardware. While we are focusing on predicting the solution times on
heterogeneous hardware from known solution times, these techniques could also apply.

Finally, we are looking into tuning SAT solvers based on the hardware that is being used
to solve an instance. It has already been established that some solvers perform better on
different hardware, and different classes of instance. While there has been significant work in
selecting/tuning an algorithm based on instance characteristics [11, 12, 21, 22], there has been
relatively little work in selecting/tuning an algorithm based on the hardware being used.
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Appendix A

A list of all machines used in the various experiments in this paper.

# CPU Cores CPU speed
Cache

(L1 i/d + L2 + L3)
RAM
amount

RAM
speed

1 Intel Core i7 i686 4 3400 32/32 + 256 + 8192 8266580 0
2 Intel Pentium M i686 1 1695 0/0 + 256 + 0 902287 0
3 Intel Pentium 4 i686 2 2992 0/16 + 2048 + 0 894177 533
4 VIA Nano X2 i686 2 1733 128/128 + 2048 + 0 1814036 1066
5 Intel Pentium 4 i686 2 3200 0/0 + 512 + 0 1000263 0
6 Intel Pentium 4 i686 1 1595 0/0 + 256 + 0 254781 0
7 Intel Pentium 4 i686 2 2998 0/16 + 1024 + 0 893347 0
8 Intel Pentium 4 i686 1 1595 0/0 + 256 + 0 514119 133
9 Intel Pentium 4 i686 2 2992 0/0 + 1024 + 0 894269 0
10 Intel Pentium 4 i686 2 3200 0/0 + 512 + 0 1000540 0
11 Intel Pentium 4 i686 2 2793 64/64 + 2048 + 0 902461 0
12 Intel Pentium 4 i686 2 1614 0/0 + 256 + 0 894269 0
13 Intel Pentium 4 i686 2 1600 0/0 + 256 + 0 242851 0
14 Intel Pentium 4 i686 2 3198 0/0 + 512 + 0 894269 0
15 AMD Athlon XP i686 1 1111 64/64 + 256 + 0 514199 0
16 Intel Pentium D i686 2 2993 0/0 + 1024 + 0 2076180 0
17 Intel Pentium 4 i686 2 3200 0/16 + 512 +0 894269 0
18 Intel Pentium 4 i686 2 3192 0/0 + 512 + 0 505661 0
19 Intel Xeon x86 64 2 3000 0/0 + 4098 + 0 2831155 0
20 Intel Pentium 4 i686 2 3200 0/0 + 512 + 0 2076180 0
21 Intel Core i7 x86 64 8 3401 128/128 + 1024 + 0 8095006 0
22 ARM Rev 10 armv71 4 1988 0/0 + 1024 + 0 896563 0
23 ARM Rev 10 armv71 4 1988 0/0 + 1024 + 0 896563 0
24 ARM Rev 10 armv71 4 1988 0/0 + 1024 + 0 896563 0
25 ARM Rev 10 armv71 4 1988 0/0 + 1024 + 0 896563 0
26 Intel Core i5 x86 64 4 3291 128/128 + 1024 + 0 8095006 0
27 Intel Core i7 64 4 3400 32/32 + 256 + 8192 8388608 0
28 AMD Athlon 1 757 64/64 + 256 + 0 773079 0

List of machine specifications used for the varied parameters trial. Machines 2-28 were ran
through the DataMill platform (0’s indicate we were unable to determine the value of this
property for a specific machine)
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Appendix B

The full description of all features considered in this paper.

Variable Name Definition

vars The number of variables in the formula
weight The difference in the number of true/false literals.
CO The set of communities
Q The quality (Q) of the community structure
max(var) The maximum number of times a variable appears
mean(var) The average number of times a variable appears
min(com) The size of the smallest community
mean(com) The average community size
max(com) The size of the largest community
sd(com) The standard dev of the community sizes
min(inter) The minimum number of inter-com edges from one community
max(inter) The maximum number of inter-com edges from one community
mean(inter) The average number of inter-com edges from one community
sd(inter) The standard dev of inter-com edges from one community
min(intra) The minimum number of intra-community edges in one community
max(intra) The maximum number of intra-community edges in one community
mean(intra) The average number of intra-community edges in one community
sd(intra) The standard dev of intra-community edges in one community
edgeratio The overall ratio of inter/intra edges
max(edgeratio) The maximum ratio of inter/intra edges for one community
min(edgeratio) The minimum ratio of inter/intra edges for one community
mean(edgeratio) The average ratio of inter/intra edges for one community
sd(edgeratio) The standard deviation ratio of inter/intra edges for one community
UE The set of unique edges in the graph
TE The set of all edges (counting degrees) in the graph
CL The set of all clauses
V UC The set of clauses using distinct variables
max(clause) The length of the longest clause
mean(clause) The average clause length
max(reused) The maximum times a clause with the same variables is reused
min(reused) The minimum times a clause with the same variables is reused
mean(reused) The average times a clause with the same variables is reused
CVR The ratio of clauses to variables
TVR The ratio of total clauses to clauses using unique sets of variables

Table 6: Description of all instance characteristics used
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Appendix C
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pLingeling predicted against actual solution time

Predicted time (s)

A
ct

ua
l  

tim
e 

(s
)

0
80

0
16

00
24

00
32

00
40

00
48

00
56

00
64

00
72

00
−3406 −1406 94 1594 3094 4594 6094 7594 9094

(b) For pLingeling

●●●●

●●●● ●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●
● ●

●

●
●

●

●

●●

●

●

●●●

●

●●●

●

●●

●

●

●

●● ●●

●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●●●●●
●
●●

●

●

●●

●

●

●●

●

●

●●
●

●

●●

●●●●
●

●

●●●
●
●●●
●
●●

●

●

●●

●● ●●

●●●●●
●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●

●●●●

●

●

●●

●●●●

●●●●●

●

●●●
●
●●

●

●

●

●

●●●●●●●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●●●

●

●

●●

●

●

●●●●●

●

●

●
●

● ●
●●●●

●● ●● ●●●●●●●●

●●●●●●●●

●

●

●

●

●
●

●

●

●

●●
●

●

●
● ●

●

●
●

●

●

●●
●
●
●●

●

●

●

●

●

●

●●
●

●

●●●

●

●●●

●

●●
●

●

●●

●● ●●

●

●

●●

●

●

●●

●

●

●●

●●●●

●●●●●
●
●●●●●●●
●
●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●

●

●

●● ●

●

●●

●●●●

●
●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●
●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●●●●●●●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●●
●

●

●●

●● ●●

SWDiA5BY predicted against actual solution time
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(c) For SWDiA5BY

Figure 4: Figures showing the predicted solution times against actual solution times for the
Glucose, pLingeling and SWDiA5BY solvers for a single repetition of the k-fold cross valida-
tion. Approximately 5% of the outlier data points are omitted from these plots to improve
interpretability. The different colours represent the individual folds. The black line represents
perfect predictions.
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