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Abstract

We present a first-order theorem proving framework for establishing the correctness of
functional programs implementing sorting algorithms with recursive data structures. We
formalize the semantics of recursive programs in many-sorted first-order logic and integrate
sortedness/permutation properties within our first-order formalization. Rather than focus-
ing on sorting lists of elements of specific first-order theories, such as integer arithmetic,
our list formalization relies on a sort parameter abstracting (arithmetic) theories and hence
concrete sorts. We formalize the permutation property of lists in first-order logic so that
we automatically prove verification conditions of such algorithms purely by superpositon-
based first-order reasoning. Doing so, we adjust recent efforts for automating induction in
saturation. We advocate a compositional approach for automating proofs by induction re-
quired to verify functional programs implementing and preserving sorting and permutation
properties over parameterized list structures. Our work turns saturation-based first-order
theorem proving into an automated verification engine by (i) guiding automated inductive
reasoning with manual proof splits and (ii) fully automating inductive reasoning in satu-
ration. We showcase the applicability of our framework over recursive sorting algorithms,
including Mergesort and Quicksort.

1 Introduction

Sorting algorithms are integrated parts of any modern programming language, hence ubiqui-
tous in computing, which naturally triggers the demand of validating the functional correctness
of sorting routines. Such algorithms typically implement recursive/iterative operations over
potentially unbounded data structures, for instance lists or arrays, combined with arithmetic
manipulations of numeric data types, such as naturals, integers or reals. Automating the formal
verification of sorting routines therefore brings the challenge of automating recursive/inductive
reasoning in extensions and combinations of first-order theories, while also addressing the rea-
soning burden arising from design choices made for the purpose of efficient sorting. Most
notably, Quicksort [11] is known to be easily implemented when making use of recursive func-
tion calls, for example, as given in Figure 1, whereas purely procedural implementations of
Quicksort require additional recursive data structures such as stacks. While Quicksort and
other sorting routines have been proven correct by means of manual efforts [7], proof assis-
tants [20, 24, 3|, abstract interpreters [9], or model checkers [12], to the best of our knowledge
such correctness proofs so far have not been fully automated with saturation-based automated
reasoning.
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1 datatype ’a list = nil | cons(’a, (’a list))
2

3 quicksort :: ’a list — ’a list

4 quicksort (nil) = nil

5 quicksort (cons(x, xs)) =

6 append (

7 quicksort (filter<(x, xs)) ,

8 cons(x, quicksort(filter>(x, xs))))

9

10 append :: ’a list — ’a list — ’a list
11  append(nil, xs) = xs
12 append(cons(x, xs), ys) = cons(x, append(xs, ys))

Figure 1: Recursive algorithm of Quicksort, using the recursive function definitions append,
filter. and filtery over lists of sort a.

In this paper we aim to verify the partial correctness of functional programs with recursive
data structures, in an automated manner by using saturation-based first-order theorem proving.
To achieve this, we turn the automated first-order reasoner into a complementary approach to
interactive proof assistance: (i) we rely on manual guidance in splitting inductive proof goals
into subgoals (Sections 5 and 6), but (ii) fully automate inductive proofs in saturation-based
reasoning (Section 4). The crux of our approach is a compositional reasoning setting based on
superposition-based first-order theorem proving [15] with native support for induction [10] and
first-order theories of recursively defined data types [14]. We extend this setting to support the
first-order theory of lists parameterized by an abstract background theory/sort a and advocate
computation induction for induction on recursive function calls. As such, our framework al-
lows us to automatically discharge manually split verification conditions that require inductive
proofs, without requiring manually proven or a priori given inductive annotations such as loop
invariants, nor user input to perform proofs by induction. Doing so, we automatically derive
induction axioms during saturation to establish the functional correctness of the recursive im-
plementation of Quicksort from Figure 1 by means of automated first-order reasoning. In a
nutshell, we proceed as follows.

(i) We formalize the semantics of functional programs in extensions of the first-order theory
of lists (Section 3), allowing us to quantify over lists. Rather than focusing on lists with a spe-
cific background theory, such as integers/naturals, our formalization relies on a parameterized
sort/type a abstracting specific (arithmetic) theories. To this end, we impose that the sort a
has a linear order <. Doing so, we remark that one of the major reasoning burdens towards
establishing the correctness of sorting algorithms comes with formalizing permutation proper-
ties, for example that two lists are permutations of each other. Universally quantifying over
permutations of lists is, however, not a first-order property since it requires quantification over
predicates. Hence, reasoning about list permutations demand higher-order logic. Further, while
counting and comparing the number of list elements is a viable option to formalize permutation
equivalence in first-order logic, the necessary arithmetic reasoning adds an additional burden to
the underlying prover. We overcome this challenge by introducing an effective first-order for-
malization of permutation equivalence over parameterized lists. Our permutation equivalence
property encodes multiset operations over lists, eliminating the need of counting list elements,
and therefore arithmetic reasoning, or fully axiomatizing (higher-order) permutations.

(ii) We revise inductive reasoning in first-order theorem proving (Section 4) and introduce
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computation induction as a means to tackle divide-and-conquer algorithms. We, therefore,
extend the first-order reasoner with an inductive inference based on the computation induction
schema and outline its necessity for recursive sorting routines.

(iii) We leverage first-order theorem proving for compositional proofs of recursive parameter-
ized sorting algorithms (Section 5), in particular of Quicksort from Figure 1. By embedding
the application of induction directly in saturation-based proving, we automatically discharge
manually split proof obligations. Each such condition represents a first-order lemma, and hence
a proof step. We emphasize that the only manual effort in our framework comes with split-
ting formulas into multiple lemmas (Section 6.1); each lemma is established automatically by
means of automated theorem proving with built-in induction. That is, all our lemmas/verifica-
tion conditions are automatically proven by means of structural and/or computation induction
during the saturation process. We do not rely on user-provided inductive properties, nor on
user guidance to perform proofs by induction, but generate inductive hypotheses/invariants via
inductive inferences automatically as logical consequences of our program semantics.

(iv) We note that sorting algorithms often follow a divide-and-conquer approach (see Fig-
ure 2). We, thus, apply our approach on other sorting routines and investigate a generalized
set of manual proof splits/lemmas that is applicable to verify functional sorting algorithms on
recursive data structures (Section 6).

(v) We demonstrate our findings (Section 7) by implementing our approach on top of the
VAMPIRE theorem prover [15], providing thus a fully automated tool support towards validating
the functional correctness of sorting algorithms.

2 Preliminaries

We assume familiarity with standard first-order logic (FOL) and briefly introduce saturation-
based proof search in first-order theorem proving [15].

Saturation. Rather than using arbitrary first-order formulae G, most first-order theorem
provers rely on a clausal representation of G. The task of first-order theorem proving is to
establish that a formula/goal G is a logical consequence of a set A of clauses, including as-
sumptions. Doing so, first-order provers clausify the negation =G of G and derive that the set
S = AU {~G} is unsatisfiable’. To this end, first-order provers saturate S by computing all
logical consequences of S with respect to some sound inference system Z. A sound inference
system Z derives a clause D from clauses C' such that C' — D. The saturated set of S w.r.t.
T is called the closure of S w.r.t. Z, whereas the process of deriving the closure of S is called
saturation. By soundness of Z, if the closure of S contains the empty clause [J, the original
set S of clauses is unsatisfiable, implying the validity of A — G} in this case, we established a
refutation of =G from A, hence a proof of validity of G.

The superposition calculus is a common inference system used by saturation-based provers
for FOL with equality [21]. The superposition calculus is sound and refutationally complete:
for any unsatisfiable formula =G, superposition-based saturation derives the empty clause [J as
a logical consequence of -G.

Parameterized Lists. We use the first-order theory of recursively defined datatypes [14].
In particular, we consider the list datatype with two constructors nil and cons(z,xzs), where
nil is the empty list and = and xs are respectively the head and tail of a list. We introduce
a type parameter a that abstracts the sort/background theory of the list elements. Here, we
impose the restriction that the sort a has a linear order <, that is, a binary relation which

Lor simplicity, we denote by =G the clausified form of the negation of G
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is reflexive, antisymmetric, transitive and total. For simplicity, we also use > and < as the
standard ordering extensions of <. We write zs,,ysq, 25, to mean that the lists xs,ys, zs are
parameterized by sort a; that is, their elements are of sort a. Similarly, we use %, Yq, 24 to
mean that the list elements x, ¥y, z are of sort a. Whenever it is clear from the context, we omit
specifying the sort a.

Function definitions. We make the following abuse of notation. For some function f in some
program P, we use the notation f(arg;, ...) to refer to function definitions/calls appearing
in the input algorithm, while the mathematical notation f(args, ...) refers to its counterpart in
our logical representation as per our first-order semantics introduced in Section 3.

3 First-Order Semantics of Functional Sorting Algorithms

We outline our formalization of recursive sorting algorithms in the full first-order theory of
parameterized lists.

3.1 Recursive Functions in First-Order Logic

We investigate recursive algorithms written in a functional coding style and defined over lists
using list constructors. That is, we consider recursive functions £ that manipulate the empty
list nil and/or the list cons(z, xs).

Many recursive sorting algorithms, as well as other recursive operations over lists, implement
a divide-and-conquer approach: let £ be a function following such a pattern, £ uses (i) a partition
function to divide list,, that is a list of sort a, into two smaller sublists upon which f is
recursively applied to, and (ii) calls a combination function that puts together the result of
the recursive calls of f£. Figure 2 shows such a divide-and-conquer pattern, where the partition
function partition uses an invertible operator o, with o~! being the complement of o; f is
applied to the results of o before these results are merged using the combination function
combine.

f ’a list —...— ’a 1list

£ (nil,...) = nil

f (cons(y,ys),...)= combine (
f(partition,(cons(y,ys))),
f(partition,—1 (cons(y,ys))))

Note that the recursive function f of Fig-
ure 2 is defined via the declaration f :
alist — ... —' alist, where ... denotes fur-
ther input parameters. We formalize the
first-order semantics of f via the function
[ (listy x ...) = list,, by translating the in-
ductive function definitions f to the following
first-order formulas with parameterized lists

O WN -

Figure 2: Recursive divide-and-conquer ap-

(in first-order logic, function definitions can proach.
be considered as universally quantified equal-
ities):
f(il) = nil
V&4, xSq. f(cons(z,xs)) = combine(f(partition,(cons(z,xs))), (1)

f(partition,-1 (cons(z, zs)))).

The recursive divide-and-conquer pattern of Figure 2, together with the first-order semantics (1)
of £, is used in Sections 5-6 for proving correctness of the Quicksort algorithm (and other
sorting algorithms), as well as for applying lemma generalizations for divide-and-conquer list
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operations. We next introduce our first-order formalization for specifying that £ implements a
sorting routine.

3.2 First-Order Specification of Sorting Algorithms

We consider a specific function instance of f implementing a sorting algorithm, expressed
through sort :: “a list — ’a list. The functional behavior of sort needs to satisfy two specifica-
tions implying the functional correctness of sort: (i) sortedness and (ii) permutations equiva-
lence of the list computed by sort.

(i) Sortedness: The list computed by the sort function must be sorted w.r.t. some linear order
< owver the type a of list elements. We define a parameterized version of this sortedness property
using an inductive predicate sorted as follows:

sorted(nil) =T
Vi, x8q. sorted(cons(z,xs)) = (elem<list(z,zs) A sorted(zs)),

(2)

where elem<list(x,zs) specifies that + < y for any element y in xs. Proving correctness of a
sorting algorithm sort thus reduces to proving the validity of:

Vs, . sorted(sort(xs)). (3)

(ii) Permutation Equivalence: The list computed by the sort function is a permutation
of the input list to the sort function. In other words the input and output lists of sort are
permutations of each other, in short permutation equivalent.

Axiomatizing permutations requires quantification over relations and is thus not expressible
in first-order logic [17]. A common approach to prove permutation equivalence of two lists is to
count the occurrences of each element in both lists respectively and compare these numbers per
list element. Yet, counting adds a burden of arithmetic reasoning over naturals to the under-
lying prover, calling for additional applications of mathematical induction. We overcome these
challenges of expressing permutation equivalence as follows. We introduce a family of functions
filterg manipulating lists, with the function filterg being parameterized by a predicate @ and
as given in Figure 3.

In particular, given an el-
ement x and a list ys, the

1 filterg :: ’a — 7a list — 7a list functions filter—, filter., and
2 filterg(x,nil) = nil . .

i filter> compute the maximal
3 filterg(x,cons(y,ys))= . = .
4 if (Q(y,0)) { sublists of ys that contain
5 cons(y,filterg (x,ys)) only equal, resp. smaller and
6 } else { greater-or-equal elements to x.
7 filterg(x,ys) Analogously to counting the
8 } multiset multiplicity of z in

ys via counting functions, we
compare lists given by filter—,
avoiding the need to count the
number of occurrences of z and
hence prolific axiomatizations of arithmetic. Thus, to prove that the input/output lists of sort
are permutation equivalent, we show that, for every list element x, the results of applying
filter— to the input/output list of sort are the same over all elements. Formally, we have the
following first-order property of permutation equivalence:

Figure 3: Functions filterg filtering elements of a list, by
using a predicate Q(y,x) over list elements z, y.

VZa, xSq. filter—(z,xs) = filter—(x, sort(zs)). (4)
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4 Computation Induction in Saturation

In this section, we describe our reasoning extension to saturation-based first-order theorem
proving, in order to support inductive reasoning for recursive sorting algorithms as introduced
in Section 3. Our key reasoning ingredient comes with a structural induction schema of com-
putation induction, which we directly integrate in the saturation proving process.

Inductive reasoning has recently been embedded in saturation-based theorem proving [10], by
extending the superposition calculus with a new inference rule based on induction axioms:

(Ind) -L[t]v C where (1) L[t] is a quantifier-free (ground) literal,
n enf(—=F v O) (2) F — Va.L[z] is a valid induction aziom,
(3) enf(=F Vv C) is the clausal form of =F Vv C.

An induction axiom refers to an instance of a valid induction schema. In our work, we use
structural and computational induction schemata. In particular, we use the following structural
induction schema over lists:

(Lnil) AVa,ys.(L[ys] — Llcons(x,ys)])) — Vzs.L|zs] (5)

Then, considering the induction axiom resulting from applying schema (5) during saturation to
L, we obtain the following Ind instance for lists:

L[] v C
=L[nil] V L{oys| vV C
=L[nil] V = L[cons(c, oys)] V C

where t is a ground term of sort list, L[t] is ground, and o, and o, are fresh constant symbols,
yielding two clauses as conclusions.

Sorting algorithms, however, often require induction axioms that are more complex than
instances of structural induction (5). Such axioms are typically instances of the computa-
tion/recursion induction schema, arising from divide-and-conquer strategies as introduced in
Section 3.1. Particularly, the complexity arises due to the two recursive calls on different parts
of the original input list produced by the partition function that have to be taken into account
by the induction schema. We therefore use the following computation induction schema over

lists:
. Lipartitione (z, ys)|A
<L[n|l] AVz,ys. ((L[partitionofl (2, y5)] — Lcons(z,ys)]) | | = Vzs.L[zs] (6)
yielding the following instance of Ind that is applied during saturation:

-L[t]vC
—Lnil] V Lipartition, (o4, 0ys)] V C
—L[nil] V Llpartition,-1 (04, 0ys)] V C
=L[nil] V ~Llcons (o4, oys)] V C

where ¢ is a ground term of sort list, L[t] is ground, o, and oy, are fresh constant symbols, and
partition, and its complement refer to the functions that partition lists into sublists within the
actual sorting algorithms.

5 Proving Recursive Quicksort

We now describe our approach towards proving the correctness of the recursive parameterized
version of Quicksort, as given in Figure 1. Note that Quicksort recursively sorts two sublists
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that contain respectively smaller and greater-or-equal elements than the pivot element z of its
input list. We reduce the task of proving the functional correctness of Quicksort to the task
of proving the (i) sortedness property (3) and (ii) the permutation equivalence property (4)
of Quicksort. As mentioned in Section 3.2, a similar reasoning is needed for most sorting
algorithms, which we evidence in Sections 6-7.

5.1 Proving Sortedness for Quicksort

Given an input list xs, we prove that Quicksort computes a sorted list by considering the
property (3) instantiated for Quicksort. That is, we prove:

Vs, . sorted(quicksort(xs)) (7)

The sortedness property (7) of Quicksort is proved via compositional reasoning over (7).
Namely, we enforce the following two properties that together imply (7):

(S1) By using the linear order < of the background theory a, for any element y in the sorted
list quicksort(filter<(x,xzs)) and any element z in the sorted list quicksort(filters(z,xs)),
we have y < x < z.

(S2) The functions filter< and filter> of Figure 3 are correct. That is, filtering elements
from a list that are smaller, respectively greater-or-equal, than an element x results in sublists
only containing elements smaller than, respectively greater-or-equal, than x.

Similarly to (2) and to express property (S2), we introduce the inductively defined predicates
elem<list ::' a —' alist — bool and list<list " alist —' alist — bool:

Vag. elem<list(z,nil) =

(®)

Vq, Yo, YSa- elem<list(x, cons(y,ys)) = < y A elem<list(z,ys),
and

Yysq . list<list(nil,ys) =T

9)

VZg, TSq, YSq - list<list(cons(z,xs),ys) = (elem<list(x,ys) A list<list(zs,ys)).

Thus, for some element x and lists xs, ys, we express that x is smaller than or equal to any
element of zs by elem<list(z,xs). Similarly, list<list(xs,ys) states that every element in list
xs is smaller than or equal to any element in ys.

The inductively defined predicates of (8)—(9) allow us to express necessary lemmas over list
operations preserving the sortedness property (7), for example, to prove that appending sorted
lists yields a sorted list.

Proving properties (S1)—(S2), and hence deriving the sortedness property (7) of Quicksort,
requires three first-order lemmas in addition to the first-order semantics (1) of Quicksort.
Each of these lemmas is automatically proven by saturation-based theorem proving using the
structural and/or computation induction schemata of (5) and (6); hence, by compositionality,
we obtain (S1)—(S2) implying (7). We next discuss these three lemmas and outline the complete
(compositional) proof of the sortedness property (7) of Quicksort.

e In support of (S1), lemma (10) expresses that for two sorted lists s, ys and a list element =,
such that elem<list(z, zs) holds and all elements of the constructed list cons(x, xs) are greater
than or equal to all elements in ys, the result of concatenating ys and cons(z, xs) yields a sorted
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list. Formally, we have

Vaq,T5q,YSa- (sorted(zs) A sorted(ys) A elem<list(z, xs)A
list<list(ys, cons(z, xs))) (10)
— sorted(append(ys, cons(x, zs)))

e In support of (S2), we need to establish that filtering greater-or-equal elements for some
list element x results in a list whose elements are greater-or-equal than x. In other words, the
inductive predicate of (8) is invariant over sorting and filtering operations over lists.

Vg, xSq . elem<list(x, quicksort(filters(x, xs))). (11)

e Lastly and in further support of (S1)—(S2), we establish that all elements of a list s are
“covered” with the filtering operations filter> and filter. w.r.t. a list element = of zs.
Intuitively, a call of filter. (x,xs) results in a list containing all elements of xs that are
smaller than z, while the remaining elements of xs are those that are greater-or-equal than x
and hence are contained in cons(z, filters(z,zs)). By applying Quicksort over the input list
xs, we get:

Vg, xs,. list<list(quicksort(filter<(x,xs)), cons(x, quicksort(filters(z,xs)))). (12)

The first-order lemmas (10)—(12) guide saturation-based proving to instantiate structural/-
computation induction schemata and automatically derive the following induction axiom nec-
essary to prove (S1)—(S2), and hence sortedness of Quicksort:

(sorted(quicksort(nil))/\

sorted(quicksort(filters(x,zs)))A
sorted(quicksort(filter<(x,xs)))
— Vs, . sorted(quicksort(zs)),

VZa, TSq . ( ) — sorted(quick:sort(cons(m,xs))) (13)

where axiom (13) is automatically obtained during saturation from the computation induction
schema (6). Intuitively, the prover replaces F' by sorted(quicksort(t)) for some term ¢, and
uses filter. and filter> as partition, and partition,-1 respectively to find the necessary
computation induction schema. We emphasize that this step is fully automated during the
saturation run.

The first-order lemmas (10)—(12), together with the induction axiom (13) and the first-order
semantics (1) of Quicksort, imply the sortedness property (4) of Quicksort; this proof can
automatically be derived using saturation-based reasoning. Yet, the obtained proof assumes
the validity of each of the lemmas (10)—(12). To eliminate this assumption, we propose to also
prove lemmas (10)—(12) via saturation-based reasoning. Yet, while lemma (10) is established
by saturation with structural induction (5) over lists, proving lemmas (11)—(12) requires further
first-order formulas. In particular, for proving lemmas (11)—(12) via saturation, we use four
further lemmas, as follows.

e Lemmas (14)—(15) indicate that the order of elem<list and list<list is preserved under
quicksort, respectively. That is,

Vg, x8q. elem<list(z, zs) — elem<list(z, quicksort(xs)) (14)
and

VISa, ysa. list<list(ys, xs) — list<list(quicksort(ys), xs). (15)
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e Proving lemmas (14)—(15), however, requires two further lemmas that follow from saturation
with built-in computation and structural induction, respectively. Namely, lemmas (16)—(17)
establish that elem<list and list<list are also invariant over appending lists. That is,

VZa,Ya, T5a,YSa- (y < @ A elem<list(y, xs) A elem<list(y,ys)) (16)
— elem<list(y, append(cons(x,ys), xs))

and

V& Sa,YSa, 250~ (list<list(ys,zs) Alist<list(zs,xs)) (17)
— list<list(append(ys, zs), xs)

With lemmas (14)—(17), we automatically prove lemmas (10)-(12) via saturation-based
reasoning. The complete automation of proving properties (S1)—(S2), and hence deriving
the sortedness property (7) of Quicksort in a compositional manner, requires thus altogether
seven lemmas in addition to the first-order semantics (1) of Quicksort. Fach of these lemmas
is automatically established via saturation with built-in induction. Hence, unlike interactive
theorem proving, compositional proving with first-order theorem provers can be leveraged to
eliminate the need to a priori specifying necessary induction axioms.

5.2 Proving Permutation Equivalence for Quicksort

In addition to establishing the sortedness property (7) of Quicksort, the functional correctness
of Quicksort also requires proving the permutation equivalence property (4) for Quicksort.
That is, we prove:

Vg, x8q. filter—(z,xs) = filter—(x, quicksort(zs)). (18)

In this respect, we follow the approach introduced in Section 3.2 to enable first-order rea-
soning over permutation equivalence (18). Namely, we use filter— to filter elements z in the
lists xs and quicksort(xs), respectively, and build the corresponding multisets containing as
many x as x occurs in xs and quicksort(xzs). By comparing the resulting multisets, we im-
plicitly reason about the number of occurrences of z in xs and quicksort(xs), yet, without the
need to explicitly count occurrences of z. In summary, we reduce the task of proving (18) to
compositional reasoning again, namely to proving following two properties given as first-order
lemmas which, by compositionality, imply (18):

(P1) List concatenation commutes with filter—, expressed by the lemma:

VZa, TSq,YSq. filter—(x, append(zs,ys)) = append(filter—(x,xs), filter—(z,ys)).  (19)

(P2) Appending the aggregate of both filter-operations results in the same multisets as the
unfiltered list, that is, permutation equivalence is invariant over combining complementary
reduction operations. This property is expressed via:

VZa, Ya, TSq . filter—(xz,xs) = append(filter—(x, filter(y,xs)),

filter—(z, filter>(y,xs))). (20)

Similarly as in Section 5.1, we prove lemmas (P1)-(P2) by saturation-based reasoning
with built-in induction. In particular, investigating the proof output shows that lemma (P1)
is established using the structural induction schema (5) in saturation, while the validity of
lemma (P2) is obtained by applying the computation induction schema (6) in saturation.
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1 mergesort :: ’a list — ’a list

2 mergesort (nil) = nil

3 mergesort(xs) = merge(mergesort (take ((xsiengtn div 2), xs)),
mergesort (drop ((xSiengtn div 2), xs)))

4

5 merge :: ’a list — ’a list — ’a list

6 merge(nil, ys) = ys

7 merge(xs, nil) = xs

8 merge (cons(x, xs), cons(y, ys)) =

9 if (x < y) A

10 cons(x, merge(xs, cons(y, ys)))

11 } else {

12 cons(y, merge(cons(x, xs), ys))

13 }

14

Figure 4: Recursive Mergesort over lists of sort a.

By proving lemmas (P1)—(P2), we thus establish validity of permutation equivalence (18)
for Quicksort. Together with the sortedness property (7) of Quicksort proven in Section 5.1,
we conclude the functional correctness of Quicksort in a fully automated and compositional
manner, using saturation-based theorem proving with built-in induction and altogether nine
first-order lemmas in addition to the first-order semantics (1) of Quicksort.

6 Compositional Reasoning and Lemma Generalizations

Establishing the functional correctness of Quicksort in Section 5 uses nine first-order lem-
mas that express inductive properties over lists in addition to the first-order semantics (1) of
Quicksort. While each of these lemmas is proved by saturation using structural/computa-
tion induction schemata, coming up with proper inductive lemmas remains crucial in reasoning
about inductive data structures, and, so far, dependent on user guidance. We thus discuss
the intuition on manual proof splitting in Section 6.1 and generalize our efforts for sorting
algorithms in Section 6.2.

6.1 Guiding Proof Splitting

Contrary to automated approaches that use inductive annotations to alleviate inductive rea-
soning, our approach synthesizes the correct induction axioms automatically during saturation
runs to prove properties and lemmas correct. However, a manual limitation remains, namely
deciding when a lemma is necessary or helpful for the automated reasoner.

Splitting the proof into multiple lemmas is necessary to guide the prover to find the right terms
to apply the inductive inferences of Section 4. This is particularly the case when input prob-
lems, such as sorting algorithms, contain calls to multiple recursive functions — each of which
has to be shown to preserve the property that is to be verified.

In case a proof fails, we investigate the synthesized induction axioms, manually strengthen
the property and add any additional assumptions as proof obligations whose validity is in turn
again verified with the theorem prover and built-in induction. That is, we do not simply assume
inductive lemmas but also provide a formal argument of their validity.

We illustrate and examine the need for proof splitting using lemma (10).
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Example 1 (Compositional reasoning over sortedness in saturation). Consider the following
stronger version of lemma (10) in the proof of Quicksort:

Va, TSq,Ysa- (sorted(zs) A sorted(ys)) — sorted(append(ys, cons(z,s))). (21)

This formula was automatically be derived by saturation with computation induction (6) while
trying to prove sortedness of the algorithm. However, formula (21) is not helpful for the proof
of Quicksort since it is not inductive with regards to the specification and thus cannot be
resolved and used during proof search. The prover needs additional information to verify sort-
edness. Therefore, the assumptions elem<list(x, xs) and list<list(ys, cons(z, xs)) are needed in
addition to (21), resulting in lemma (10). Yet, lemma (10) from Section 5 can be automatically
derived via saturation based on computation induction (6). That is, we manually split proof
obligations based on missing information in the saturation runs: we derive (21) from (6) via sat-
uration, strengthen the hypotheses of (21) with missing necessary conditions elem<list(x, xs)

and list<list(ys, cons(z, zs)), and prove their validity via saturation, yielding (10).

6.2 Lemma Generalizations for Sorting

The lemmas from Section 5 represent a number of common proof splits that can be applied to
various list sorting tasks. In the following we generalize their structure and apply them to two
other sorting algorithms, namely Mergesort and Insertionsort.

Common Patterns of Inductive
Lemmas for Sorting Algorithms.

s . . . i o ) : ) .
Consider the computation induction ; ?nsert“r: ) I) a l_|15t — ’a list
. insertsor ni = n
schema (6). When using (6) for prov-
( ) & ( ) p 3 insertsort(cons(x, xs)) = insert(x,

ing the sortedness (7) and permutation
equivalence (18) of Quicksort, the in- | ,
ductive formula F of (6) is, respectively, | 5 insert :: ’a — ’a list — ’a list
instantiated with the predicates sorted 6 insert(x, nil) = cons(x, nil)
7
8

insertsort (xs))

from (7) and filter— from (18). The
base case F[nil] of schema (6) is then

insert (x, cons(y, ys)) =
if (x < y) {

trivially proved by saturation for both 9 cons(x, cons(y, ys))
properties (7) and (18) of Quicksort. 10 } else {

Proving the induction step case of | 11 cons(y, inmsert(x, ys))
schema (6) is however challenging as it 12 ¥

relies on partition-functions which are
further used by combine functions within ~ Figure 5: Recursive algorithm of Insertionsort.
the divide-and-conquer patterns of Fig-

ure 2. Intuitively this means, that proving the induction step case of schema (6) for the sorted-
ness (7) and permutation equivalence (18) properties requires showing that applying combine
functions over partition functions preserve sortedness (7) and permutation equivalence (18), re-
spectively. For divide-and-conquer algorithms of Figure 2, the step case of schema (6) requires
thus proving the following lemma:

(vxa, Ysa. (combme ( Llpartitiono(z, ys)]’]) s Lfcons(x, ys)]))> . (22)

L[partition,-1(z,ys)

We next describe generic instances of lemmas to be used to prove such step cases and hence
functional correctness of sorting algorithms, and exemplify our findings from Quicksort by
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application to recursive versions of Mergesort and Insertionsort given in Figures 4 and 5,
respectively.

(i) Combining sorted lists preserves sortedness. For proving the inductive step case (22)
of the sortedness property (3) of sorting algorithms, we require the following generic lemma (23):

VaSa,ysq. (sorted(zs) A sorted(ys)) — sorted(combine(zs, ys)), (23)

ensuring that combining sorted lists results in a sorted list. Lemma (23) is used to estab-
lish property (S1) of Quicksort, namely used as lemma (10) for proving the preservation of
sortedness under the append function.

We showcase the generality of lemma (23) with Mergesort as given in Figure 4. The
sortedness property (3) of Mergesort can be proved by using saturation with lemma 23; note
that the merge function acts as a combine function of (23). We thus establish sortedness via
the following instance of (23):

VxSq,Ysq. sorted(zs) A sorted(ys) — sorted(merge(xs,ys))

Finally, lemma (23) is not purely restricted to divide-and-conquer routines. When proving
the sortedness property (3) of the recursive Insertionsort algorithm of Figure 5, we apply
lemma (23)on insert to establish preservation of sortedness with saturation:

Vxa, xS, . sorted(xs) — sorted(insert(z,zs))

(ii) Combining partitions preserves permutation equivalence. Similarly to Section 5.2,
proving permutation equivalence (4) over divide-and-conquer sorting algorithms of Figure 2 is
established via the following two properties:

e Asin (P1) for Quicksort, we require that combine commutes with filter—:

VZa, TSa,YSq. filter—(x, combine(xs,ys)) = combine(filter—(x,xs), filter—(z,ys)) (24)

e Similarly to (P2) for Quicksort, we ensure that, by combining (complementary) partition
functions, we preserve (4). That is,

VXq, xS . filter—(z,xzs) = combine(filter_(x, partition,(zs)), (25)

filter—(z, partition,-(xs)))
Note that lemmas (P1) and (P2) for Quicksort are instances of (24) and (25) respectively,
as the append function of Quicksort acts as a combine function and the filter- and filters
functions are the partition functions of Figure 2.

To prove the permutation equivalence (4) property of Mergesort, we use the functions
take and drop as the partition functions of lemmas (24)—(25). Doing so, we embed a natural
number argument n in lemmas (24)—(25), with n controlling how many list elements are taken
and dropped, respectively, in Mergesort. As such, the following instances of lemmas (24)—(25)
are adjusted to Mergesort:

Vo, TSa,YSa- filter—(xz,merge(zs,ys)) = append(filter—(z,xs), filter—(x,ys)),
and

VZa, NN, TSq - filter—(x,xs) = append(filter—(x,take(n,xs)), filter—(x,drop(n,xs))),
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PermEq Sortedness
Benchm. [ Pr. [ T [ Required lemmas Benchm. [ Pr. [ T [ Required lemmas
IS-PE v | 0.02 {IS-PE-L1} IS-S v 0.01 {18-s-L1}
IS-PE-L1 | v | 0.13 0 IS-S-L1 | v | 8.28 -
MS-PE v' | 0.06 | {MS-PE-L1,MS-PE-L2} MS-S v 0.08 [}
MS-PE-L1 | v'* 0 - MS-S-L1 | v'* 0 -
MS-PE-L2 | v | 0.03 0 MS-s-L2 | v | 0.02 0
MS-PE-L3 | v | 0.15 [ {Qs-s-L1,Qs-S-L2,
QS-PE v | 0.5 | {QS-PE-L1,QS-PE-L2} QS-S v | 0.09 | @s-S-L3},{Qs-S-L1,
QS-PE-L1 | v | 0.05 [ QS-S-L3,QS-S-L4}
QS-PE-L2 | v | 0.09 ] Qs-s-L1 | v | 0.27 [
QS-S-L2 v 0.04 {QS-S-L4}
Table 1 Experir'nental eYaluation 'of provving 82:::;2 j 181..2882 {QS_?E)]SJ_Z?EEB?LS}
properties of sorting algorithms, using a time
. . . | Qs-s-15 | Vv 0 {QS-8-L7}
limit of 5 minutes on n}achlne with AMD Epyc Q5-5-L6 7 0.02 i
7502, 2.5 GHz CPU with 1 TB RAM, using 1 S-sL7 7 0.02 7

core and 16 GB RAM per benchmark.
IS, MS and QS correspond to Insertionsort, Mergesort and Quicksort; S and PE respectively denote
sortedness (3) and permutation equivalence (4), and Li stands for the ¢-th lemma of the problem.

with both lemmas being proved via saturation, thus establishing permutation equivalence (4).
Finally, the generality of lemmas (24)—(25) naturally pays off when proving the permutation
equivalence property (4) of Insertionsort. Here, we only use a simplified instance of (24) to
prove (4) is preserved by the auxiliary function insert. That is, we use the following instance
of (24):
VZay Yas YSa- filter—(x,cons(y,ys)) = filter—(x,insert(y,ys)),

which is automatically derivable by saturation with computation induction (6).

We conclude by emphasizing that compositional reasoning in saturation with computation
induction enables us to prove challenging sorting algorithms in a newly automated manner,
replacing the manual effort in carrying out proofs by induction.

7 Implementation and Experiments

Implementation. Our work on saturation with induction in the first-order theory of param-
eterized lists is implemented in the first-order prover VAMPIRE [15]. In support of parameter-
ization, we extended the SMT-LIB parser of VAMPIRE to support parametric data types from
SMT-LIB [2] — version 2.6. In particular, using the par keyword, our parser interprets (par
(a; ... ap) ...) similar to universally quantified blocks where each variable a; is a type
parameter.

Appropriating a generic saturation strategy, we adjust the simplification orderings (LPO)
for efficient equality reasoning/rewrites to our setting. For example, the precedence of func-
tion quicksort is higher than of symbols nil, cons, append, filter. and filters, ensuring that
quicksort function terms are expanded to their functional definitions. We further apply recent
results of encompassment demodulation [5] to improve equality reasoning within saturation
(-drc encompass). We use induction on data types (-ind struct), including complex data
type terms (-indoct on).
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Experimental Evaluation. We evaluated our approach over challenging recursive sorting
algorithms taken from [20], namely Quicksort, Mergesort, and Insertionsort. We show
that the functional correctness of these sorting routines can be verified automatically by means
of saturation-based theorem proving with induction, as summarized in Table 1.

We divide our experiments according to the specification of sorting algorithms: the first col-
umn PermEq shows the experiments of all sorting routines w.r.t. permutation equivalence (4),
while Sortedness refers to the sortedness (3) property, together implying the functional cor-
rectness of the respective sorting algorithm. Here, the inductive lemmas of Sections 56 are
proven in separate saturation runs of VAMPIRE with structural/computation induction; these
lemmas are then used as input assumptions to VAMPIRE to prove validity of the respective
benchmark.? A benchmark category SA-PR[-L;] indicates that it belongs to proving the prop-
erty PR for sorting algorithm SA, where PR is one of S (sortedness (3)) and PE (permutation
equivalence (4)) and SA is one of IS (Insertionsort), MS (Mergesort) and QS (Quicksort).
Additionally, an optional Li indicates that the benchmark corresponds to the i-th lemma for
proving the property of the respective sorting algorithm.

For our experiments, we ran all possible combinations of lemmas to determine the minimal
lemma dependency for each benchmark. For example, the sortedness property of Quicksort
(@S-S) depends on seven lemmas (see Section 5.1), while the third lemma for this property
(@S-S-L3) depends on four lemmas (see Section 5.2). The second column Pr. indicates that
VAMPIRE solved the benchmark by using a minimal subset of needed lemmas given in the fourth
column. The third column T shows the running time in seconds of the respective saturation
run using the first solving strategy identified during portfolio mode.

To identify the successful configuration, we ran VAMPIRE in a portfolio setting for 5 minutes

on each benchmark, with strategies enumerating all combinations of options that we hypothe-
sized to be relevant for these problems. In accordance with Table 1, VAMPIRE compositionally
proves permutation equivalence of Insertionsort and Quicksort and sortedness of Mergesort
and Quicksort. Note that sortedness of Mergesort is proven without any lemmas, hence lemma
MS-S-L; is not needed. The lemmas MS-PE-L; for the permutation equivalence of Mergesort
and IS-S-L, for the sortedness of Insertionsort could be proven separately by more tailored
search heuristics in VAMPIRE (hence v'x), but our cluster setup failed to consistently prove
these in the portfolio setting.
Generated Inductive Inference during Proof Search. For all conjectures and lemmas
that were proved in portfolio mode, we summarized the applications of inductive inferences with
structural and computation induction schemata in Table 2. Specifically, Table 2 compares the
number of inductive inferences performed during proof search (column IndProofSearch) with
the number of used inductive inferences as part of each benchmark’s proof (column IndProof).
While most safety properties and lemmas required less than 50 inductive inferences, thereby
using mostly one or two of them in the proof, some lemma proofs exceeded this by far. Most
notably IS-S-L1 and QS-S-L1, Insertionsort’s and Quicksort’s first lemma respectively,
depended on many more inductive inferences until the right axiom was found. Such statistics
point to areas where the prover still has room to be finetuned for software verification and quality
assurance purposes, here especially towards establishing correctness of functional programs.

2Benchmarks and instructions to run the experiments can be found at https://github.com/minal604/
sorting_wo_sorts.
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Benchmark | IndProofSearch | IndProof
IS-S 4 1
IS-S-L1 339 2
IS-PE 5 1
IS-PE-L1 34 1
MS-S 8 1
MS-S-L2 22 1
MS-PE 14 1
MS-PE-L2 16 1
MS-PE-L3 136 3
QS-S 10 2
QS-S-L1 510 2
QS-S-L2 9 1
QS-S-L3 130 2
QS-S-L4 183 3
QS-S-L5 0 0
QS-S-L6 26 1
QS-S-L7 16 2
QS-PE 12 1
QS-PE-L1 10 1
QS-PE-L2 42 4

Table 2: Applications of structural induction in proof search and proofs.

8 Related Work

While Quicksort has been proven correct on multiple occasions, first and foremost in the fa-
mous 1971 pen-and-paper proof by Foley and Hoare [7], not many have investigated a fully au-
tomated proof of the algorithm. A partially automated proof of Quicksort relies on Dafny [18],
where loop invariants are manually provided [4]. While [4] claims to prove some of the lem-
mas/invariants, not all invariants are proved correct (only assumed to be so). Similarly, the
Why3 framework [6] has been leveraged to prove sortedness and permutation equivalence of
Mergesort [19] over parameterized lists and arrays. These proofs also rely on manual proof
splitting with the additional overhead of choosing the underlying prover for each subgoal as
Why3 is interfaced with both automated and interactive provers.

The work of [24] reports on the verification of functional implementations of multiple sort-
ing algorithms with VeriFun [23]. Specifically, the correctness of the sortedness property of
Quicksort is established with the help of 13 auxiliary lemmas while also establishing the per-
mutation property of Mergesort by comparing the number of elements, thus requiring addi-
tional arithmetic reasoning. In contrast, our proofs involve less auxiliary lemmas, avoid the
overhead of arithmetic theories through our formalization of the permutation property over
set equivalence and prove functional implementations with arbitrary sorts permitting a linear
order.

The approach of [22] establishes the correctness of permutation equivalence for multiple
sorting algorithms based on separation logic through inductive lemmas. However, [22] does
not address the correctness proofs of the sortedness property. We instead automate the cor-
rectness proofs of sorting algorithms via compositional first-order reasoning in the theory of
parameterized lists.

Verifying functional correctness of sorting routines has also been explored in the abstract
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interpretation and model-checking communities, by investigating array-manipulating programs
[9, 12]. In [9], the authors automatically generate loop invariants for standard sorting algorithms
of arrays of fixed length; the framework is, however, restricted solely to inner loops and does
not handle recursive functions. Further, in [12] a priori given invariants/interpolants are used
in the verification process. Unlike these techniques, we do not rely on a user-provided inductive
invariant, nor are we restricted to inner loops.

There are naturally many examples of proofs of sorting algorithms using interactive theorem
proving, see e.g. [13, 16]. The work of [13] establishes correctness of insertion sort. Similarly,
the setting of [16] proves variations of Introsort and Pdgsort — both using Isabelle/HOL [25].
However, interactive provers rely on user guidance to provide induction schemes, a burden that
we eliminate in our approach.

A verified a real-world implementation of Quicksort is given in [3], Here, Jav’as inbuilt
dual pivot Quicksort class is verified with the semi-automatic KeY prover [1]. Additionally,
the KeY prover has also been leveraged to analyze industrial implementations of Radixsort
and Countingsort [8]. By relying on inductive method annotations, such as loop invariants or
method contracts, and asking the user to guide the proof rule application during the verification
process, the work faces similar limitations as the ones using Dafny, Why3 or interactive proving.
While we manually split our proofs into multiple steps, our lemmas are proved automatically
thanks to saturation-based theorem proving with structural/computation induction. As such,
we do not require guidance on rule application or inductive annotations.

When it comes to the landscape of automated saturation-based reasoning, we are not aware
of other techniques enabling the fully automated verification of such sorting routines, with or
without compositional reasoning.

9 Conclusion and Future Work

We present an integrated formal approach to establish program correctness over recursive pro-
grams based on saturation-based theorem proving. We automatically prove recursive sorting
algorithms, particularly the Quicksort algorithm, by formalizing program semantics in the
first-order theory of parameterized lists. Doing so, we expressed the common properties of
sortedness and permutation equivalence in an efficient way for first-order theorem proving. By
leveraging common structures of divide-and-conquer sorting algorithms, we advocate composi-
tional first-order reasoning with built-in structural/computation induction.

We believe the implications of our work are twofold. First, integrating inductive reasoning in
automated theorem proving to prove (sub)goals during interactive theorem proving can signif-
icantly alleviate the use of proof obligations to be shown manually, since automated theorem
proving from our work can synthesize induction hypotheses to verify these conditions. Second,
finding reasonable strategies to automatically split proof obligations on input problems can
tremendously enhance the degree of automation in proofs that require heavy inductive reason-
ing. We hope that our work opens up future directions in combining interactive and automated
reasoning by further decreasing the amount of manual work in proof splitting, allowing super-
position frameworks to be better applicable to a wider range of recursive algorithms. Proving
further recursive sorting/search algorithms in future work, with improved compositionality, is
therefore an interesting challenge to investigate.
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