
EPiC Series in Computing
Volume 65, 2019, Pages 68–80

GCAI 2019. Proceedings of the 5th Global
Conference on Artificial Intelligence

On Knowledge Dependence in Weighted Description Logic
Pietro Galliani1, Oliver Kutz1, Daniele Porello2,

Guendalina Righetti1, and Nicolas Troquard1

1 CORE Conceptual and Cognitive Modelling Group
KRDB Research Centre for Knowledge and Data

Free University of Bozen-Bolzano, Italy
firstname.lastname@unibz.it

2 LOA Laboratory for Applied Ontology, ISTC-CNR
Trento, Italy

daniele.porello@cnr.it

Abstract

We study a family of operators (called ‘Tooth’ operators) that combine Description Logic con-
cepts via weighted sums. These operators are intended to capture the notion of instances satisfy-
ing “enough” of the concept descriptions given. We examine two variants of these operators: the
“knowledge-independent” one, that evaluates the concepts with respect to the current interpretation,
and the “knowledge-dependent” one that instead evaluates them with respect to a specified knowledge
base, comparing and contrasting their properties. We furthermore discuss the connections between
these operators and linear classification models.

1 Introduction
In this work, we continue the study, began in [15] and [16], of threshold (“Tooth”) operators in the
context of Description Logic and related formalisms.

These operators allow us to define a concept in terms of a weighted sum of sub-concepts: for in-
stance, as we will see, a concept of the form ∇∇1

1
2 ,

1
2 ,

1
2

(C1, C2, C3) is true of some individual d if and

only if at least two of C1, C2, and C3 are true of d, that is, if and only if1

1/2 ·
{

1 if C1(d)
0 otherwise

}
+ 1/2 ·

{
1 if C2(d)
0 otherwise

}
+ 1/2 ·

{
1 if C3(d)
0 otherwise

}
≥ 1.

Weighted Threshold Operators of this type have been studied extensively in the context of proposi-
tional logic and circuit complexity theory (see e.g. [10, 4, 8, 9]), with a particular focus on the monotone
case in which all the weights assigned to the subformulas are positive. In that context, these operators
have been seen to be closely related to several important open problems in complexity theory; in this
work, instead, we will focus on their possible application to Knowledge Representation in Description
Logic.

1By slight abuse of the usual DL notation, here and in the remainder of the paper we write expressions of the form C(d) for
d ∈ CI (where I is a DL interpretation) and C(b) for the ABox statement b : C (b a name).

D. Calvanese and L. Iocchi (eds.), GCAI 2019 (EPiC Series in Computing, vol. 65), pp. 68–80

On Knowledge Dependence in Weighted Description Logic Galliani et al.

Tooth operators are simple, conceptually clear connectives that—because of their obvious connec-
tions with linear classification models—provide a natural and straightforward link between knowledge
representation and statistical learning.

In what follows, we will introduce two varieties of Tooth operators: the “knowledge-independent”
ones, that evaluate subconcepts with respect to the current interpretation, and the “knowledge-
dependent” ones that instead, evaluate subconcepts with respect to a specified knowledge base. Then,
we will study some of the basic properties of these operators. Finally, we will discuss the application of
Tooth Operators to the problem of learning concepts from data.

2 On Weighted Concept Combination(s)
A class of m-ary operators, denoted by the symbol ∇∇ (pronounced ‘tooth’), were presented in [15].
These operators are meant to specify new concepts in terms of weighted combinations of sub-concepts:
indeed, each such operator i) takes a list C1 . . . Cn of concept descriptions, ii) associates a vector of
weights w1 . . . wn to them, and iii) returns a complex concept that applies to those instances for which,
by summing up the weights of the satisfied concepts, a certain threshold t is met.

In this work, we will focus on the logic ALC(∇∇R,∇∇R
K) (or, for brevity, ALC(∇∇,∇∇K)) obtained

by adding such operators to ALC and allowing weights and thresholds to take any real value r ∈ R;
but most of our results and observations can be generalized easily to most other varieties of Description
Logics. We refer the reader to [3] for an introduction to Description Logic and ALC. We assume
henceforth we are given fixed sets of atomic concepts NC , atomic roles NR, and individual names NInd.

For A ∈ NC , R ∈ NR, t ∈ R, m ∈ Z>0, ~w ∈ Rm the set of ALC(∇∇,∇∇K) concepts is described
by the grammar:

C ::= ⊥ | > | A | ¬C | C u C | C t C | ∀R.C | ∃R.C | ∇∇t~w(C, . . . , C︸ ︷︷ ︸
m

) | ∇∇tK, ~w(C, . . . , C︸ ︷︷ ︸
m

)

where, in the last expression, K ranges over all the knowledge bases over the above language, i.e., all
the sets of expressions of the form C1 v C2, C1(a) or R(a, b), where C1 and C2 are ALC(∇∇,∇∇K)
concepts, R ∈ NR, and a and b range over the individual names NInd.2

To better visualise the weights that an operator associates to the concepts, we sometimes use the
notation ∇∇t(C1 : w1, . . . , Cm : wm) instead of ∇∇t~w(C1, . . . , Cm); and likewise, we will write
∇∇tK(C1 : w1, . . . , Cm : wm) instead of∇∇tK, ~w(C1, . . . , Cm).
The semantics of the first new type of expressions – which we will call Knowledge-Independent Tooth
Operators – is obtained by extending the definition of the semantics of ALC as follows:

Definition 1 (Values of Individuals in Knowledge-Independent Tooth Operators).
Let C = ∇∇t((Ci : wi)i=1...m) be a knowledge-independent tooth operator, let I be an interpretation,
and let d ∈ ∆I be an individual in the domain of I . Then

vIC (d) =
∑

i∈{1,...,m}

{wi | d ∈ CIi }. (1)

Definition 2 (Semantics of Knowledge-Independent Tooth Operators).
Let C = ∇∇t((Ci : wi)i=1...n) be a knowledge-independent tooth operator and let I be an interpretation.
Then

CI = {d ∈ ∆I | vIC (d) ≥ t}. (2)
2It is also customary to write C1 ≡ C2 as a shorthand for the two subsumptions C1 v C2 and C2 v C1.

69

On Knowledge Dependence in Weighted Description Logic Galliani et al.

We continue with an example:

Example 1. Consider the concept defined by the tooth expression

∇∇1.4(HasTrunk : 1.0,HasAntlers : −0.5,HasTusks : 0.3, IsBig : 0.4, IsGrey : 0.4) (3)

where HasTrunk, HasAntlers, HasTusks, IsBig and IsGrey are concepts of our language. Then (3)
can be seen as an attempt to define the notion of elephant in terms of those other concepts by assigning
positive values to qualities that increase the “elephantness” of the subject (e.g. having a trunk, or being
big) and negative ones to qualities that decrease it (e.g. having antlers).

Now, let I be an interpretation containing three individuals Dumbo, Babar and Edgar and such that
HasTrunkI = {DumboI ,BabarI}; HasAntlersI = {EdgarI}; HasTusksI = {BabarI}; IsBigI =
{BabarI ,EdgarI}; and IsGreyI = {DumboI ,BabarI}. Then, if we write Elephant for (3), we have
that

• I |= Elephant(Dumbo): the score of the tooth expression for DumboI is 1.0 (HasTrunk) +
0.4 (IsGrey) ≥ 1.4.

• I |= Elephant(Babar), with score 1.0 + 0.3 + 0.4 + 0.4 = 2.1 ≥ 1.4.

• I 6|= Elephant(Edgar): indeed, the score of the tooth expression for EdgarI is −0.5 + 0.4 =
−0.1 < 1.4.

As it is not difficult to see, for example by considering all possible combinations of attributes, Elephant
is equivalent to the Disjunctive Normal Form Boolean combination of concepts

(HasTrunk uHasTusks u IsBig u IsGrey) t
(HasTrunk u IsBig u ¬HasAntlers) t
(HasTrunk u IsGrey u ¬HasAntlers).

More in general, as mentioned also in [15], any tooth operator is always reducible to some Boolean
combination of its components (this follows directly from the fact that all Boolean functions may be
represented using disjunctions and negations).

We now consider the other type of tooth operator ∇∇tK, ~w(C1, . . . , Cm), or ∇∇K(C1 : w1, . . . , Cm :
wm), which we will call the Knowledge-Dependent Tooth Operator. In this type of tooth operator, as
we will now see, the sub-expressions are evaluated not with respect to the current interpretation I but
with respect to the knowledge base K:

Definition 3 (Values of Individual Names in Knowledge-Dependent Tooth Operators).
Let CK = ∇∇tK(C1 : w1 . . . Cn : wn) be a knowledge-dependent tooth operator and let a be any
individual name. Then we define the value ωCK(a) of a according to C as

ωCK(a) =
∑
{wi : K |= Ci(a)}

where, as usual, K |= Ci(a) if and only if, for all interpretations J , J |= K ⇒ J |= Ci(a).

Definition 4 (Semantics of Knowledge-Dependent Tooth Operators).
Let CK = ∇∇tK(C1 : w1 . . . Cn : wn) be a knowledge-dependent tooth operator and let I be an inter-
pretation. Then

(CK)I = {aI | a ∈ NInd, a
I is defined, ωCK(a) ≥ t}

where, in the above expression, a ranges over the set NInd of all individual names.

70

On Knowledge Dependence in Weighted Description Logic Galliani et al.

This notion of knowledge-dependent tooth operator is somewhat different from the knowledge-
independent notion introduced before. Most importantly, it follows immediately from our definitions
that (∇∇tK(C1 : w1 . . . Cn : wn))I is always of the form {aI , bI , . . .} for some set of individual names
{a, b, . . .}; and that, more importantly, this set is the same no matter the interpretation I with respect
to which the operator is interpreted. Nonetheless, we believe it useful to define the semantics of this
operator in the usual way, i.e. in terms of satisfaction with respect to interpretations, both for unifor-
mity and for ease of combination with other connectives. Additionally, we point out here that both
our tooth operators are well-defined, even in the case of nested expressions. This is verified easily by
remarking that the interpretation of a tooth expression is defined in terms of the interpretation of its
subexpressions, in the knowledge-independent case, or in terms of their entailment given a knowledge
base (itself a sub-expression) in the knowledge-dependent one.

Example 2. Continuing from Example 1, let K contain the axioms

• HasTrunk(Surus);3

• > v IsBig t IsGrey;

• HasAntlers v HasTusks u IsBig u IsGrey.

Then K |= Elephant(Surus), where Elephant is defined as in Example 1 as

∇∇1.4(HasTrunk : 1.0,HasAntlers : −0.5,HasTusks : 0.3, IsBig : 0.4, IsGrey : 0.4).

Indeed, let I be any interpretation such that I |= K. Then clearly SurusI ∈ HasTrunkI . If moreover
SurusI ∈ HasAntlersI , we have that SurusI ∈ HasTusksI u IsBigI u IsGreyI and therefore that

vIElephant(Surus) ≥ 1.0− 0.5 + 0.3 + 0.4 + 0.4 ≥ 1.4.

If instead SurusI 6∈ HasAntlersI , consider that by the second axiom SurusI ∈ IsBigI or SurusI ∈
IsGreyI ; and in either case,

vIElephant(Surus) ≥ 1.0 + 0.4 = 1.4,

since the only concept that has a negative weight in the tooth expression does not apply to Surus.
So, for every interpretation I such that I |= K we have that I |= Elephant(Surus), and therefore
K |= Elephant(Surus).

However, if we write ElephantK for the knowledge-dependent tooth expression

∇∇1.4
K (HasTrunk : 1.0,HasAntlers : −0.5,HasTusks : 0.3, IsBig : 0.4, IsGrey : 0.4)

then it is never the case that I |= ElephantK(Surus). Indeed, of all subconcepts of our tooth oper-
ators, it is trivial to see that K |= HasTrunk(Surus) but K 6|= HasTusks(Surus), K 6|= IsBig(Surus),
K 6|= HasAntlers(Surus) and K 6|= IsGrey(Surus).

Hence ωElephantK(Surus) = 1.0 < 1.4 and it is never the case that SurusI ∈ (ElephantK)I .

Thus, the knowledge-independent and knowledge-dependent variants of our tooth operator do not in
general agree. These two types of tooth operator can also be used together, for example for aggregating
the results of multiple knowledge bases:

3According to Pliny the Elder, the elephant that Hannibal personally rode during his invasion of Italy was named Surus.

71

On Knowledge Dependence in Weighted Description Logic Galliani et al.

Example 3. Let us suppose that we want to decide whether Tantor is an elephant according to the
knowledge-dependent tooth operator ElephantK discussed in Example 2; but that, instead of a single
knowledge base K, we have n distinct knowledge bases K1 . . .Kn. A straightforward way to answer
this question is then to ask whether Tantor is an elephant according to at least half of the knowledge
bases, or – more in general – according to a certain percentage r ∈ [0, 100] of the knowledge bases.

This can be represented easily as∇∇n/2(ElephantK1
: 1, . . . ,ElephantKn

: 1) or, more in general,
as ∇∇nr/100(ElephantK1

: 1, . . . ,ElephantKn
: 1).

In the next two sections, we will discuss some basic properties of these two variants of the tooth
operator.

3 Knowledge-Independent Teeth
In this section, we begin a brief exploration of the problem of evaluating if a knowledge-independent
tooth expression ∇∇t~w(C1, . . . , Cm) is entailed by a knowledge base K.

As per the usual notion of entailment, we have that K |= ∇∇t~w(C1, . . . , Cm)(a) if and only if I |=
∇∇t~w(C1, . . . , Cm)(a) for all interpretations I such that I |= K; but can we find a notion of value of
a (knowledge-independent) tooth operator with respect to a knowledge base that leads directly to this
same notion of entailment? The answer is positive:

Definition 5 (Evaluating Knowledge-Independent Tooth Operators over Knowledge Bases). Let K be
a knowledge base, let a be an individual name, and let C = ∇∇t((Ci : wi)i=1...n) be a knowledge-
independent tooth expression. Then we define the value of a in C with respect to K as

µKC (a) = min{vIC (aI) : I |= K}.

Note that the minimum introduced in the above definition always exists, because any possible value
of vIC (aI) must belong in the (finite) set of values S = {

∑
(X) : X ⊆ {w1, . . . , wn}}. Furthermore,

we have that

Proposition 1. Let K be any knowledge base, let a be an individual name, and let C = ∇∇t((Ci :
wi)i=1...n) be any knowledge-independent tooth expression. Then

K |= C(a)⇔ µKC (a) ≥ t.

Proof. By definition,

K |= C(a) iff ∀I, (I |= K ⇒ I |= C(a))

iff ∀I, (I |= K ⇒ vIC (aI) ≥ t)
iff min{vIC (aI) : I |= K} ≥ t iff µKC (a) ≥ t.

It is worth remarking that the knowledge-independent value µKC of a tooth expression C with respect
to a knowledge base K just defined is not necessarily the same as the knowledge-dependent value ωCK
of the same tooth operator with respect to the same knowledge base. For instance, let K = ∅ be the
empty theory, let a be some individual name, letA be an atomic concept, and consider the tooth operator
C = ∇∇1(A : 1,¬A : 1). Then µ∅C(a) = 1, since any interpretation I which assigns some individual
to a will be such that aI ∈ AI or such that aI 6∈ AI (and, therefore, vIC = 1 in either case). However,
ωC∅(a) = 0, because ∅ 6|= A(a) and ∅ 6|= ¬A(a). For this example we also have that ∅ |= C(a) even

72

On Knowledge Dependence in Weighted Description Logic Galliani et al.

though ∅ 6|= C∅(a). This illustrates the difference between entailment in the knowledge-independent
and knowledge-dependent cases: very briefly, in the above case we have that K |= C(a) if and only if
K |= (A t ¬A)(a), but K |= CK(a) if and only if K |= A(a) or K |= ¬A(a).

The negation of a knowledge-independent tooth expression is always equivalent to some other
knowledge-independent tooth expression: for example, the negation of Equation (3) is equivalent to

∇∇−1.3((HasTrunk : −1.0),(HasAntlers : 0.5),(HasTusks : −0.3),(IsBig : −0.4),(IsGrey : −0.4)).

More in general, we have that

Proposition 2. Let C = ∇∇t(C1 : w1, . . . , Cn : wn), and let D = ∇∇−t+ε(C1 : −w1, . . . , Cn : −wn),
where ε = min{t −

∑
(A) : A ⊆ (w1 . . . wn), t >

∑
(A)}. Then for all interpretations I and

individuals d ∈ ∆I ,
d ∈ CI ⇔ d 6∈ DI .

Proof. Consider an interpretation I and an individual d ∈ ∆I , and suppose that d ∈ CI . By definition,
this means that

∑
{wi : i ∈ 1 . . . n, d ∈ CIi } = q ≥ t. But then

∑
{−wi : i ∈ 1 . . . n, d ∈ CIi } =

−q ≤ −t < −t+ ε, and hence d 6∈ DI .
Suppose instead that d 6∈ CI . Then

∑
{wi : i ∈ 1 . . . n, d ∈ CIi } = q < t, and therefore – by the

definition of ε – we have that q ≤ t − ε. But this implies that
∑
{−wi : i ∈ 1 . . . n, d ∈ CIi } = −q ≥

−t+ ε, and therefore that d ∈ DI .

Another interesting and easy result is that negative weights can be disposed of in knowledge-
independent tooth operators as long as concept complementation is in the language: for example, Equa-
tion (3) can be seen to be equivalent to

∇∇1.9((HasTrunk : 1.0), (¬HasAntlers : 0.5), (HasTusks : 0.3), (IsBig : 0.4), (IsGrey : 0.4)).

More in general, we have that

Proposition 3. Let C be of the form ∇∇t((C1 : w1), . . . , (Cn, wn)), let k ∈ 1 . . . n, and let D be instead
∇∇t−wk((C1 : w1) . . . (¬Ck : −wk) . . . (Cn : wn)) (that is, let D be obtained from C by negating the
value of wk, replacing Ck with ¬Ck, and subtracting wk from the threshold t).

Then C and D are equivalent, in the sense that d ∈ CI ⇔ d ∈ DI for all interpretations I and all
individuals d ∈ ∆I .

Proof. Observe that, for any interpretation I and individual d ∈ ∆I , vID (d) = vIC (d)− wk.
Indeed, suppose that d ∈ CIk : then d 6∈ (¬Ck)I and hence

vID (d) =
∑
{wi : i ∈ 1 . . . n, i 6= k, d ∈ CIi }

and

vIC (d) =
∑
{wi : i ∈ 1 . . . n, d ∈ Ci} = wk +

∑
{wi : i ∈ 1 . . . n, i 6= k, d ∈ CIi } = wk + vID (d).

If instead d 6∈ CIk , we have at once that d ∈ (¬Ck)I and hence that

vID (d) = −wk +
∑
{wi : i ∈ 1 . . . n, i 6= k, d ∈ CIi }

and

vIC (d) =
∑
{wi : i ∈ 1 . . . n, d ∈ Ci} =

∑
{wi : i ∈ 1 . . . n, i 6= k, d ∈ CIi } = wk + vID (d).

73

On Knowledge Dependence in Weighted Description Logic Galliani et al.

Thus, in either case, vIC (d)− wk = vID (d). It implies at once that

d ∈ CI ⇔ vIC (d) ≥ t⇔ vIC (d)− wk ≥ t− wk ⇔ vID (d) ≥ t− wk ⇔ I |= d ∈ DI

as required.

As a consequence of this result, it follows at once that:

Corollary 1. Every knowledge-independent tooth expression

C := ∇∇t((C1 : wi) . . . (Cn, wn))

is equivalent to some knowledge-independent tooth expression

D := ∇∇t
′
((D1 : w′i) . . . (Dn, w

′
n))

such that all weights w′i are positive and every Di is equivalent to Ci or to ¬Ci.

Proof. Apply repeatedly Proposition 3 to all negative weights wi, until none is left.

This is a particularly interesting result in the light of the results of [4] showing that, if a thresh-
old operator (whose semantics corresponds precisely to that of our tooth operators) has only positive
weights, it may be simulated by a Boolean circuit that is monotone (that is, is composed only of AND
and OR gates) and has size which is polynomial in the number of inputs of the threshold. The paper
mentions that the problem whether there exists a polynomial-size monotone formula (rather than circuit)
that simulates such a threshold operator and uses only conjunctions and disjunctions is open, and to our
current knowledge it is still so; but in any case, adding new conceptsD1 . . . Ds to our knowledge base to
represent the intermediate nodes of the circuits, it follows at once that every knowledge base containing
a knowledge-independent tooth operator may be reduced to some other knowledge base not containing
it by adding to our TBox a polynomial number of polynomial-size definitions Di ≡ . . . (where the right
size is some Boolean combination of concepts, including possibly D1 . . . Di−1) and the tooth operator
itself is replaced by some (also polynomial-size) Boolean combination of the Di.

On the other hand, it is straightforward to see that negation and disjunction can be defined in terms
of knowledge-independent tooth operators: indeed, ¬C1 is equivalent to∇∇0((C1,−1)) and C1 tC2 is
equivalent to∇∇1((C1, 1), (C2, 1)).

Additionally, it is not difficult to express the notion that a knowledge-independent tooth operator
takes values between two thresholds:

Proposition 4. Let C1 . . . Cn be concepts, let w1 . . . wn ∈ R be weights, and let t, t′ ∈ R be such that
t ≤ t′. Then, for all interpretations I ,

d ∈ (∇∇t(C1 : w1 . . . Cn : wn) u∇∇−t
′
(C1 : −w1 . . . Cn : −wn))I

if and only if t ≤ vIC (d) ≤ t′, where C represents the knowledge-independent tooth expression ∇∇t(C1 :
w1 . . . Cn : wn).

As we will now see, even in the case in which all subconcepts of knowledge-independent tooth
operators are atomic and all the weights are integer, the problem of evaluating whether a tooth operator
subsumes another with respect to the empty knowledge base is co-NP-hard. This is proved easily by
reducing the Knapsack Problem to it:

74

On Knowledge Dependence in Weighted Description Logic Galliani et al.

Definition 6 (Knapsack Decision Problem). Let ~o = o1 . . . on be a finite number of distinct objects,
each one of which has a weight wi ∈ Z and a value vi ∈ Z. Furthermore, let W ∈ R be a maximum
weight capacity and let V ∈ Z be the target value.

Then the Knapsack Decision Problem KN(~w,~v,W, V) asks whether there is a possible selection of
objects having total value≥ V and total weight≤W , that is, whether there exists some ~x = x1 . . . xn ∈
{0, 1}n such that

∑n
i=1 vixi ≥ V and

∑n
i=1 wixi ≤W.

It is a standard result, found in most computational complexity textbooks (see e.g. [7]), that the
Knapsack Decision Problem is NP-complete with respect to the binary length of its input.4 Furthermore,
it is not difficult to see how the Knapsack Problem may be encoded in two knowledge-independent tooth
expressions with only atomic subexpressions:

Proposition 5. Let KN(~w,~v,W, V) be an instance of the Knapsack Decision Problem, where ~w =
w1 . . . wn and ~v = v1 . . . vn. Then this instance has a solution if and only if, given n atomic concepts
A1 . . . An, the conjunction of the concepts

∇∇−W (A1 : −w1, . . . , An : −wn) (4)

and
∇∇V (A1 : v1, . . . , An : vn) (5)

is satisfiable.

Proof. Suppose that KN(~w,~v,W, V) has a solution ~x = x1 . . . xn ∈ {0, 1}n. Then let I be an interpre-
tation such that, for all concepts A1 . . . An, aI ∈ AIi if and only if xi = 1: then since

∑
i wixi ≤W we

have that
∑
i(−wi)xi ≥ −W and I |= ∇∇−W (A1 : −w1 . . . An : −wn)(a), as required; and similarly,

since
∑
i vixi ≥ V we have that I |= ∇∇V (A1 : v1 . . . An : vn)(a).

Conversely, suppose that there exists an interpretation I such that I |= ∇∇−W (A1 : −w1 . . . An :
−wn)(a) and I |= ∇∇V (A1 : v1 . . . An : vn)(a). Then if we let, for all i = 1 . . . n, xi be 1 if aI ∈ AIi
and 0 otherwise, we have at once that

∑
i wixi ≤W and

∑
i vixi ≥ V , as required.

Corollary 2. Let C and D be two knowledge-independent tooth expressions with integer weights and
thresholds and only atomic subexpressions. Then the problem of deciding whether |= C v D is co-NP-
Hard with respect to the binary encodings of the weights and thresholds of C and D.

Proof. By Proposition 5, an instance KN(~w,~v,W, V) of the Knapsack Decision Problem has no solu-
tion if and only if the conjunction (4) and (5) is not satisfiable, that is, if and only if |= ∇∇−W (A1 :
−w1, . . . , An : −wn) v ¬∇∇V (A1 : v1, . . . , An : vn).

Thus, by Proposition 2, this is the case if and only if

|= ∇∇−W (A1 : −w1, . . . , An : −wn) v ∇∇−V+ε(A1 : −v1, . . . , An : −vn). (6)

for ε = min{V −
∑

(S) : S ⊆ (v1 . . . vn), V ≥
∑

(S)}.
Observing that the length of the binary encoding of−V + ε is of the same order of magnitude as the

length of the binary encoding of V , we reach our conclusion.

Thus, even evaluating subsumptions between simple tooth expressions with respect to the empty
knowledge base is already computationally nontrivial. This illustrates the power of this type of operator.

4However, this problem is not NP-hard if we assume that the input is instead encoded in unary.

75

On Knowledge Dependence in Weighted Description Logic Galliani et al.

4 Knowledge-Dependent Teeth
In this section, we will in turn analyze our knowledge-dependent tooth operators, the semantics of which
we introduced in Def. 4 above.

Let us begin by observing that, as mentioned already in [14], such operators are non-monotonic with
respect to the knowledge base K:

Example 4. Consider the usual definition of ElephantK from Example 2 as

∇∇1.4
K (HasTrunk : 1.0,HasAntlers : −0.5,HasTusks : 0.3, IsBig : 0.4, IsGrey : 0.4) (7)

where now K contains the axioms HasTrunk(Hanno);5 and IsBig(Hanno).
Then ωElephantK(Hanno) = 1.0 + 0.4 ≥ 1.4, and hence I |= ElephantK(Hanno) for any interpre-

tation I . However, if we updated our knowledge base6 K by adding to it the axiom HasAntlers(Hanno)
we would instead have that ωElephantK(Hanno) = 1.0 − 0.5 + 0.4 < 1.4, and hence I 6|=
ElephantK(Hanno).

Furthermore, as already mentioned, whether some individual d is or is not accepted by a knowledge-
dependent tooth operator CK depends exclusively on which individual names correspond to it according
to the current interpretation I , and not on any other feature of I .

Proposition 6. Let I and I ′ be any two interpretations, let d ∈ ∆I and d′ ∈ ∆I′ be two individuals
such that aI = d ⇔ aI

′
= d′ for all individual names a ∈ NInd. Then, for all knowledge-dependent

tooth expressions CK = ∇∇tK((Ci : wi)i=1...n), d ∈ (CK)I ⇔ d′ ∈ (CK)I
′
.

Differently from the case of knowledge-independent tooth operators, the negation of a knowledge-
dependent tooth operator is not in general equivalent to any other knowledge-dependent tooth operator.
The reason is that, given any knowledge-dependent tooth operator CK = ∇∇tK((Ci : wi)i=1...n), any in-
terpretation I and any individual d ∈ ∆I , by definition d ∈ (CK)I if and only if there is some individual
name a ∈ NInd such that aI = d and ωCK(a) ≥ t. Thus, the following result is straightforward:

Proposition 7. Let CK = ∇∇tK((Ci : wi)i=1...n) be any knowledge-dependent tooth operator, let I
be any interpretation and let d ∈ ∆I be an individual such that d ∈ (CK)I . Furthermore, let a be any
individual name such that aI 6= d, and let I ′ be an interpretation that differs from I only in that aI

′
= d.

Then d ∈ (CK)I
′

as well.

On the other hand d 6∈ (CK)I if and only if for all a ∈ NInd for which aI is defined it is the case that
ωCK(a) < t. Thus, the above property does not hold for the negation of a knowledge-dependent tooth
operator, as shown in more detail in the following simple example:

Example 5. Let K = {A(a)} and let I be an interpretation with ∆I = {0, 1}, aI = 0 and bI = 1.
Then it is easy to see that 1 6∈ (∇∇1

K(A : 1))I , and hence I |= ¬∇∇1
K(A : 1)(b).

However, let I ′ differ from I only in that aI
′

= bI
′

= 1: then 1 ∈ (∇∇1
K(A : 1))I

′
, since 1 = aI

′

and ω∇∇1
K(A:1)(a) ≥ 1, and therefore I ′ 6|= ¬∇∇1

K(A : 1)(b)
Therefore, by Proposition 7, there is no knowledge-dependent tooth expression CK that is equivalent

to the complement of ∇∇1
K(A : 1).

5“Hanno” was the name of the white elephant gifted from King Manuel I of Portugal to Pope Leo X, who apparently appre-
ciated it so much that he commissioned Raphael to make a portrait of it (now lost).

6For instance, because Raphael’s portrait of Hanno was discovered, and it turns out that Hanno did have antlers.

76

On Knowledge Dependence in Weighted Description Logic Galliani et al.

Thus, it is not in general true that the negation of a knowledge-dependent tooth operator is equivalent
to some other knowledge-dependent tooth operator.

Similarly, and again differently from the knowledge-independent case, it is not in general possible –
given a knowledge-dependent tooth operator CK – to find an equivalent knowledge-dependent tooth op-
erator DK in which all weights are positive. This is a consequence of the fact that knowledge-dependent
tooth operators in which all weights are positive are monotone with respect to the knowledge base K:

Proposition 8. Let CK = ∇∇tK((Ci : wi)i=1...n) be any knowledge-dependent tooth operator such that
all weights wi are positive, let K′ ⊇ K be any knowledge base that contains K, and let us write CK′ for
∇∇tK′((Ci : wi)i=1...n). Then for all interpretations I , I |= CK v CK′ .

Proof. Let d ∈ ∆I be such that d ∈ (CK)I . Then, by definition, d = aI for some individual name a
such that

∑
{wi : K |= Ci(a)} = q ≥ t. But for any i, if K |= Ci(a) then K′ |= Ci(a). Therefore,

since all wi are positive,
∑
{wi : K′ |= Ci(a)} ≥ q ≥ t and d ∈ (CK′)I .

Since, as we saw in Example 4, there exist knowledge-dependent tooth expressions CK with nega-
tive weights that are not monotone with respect to K, it follows at once that these expressions are not
equivalent to any other tooth expression with only positive weights.

On the other hand, it is still possible to express the notion that a knowledge-dependent tooth operator
takes values between two thresholds:

Proposition 9. Let C1 . . . Cn be concepts, let w1 . . . wn ∈ R be weights, and let t, t′ ∈ R be such that
t ≤ t′, and let K be a knowledge base. Then, for all interpretations I ,

d ∈ (∇∇tK(C1 : w1 . . . Cn : wn) u∇∇−t
′

K (C1 : −w1 . . . Cn : −wn))I

if and only if t ≤ ωCK(d) ≤ t′, where C represents the knowledge-dependent tooth expression ∇∇tK(C1 :
w1 . . . Cn : wn).

5 Learning Tooth Expressions: A Toy Example
We will now briefly discuss a toy example of learning teeth expressions from data.

The scenario that we will examine is the following:

• We have a knowledge base K;

• We have a target concept CT , i.e., the concept we wish to be able to approximate via a tooth
expression;

• We have a finite number of concept featuresC1 . . . Cn, representing the various concepts that may
appear in the tooth expression simulating CT .

The output of our procedure will be a tooth expression ∇∇t(C1 : w1 . . . Cn : wn) which will, in some
sense that will depend on the algorithm used, approximate CT on the basis of C1 . . . Cn.

Let a be any named individual occurring in the knowledge base K. Then a induces a pair
(~x(a), y(a)), where ~x(a) ∈ {0, 1}n is such that its i-th element ~x(a)i is 1 if K |= Ci(a) and it is 0
otherwise; and likewise, y(a) is 1 if K |= CT (a) and y(a) = 0 otherwise.

Then we can define the dataset D(K) = {(~x(a), y(a)) : a named individual in K}; and our task will
be to learn from it a linear classification model of the sort

y(a) =

{
1 if

∑
i x(a)iwi + c ≥ 0;

0 otherwise (8)

77

On Knowledge Dependence in Weighted Description Logic Galliani et al.

according to one of the many learning algorithms that are available for such linear models. Once the
weights w1 . . . wn and the constant term c are learned, it will be trivial to transform this linear model in
the equivalent tooth expression∇∇−cK (C1 : w1 . . . Cn : wn).

For the purpose of this toy example, we chose to learn the weights and the constant using logistic
regression. Very briefly, the logistic regression model computes, for every input instance ~x ∈ {0, 1}n,
the probability that y = 1 as

Pr(y = 1) =
1

1 + e−(
∑

i wixi+c)
.

It is straightforward then to verify that Pr(y = 1) ≥ 0.5 if and only if e−(
∑

i wixi+c) ≤ 1, that is,∑
i wixi + c ≥ 0; thus, if for any possible input ~x we predict y = 1 if Pr(y = 1) ≥ 0.5 and y = 0

otherwise, we obtain precisely Equation (8). We can then learn the weights and the threshold, given the
training dataset D(K), simply by minimizing (for example by gradient descent) the loss function

−
∑
{log Pr(y(a) = 1) : y(a) = 1} −

∑
{log Pr(y(a) = 0) : y(a) = 0}+ γ ·

∑
i

w2
i

where γ is a ridge regularization parameter that penalizes high values for the wi.
In order to test this approach we generated a synthetic knowledge base K containing the TBox

axioms IsBig u IsSmall v ⊥ and IsGrey u IsPink v ⊥ and the following individuals and ABox
axioms:

• 200 individuals Elephant0 . . .Elephant199, every one of which satisfies – of course – IsEle-
phant and each one of which satisfies HasTrunk with probability 0.9, HasAntlers with proba-
bility 0.1, HasTusks with probability 0.7, IsBig with probability 0.7 and otherwise IsSmall with
probability 0.5, IsGrey with probability 0.8 and otherwise IsPink with probability 0.5;

• 200 individuals Deer0 . . .Deer199, none of which satisfies IsElephant and each one of which
satisfies HasTrunk with probability 0.1, HasAntlers with probability 0.5, HasTusks with prob-
ability 0.05, IsBig with probability 0.3 and otherwise IsSmall with probability 0.3, IsGrey with
probability 0.3 and otherwise IsPink with probability 0.1;

• 200 individuals Mouse0 . . .Mouse199, none of which satisfies IsElephant and each one of which
satisfies HasTrunk with probability 0.1, HasAntlers with probability 0.05, HasTusks with prob-
ability 0.05, IsSmall with probability 0.9, IsGrey with probability 0.8 and otherwise IsPink with
probability 0.8.

Then we used the above sketched approach to attempt to learn a tooth operator that would approximate
IsElephant on the basis of HasTrunk, HasAntlers, HasTusks, IsBig and IsPink. The ridge parameter
γ was set (fairly arbitrarily) to the small value of 10−8.
The result was the tooth expression LearnedElephantK

∇∇5.26
K (HasTrunk : 5.11, IsBig : 2.95,HasTusks : 3.75,HasAntlers : −1.93, IsPink : 0.07)

which may be seen as an approximation of the property IsElephant in terms of the feature concepts,
learned on the basis of the data of our synthetic knowledge base. Thus, for instance, we see that the prop-
erty of having a trunk affects positively our estimation that the individual in exam might be an elephant;
that the one of having antlers affects it negatively instead; and that – given this particular dataset, that
has what some might describe as a unusually high frequency of pink elephants – the property of being
pink has essentially no effect on it. Furthermore, given another knowledge base K′ which contains the
atomic concepts HasTrunk, HasAntlers, HasTusks, IsBig and IsPink but not the concept IsElephant,
we may use this LearnedElephantK′ as a “replacement” for the missing IsElephant concept.

78

On Knowledge Dependence in Weighted Description Logic Galliani et al.

Of course, there is nothing really new in this logistic regression model; and, if this was anything
more than a toy example, we should perform a thorough cross-validation and report on the behaviour
of the logistic model and the corresponding tooth operator on an alternate dataset. We report this here
merely as a simple illustration of how the tooth operator may be used as a “bridge” of sorts between
statistical learning and knowledge representation.

6 Conclusions and Further Work
In this work we continued the exploration, began in [15] and [16], of a new family of concept-forming
operators which take a list of weighted concepts and return a new concept that satisfies ‘enough’ of
the input concepts. While [15] studied basic logical properties of these operators and [16] explored ap-
plications to cognitive modelling, we here focus on analysing in greater precision different notions
of the semantics of tooth expressions, clarifying in particular the distinction between “knowledge-
dependent” and “knowledge-independent” interpretations of tooth expressions and their semantics.
Here, the “knowledge-dependent” version of a tooth considers only the weights of features entailed
by a knowledge base, and is a non-monotonic operator, whilst the “knowledge-independent” version
evaluates any given model, and behaves monotonically.

We explored some basic properties of these two types of tooth expressions, studied some of their
interdependencies, and finally presented a simple example of an application bridging the gap between
statistical learning and knowledge representation. The obvious next steps, aside from further exploring
the formal properties of these operators, consist in studying the behaviour and the possibilities of these
operators over real datasets and in studying in more detail nested tooth expressions and their connection
to non-linear classification models (and, in particular, to multi-layer perceptrons), and in exploring the
connections and similarities between our approach and other approaches to learning over knowledge
bases such as [17], [5], [12], [13] and [11]. We also plan to study the relationship between our approach
and other extensions of description logics with graded membership values and thresholds such as [2, 1].7

We hope that a deeper exploration of the correspondence theory between tooth logic, statistical
learning and classification models, and concept learning in DL, will not only contribute to these fields
individually, but will allow for hybrid frameworks where e.g. statistically learned concepts can be natu-
rally represented in DL knowledge bases, thereby contributing also to neural-symbolic integration and
to the AI explainability challenge [6].

References
[1] Franz Baader, Gerhard Brewka, and Oliver Fernández Gil. Adding threshold concepts to the description logic

EL. In International Symposium on Frontiers of Combining Systems, pages 33–48. Springer, 2015.
[2] Franz Baader and Andreas Ecke. Reasoning with prototypes in the description logic ALC using weighted tree

automata. In Adrian-Horia Dediu, Jan Janoušek, Carlos Martı́n-Vide, and Bianca Truthe, editors, Language
and Automata Theory and Applications, pages 63–75, Cham, 2016. Springer International Publishing.

[3] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction to Description Logic. Cambridge
University Press, 2017.

[4] Amos Beimel and Enav Weinreb. Monotone circuits for monotone weighted threshold functions. Information
Processing Letters, 97(1):12 – 18, 2006.

[5] Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. DL-FOIL concept learning in description logics. In
International Conference on Inductive Logic Programming, pages 107–121. Springer, 2008.

7Our approach is substantially different from the ones cited in that it does not require us to change the nature of interpretations
or the semantics of the logic.

79

On Knowledge Dependence in Weighted Description Logic Galliani et al.

[6] Artur d’Avila Garcez, Marco Gori, Luis C Lamb, Luciano Serafini, Michael Spranger, and Son N Tran.
Neural-symbolic computing: An effective methodology for principled integration of machine learning and
reasoning. arXiv preprint arXiv:1905.06088, 2019.

[7] Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh freeman New York,
2002.

[8] Mikael Goldmann, Johan Håstad, and Alexander Razborov. Majority gates vs. general weighted threshold
gates. Computational Complexity, 2(4):277–300, Dec 1992.

[9] Mikael Goldmann and Marek Karpinski. Simulating threshold circuits by majority circuits. SIAM Journal on
Computing, 27(1):230–246, 1998.

[10] András Hajnal, Wolfgang Maass, Pavel Pudlák, Márió Szegedy, and György Turán. Threshold circuits of
bounded depth. Journal of Computer and System Sciences, 46(2):129 – 154, 1993.

[11] Patrick Hohenecker and Thomas Lukasiewicz. Deep learning for ontology reasoning. arXiv preprint
arXiv:1705.10342, 2017.

[12] Jens Lehmann. DL-Learner: Learning Concepts in Description Logics. Journal of Machine Learning Re-
search, 10(Nov):2639–2642, 2009.

[13] Jens Lehmann and Pascal Hitzler. Concept learning in description logics using refinement operators. Machine
Learning, 78(1-2):203, 2010.

[14] Claudio Masolo and Daniele Porello. Representing concepts by weighted formulas. In Formal Ontology
in Information Systems - Proceedings of the 10th International Conference, FOIS 2018, Cape Town, South
Africa, 19-21 September 2018, pages 55–68, 2018.

[15] Daniele Porello, Oliver Kutz, Guendalina Righetti, Nicolas Troquard, Pietro Galliani, and Claudio Masolo.
A toothful of concepts: Towards a theory of weighted concept combination. In Proceedings of the 32nd
International Workshop on Description Logics, volume 2373. CEUR-WS, 2019.

[16] Guendalina Righetti, Daniele Porello, Oliver Kutz, Nicolas Troquard, and Claudio Masolo. Pink panthers and
toothless tigers: Three problems in classification. In Proc. of the 5th International Workshop on Artificial
Intelligence and Cognition, Manchester, September 10–11, 2019.

[17] Volker Tresp, Markus Bundschus, Achim Rettinger, and Yi Huang. Towards machine learning on the semantic
web. In Uncertainty reasoning for the Semantic Web I, pages 282–314. Springer, 2006.

80

	Introduction
	On Weighted Concept Combination(s)
	Knowledge-Independent Teeth
	Knowledge-Dependent Teeth
	Learning Tooth Expressions: A Toy Example
	Conclusions and Further Work

