
Kalpa Publications in Computing

Volume 9, 2018, Pages 75–90

LPAR-22 Workshop and Short Paper Proceedings

HoTT-Crypt : A Study in Homotopy Type Theory based

on Cryptography

Paventhan Vivekanandan

Indiana University, Bloomington, Indiana, USA
pvivekan@umail.iu.edu

Abstract

This paper investigates a preliminary application of homotopy type theory in cryp-
tography. It discusses specifying a cryptographic protocol using homotopy type theory
which adds the notion of higher inductive type and univalence to Martin-Löf’s intensional
type theory. A higher inductive type specification can act as a front-end mapped to a
concrete cryptographic implementation in the universe. By having a higher inductive type
front-end, we can encode domain-specific laws of the cryptographic implementation as
higher-dimensional paths. The higher inductive type gives us a graphical computational
model and can be used to extract functions from underlying concrete implementation. Us-
ing this model we can extend types to act as formal certificates guaranteeing on correctness
properties of a cryptographic implementation.

1 Introduction

Formal methods are used to verify that a system behaves in an expected way based on its
specification. Type system, a lightweight formal method, is a tool for reasoning about programs
which can categorically prove the absence of some bad program behaviors. In the early days of
programming, type systems were used to ensure certain basic correctness properties of programs
such as the arguments to primitive arithmetic operations are always numbers and differentiating
between a string and integer value in the memory. During the twentieth century, types have
become standard tools in logic, particularly in proof theory. One of the significant work in
this area is a predicative modification of Church’s type system proposed by Per Martin-Löf
now known as Martin-Löf type theory [25][24]. It gives a computational interpretation to
intuitionistic higher-order logic based on Russell’s theory of types [23]. This extended type
systems from tools merely ensuring correctness properties into first-class logics.

Homotopy type theory [1] extends Martin-Löf intensional type theory by adding higher
inductive type and univalence axiom. In homotopy type theory, the witness or proof element
of a type can be viewed as a point in a topological space, and a witness of an identity type can
be viewed as a path in a topological space. A higher inductive type differs from an ordinary
inductive type by providing constructors not only for points but also for paths. In particular,
higher inductive types provide a natural encoding of many otherwise-difficult mathematical
concepts, and univalence lets us work in our type theory the way we do on paper: up to

G. Barthe, K. Korovin, S. Schulz, M. Suda, G. Sutcliffe and M. Veanes (eds.), LPAR-IWIL 2018 (Kalpa
Publications in Computing, vol. 9), pp. 75–90

Applying Homotopy Type Theory to Cryptography Vivekanandan

isomorphism. Homotopy type theory, however, is not yet done. We do not yet have a mature
theory or a mature implementation. While work proceeds on prototype implementations of
higher-dimensional type theories [26][27], much work remains before they will be as convenient
for experimentation with new ideas as Coq, Agda, or Idris is today. In the meantime, it is
useful to be able to experiment with ideas from higher-dimensional type theory in our existing
systems.

Homotopy type theory has thus far primarily been applied to the encoding of mathematics,
rather than to programming. Nevertheless, some preliminary applications of homotopy type
theory in programming have been investigated. For example, the work of [8] apply ideas related
to homotopy type theory to modeling variable binding. Containers [28][29] in homotopy type
theory can be used to implement data structures such as multisets and cycles. Patch theory
[2] shows modeling of Darcs [32] version control system using the concepts of homotopy type
theory.

Application of logic to novel problems raises numerous interesting research issues which
could drive the progress in the theory. In this paper, we investigate a preliminary applica-
tion of homotopy type theory in cryptography and discuss its practical limitations from an
application perspective. More specifically we discuss how to specify a cryptographic scheme,
which is deterministic, using the features of homotopy type theory. Formal verification of cryp-
tographic protocols has become a significant research focus over recent years [5] [14]. Some
widely used cryptographic implementations were found to be flawed after their deployment be-
coming vulnerable to various attacks. For example, the Heartbleed attack (CVE- 2014-0160) is
a consequence of a simple coding error [13]. Even with skilled designers, developers and testers
it is highly difficult to implement a cryptographic protocol without errors [12].

We discuss specifying the correctness properties of a cryptographic implementation using
higher inductive types, implemented in Agda, and how to project computational models from
such specifications. A cryptographic system which expresses decryption as an inverse of en-
cryption [4] can be defined using a higher inductive type representing a graphical model in
a topological space. A concrete implementation of the cryptographic system can be projected
from this graphical model using univalence axiom. The higher inductive type acts as an abstract
model for the encoded cryptographic system and enables us to specify the correctness proper-
ties as paths or higher-dimensional paths in a topological space. We investigate the practical
application of homotopy type theory to an industry level cryptographic protocol, the cryptDB
which employs multiple encryptions. We discuss the conceptual and the implementation con-
cerns and analyze the challenges from an application perspective discussing the limitations and
the future work. In short, we show how to extend types to act as formal certificates guarantee-
ing on various correctness properties of a cryptographic scheme. Mainly we make the following
contributions.

• We show how to design a cryptographic construction using a higher inductive type and how
to map the abstract type to a concrete implementation in the universe. Such developments
give rise to interesting homotopies which are paths between paths or two-dimensional
paths in a topological space.

• Paths in a higher inductive type are used to model correctness rules such as functional
correctness [4], which says decryption inverses encryption, and this structure will be pre-
served in the mapping to the universe due to the functoriality of mappings in homotopy
type theory.

• We can enforce various restrictions on the concrete implementation when a cryptographic

76

Applying Homotopy Type Theory to Cryptography Vivekanandan

protocol is modeled using a higher inductive type. We discuss designing a higher inductive
type for a database model with multi-layered encryptions in the style of cryptDB [3].

• We discuss encoding of domain-specific properties related to homomorphic encryption,
deterministic encryption, and order-preserving encryption as path between paths or ho-
motopies in a higher inductive type.

We use the singleton framework [2] to implement the cryptDB protocol model discussed in
this paper. This framework can be generalized to support the class of protocols implemented
with encryption schemes that can be expressed using a contractible type. This limitation is
imposed by homotopy type theory which requires the paths to be bijective. However, we do not
have a better framework yet to implement non-bijective constructions. Designing cryptographic
constructions as a higher inductive type has the following benefits.

• In type theory all functions are functorial. Therefore, the functional correctness and
domain-specific properties of a cryptographic construction can be specified as paths or
homotopies in a higher inductive type, and the functions will preserve the path structures
in the mapping of the type to the universe.

• By specifying cryptographic properties as paths, we achieve guarantee on the correctness
of the underlying concrete implementation with respect to the encoded properties.

• We can have a graphical representation of a cryptographic construction in a topological
space, and we map it to a concrete implementation in the universe.

• By modeling a cryptographic construction as a higher inductive type, we can get the
groupoid structure and the relevant coherence laws related to the higher inductive type
for free.

• We will get a non-dependent eliminator also known as the recursion principle, and we
can use it to define functions or to map the elements including the paths of the higher
inductive type to elements of other types such as the universe.

• We will get a dependent eliminator also known as induction principle which can be used to
formulate and prove theorems related to a cryptographic construction encoded as higher
inductive type.

In the next section, we will discuss the different components of homotopy type theory. In
section 3 we will give an example of encoding a simple cryptographic scheme, the one-time pad,
using higher inductive type and explain how to map this higher inductive type to a concrete
implementation of the scheme in the universe. In section 4, we will discuss how to design
higher dimensional paths to enforce restrictions on the implementation of an industry level
cryptographic protocol, the cryptDB. In section 5, we will review the implementation details,
and in section 6 we will discuss the related work. In section 7, we will see the limitations and
future work before concluding.

2 Background

A formal specification of a cryptographic scheme requires a programming language with support
for theorem proving. Proof-assistants with a strong mathematical background such as Agda and
Coq can be used to specify correctness and security properties of a cryptographic construction.

77

Applying Homotopy Type Theory to Cryptography Vivekanandan

There are works which use an embedded domain-specific language [5] [14] [18] on existing
theorem provers to support defining and proving cryptographic properties. In this paper, we
discuss a new approach to specify cryptographic protocols based on types. This approach
involves correlating a type with a cryptographic implementation. By combining with the right
type, we can guarantee on various correctness properties of the cryptographic application. In the
remainder of this section, we discuss the tools of homotopy type theory which are instrumental
in modeling and associating types with cryptographic implementations.

Unlike set theory, which is an interplay between propositions and sets, type theory is based
on the interpretation of propositions-as-types. According to this interpretation, a proposition
stating that two elements of a type a, b : A are equal corresponds to a type known as the
identity type given by a =A b or IdA(a, b). In homotopy type theory, elements of the identity
type a =A b are used to model the notion of paths or equivalences between a and b in the space
A. An element of the type a =A b is a witness or a proof stating that a and b are propositionally
equal. Propositional equality is a proof relevant notion of equality expressed by identity types.
There is also a proof-irrelevant notion of equality in type theory known as judgmental equality
or definitional equality. Definitional equality is not internal to the theory, and it is used to
express equality by definition. For example, when we have a function f : Nat → Nat defined
as f(x) = x3 then f(2) is definitionally equal to 23.

Homotopy type theory extends Martin-Löf’s intensional type theory by adding univalence
axiom and higher inductive types. It introduces the notion of viewing type as a topological
space in homotopy theory or a higher-dimensional groupoid in category theory. Because of this
correspondence, we can observe an element of the identity type x =A y for a, b : A as a path
in a topological space or a morphism in a groupoid. Also, an element of the iterated identity
types m =x=Ay n and p =m=x=Ayn q can be viewed as a 2-dimensional and a 3-dimensional
path respectively in a topological space or a morphism between morphism and a higher-level
morphism respectively in a groupoid and so on.

A morphism at a level k in a groupoid is called a k-morphism. A k-morphism has a groupoid
structure defined by identity, composition, and inverse operations. These operations satisfy the
groupoid laws which are associativity of composition, identity as a unit of composition and
cancellation of inverses through a weak sense of equality but only up to a morphism at the
next level k + 1. We can view the k-morphism as a k-dimensional path in a topological space.
Similarly, we can observe the elements of an iterated identity type at level k as k-dimensional
paths. Therefore a proof element of the type x =A y acts like a one-dimensional path between
endpoints x and y and a proof element of type m =x=Ay n acts like a 2-dimensional path or
a homotopy between paths of type x =A y and so on. Moreover, these paths also satisfy the
groupoid laws up to homotopy at the next level in the following sense.

• refl ◦ x = x ◦ refl = x −→ identity as a unit of composition

• (x ◦ y) ◦ z = x ◦ (y ◦ z) −→ associativity of composition

• !x ◦ x = x ◦ !x = refl −→ cancellation of inverses

where refl is an element of type x =A x

Because of the correspondence of types to a topological space or a higher-dimensional
groupoid, we can map the elements of an identity type, which are paths in homotopy type
theory, to equivalences between types in a universe. Equivalence can be relaxed to a bijection
when types behave like sets. The mapping of a path to equivalence is made possible by the uni-
valence axiom which describes that we may identify equivalent types A and B in the following

78

Applying Homotopy Type Theory to Cryptography Vivekanandan

sense.

ua : (A ' B)→ (A =U B) (1)

In (1), the type U is the universe or the type of types. The univalence axiom states that
when we have a proof of type A ' B, we can obtain a path between A and B. In homotopy
type theory, the following defining equations give an equivalence between type A and type B.

A ' B :≡
∑

f :A→B

isequiv(f) (2)

isequiv(f) :≡
(∑

g:B→A

(f ◦ g ∼ idB)
)
×
(∑

h:B→A

(h ◦ f ∼ idA)
)

(3)

A homotopy between non-dependent functions f1, f2 : A1 → A2 is given by the following
equation.

f1 ∼ f2 :≡
∏
x:A1

(f1(x) =A2
f2(x)) (4)

In (3), the composite f ◦ g is homotopic to the identity function idB , and the composite
h ◦ f is homotopic to the identity function idA. There is also a reduced notion of equivalence
called quasi-inverse. A quasi-inverse for a function f : A→ B is given by

qinv(f) :≡
∑

g:B→A

(
(f ◦ g ∼ idB)× (g ◦ f ∼ idA)

)
(5)

Also, we have a function that maps an element of quasi-inverse qinv(f) to isequiv(f) for
f : A→ B [1].

mkqinv : qinv(f)→ isequiv(f) (6)

For examples described in this paper, we will use mkqinv to obtain a proof of equivalence
from quasi-inverse. For a path p : A =U B, we have a function coe [2] that coerces along p.
The following equation gives the type of coe.

coe : (A =U B)→ (A→ B) (7)

In the presence of univalence, we also have a computation rule for coe [2] defined as follows.

coe (ua (f , isequiv(f)))x = f(x) (8)

where x : A, f : A → B and (f , isequiv(f)) : A ' B.

Higher inductive types are a general schema for defining new types in homotopy type theory.
It extends an ordinary inductive type by providing constructors for generating paths and higher
paths. In homotopy type theory, we define a higher inductive type by specifying its introduction,
elimination, and computation rules. The introduction rule of a type specifies its constructors.
The elimination rule of a type defines how to use its elements, and the computation rule
describes the action of the elimination rule on the constructors of the type. A simple example
for higher inductive type is the interval type I. It consists of two point constructors 0I and 1I
and a path constructor seg : 0I =I 1I . The following declaration1 specifies the introduction
rule for I.

1In this paper, we have given a reduced declaration of higher inductive types for better understanding. In
Agda, we use rewrite rules to define higher inductive types.

79

Applying Homotopy Type Theory to Cryptography Vivekanandan

data I : Set where

-- point constructors

zero : I

one : I

-- path constructors

seg : zero ≡ one

The non-dependent elimination rule or the recursion principle of I states that when given a
type C along with constructors c0, c1 : C and cseg : c0 =C c1, there is a function f :I→ C such
that f(zero) = c0, f(one) = c1 and apf (seg) ≡ cseg where apf defines the action of functions
on paths. The equalities f(zero) = c0, f(one) = c1 and apf (seg) ≡ cseg are the computation
rules for the type I. The computational rules for the point constructors zero and one hold
definitionally, but the computation rule for path constructor seg holds only propositionally,
and we specify it as an axiom which is a limitation of homotopy type theory.

Similarly, the dependent eliminator or the induction principle of I states that when given a
type D :I→ U along with constructors d0 : D(zero), d1 : D(one) and dseg : d0 =D

seg d1, there
is a dependent function f :

∏
(x:I) D(x) with computation rules f(zero) = d0, f(one) = d1 and

apdf (seg) ≡ dseg. Here dseg is a heterogeneous path transported over seg and apdf defines
the action of functions on heterogenous paths [1].

Another important concept of homotopy type theory which is central to understand the
idea proposed in this paper is that the functions behave functorially on paths. It means that a
function f : A→ B respects equality and it preserves the path structure in the mapping from
type A to type B. Now we can give the type of apf which defines the action of non-dependent
functions on paths as follows.

apf : (x =A y)→ (f(x) =A f(y)) (9)

The following equation gives the action of dependent functions of type f :
∏

(x:A) B(x) on paths.

apdf :
∏

p:x=y

(p∗(f(x)) =B(y) f(y)) (10)

In (10), p∗(f(x)) lying in space B(y) can be thought of as an endpoint of a path obtained
by lifting p from f(x) to a path in the total space

∑
(x:A) B(x)→ A [1]. The following equation

gives the type of p∗ also known as transport.

transportBp : B(x)→ B(y) (11)

where p : x = y for x, y : A.

3 Higher Inductive Type front-end for OTP

In this section, we will discuss an encoding of the one-time pad using a higher inductive type
with a path constructor to specify the encryption function. We will construct a proof for an
equivalence which reflects the encryption path of the higher inductive type in the universe. The
functional correctness property, which states that decryption inverts encryption, will be part
of the construction of the proof for the equivalence. We will then map this higher inductive
type, with the encryption path, to a concrete implementation of the one-time pad, with the
equivalence reflecting the encryption path, in the universe. The encryption and the decryption
functions are then projected from the concrete implementation in the universe using the higher

80

Applying Homotopy Type Theory to Cryptography Vivekanandan

inductive type which acts as a front-end. By accessing the concrete implementation of the
one-time pad through a higher inductive type, we can get a certificate or a guarantee on the
functional correctness of the system. Some other property such as homomorphic encryption
requires introducing higher-dimensional paths to act as a certificate. We will discuss higher-
dimensional paths in section 4.

3.1 One-time Pad

The following Agda code gives the higher inductive type encoding of the one-time pad.

data OTP (n : Nat) : Set where

-- point constructors

message : OTP n

cipher : OTP n

-- path constructors

otp-encrypt : {n : Nat} →
(key : Vec Bit n) →

message {n} ≡ cipher {n}

The higher inductive type OTP has two point constructors message and cipher representing
the plain-text and the cipher-text respectively. The path constructor otp-encrypt represents
the encryption function of the one-time pad. We parameterize the type OTP with the length n
of the data. otp-encrypt uses the same length parameter n to specify the length of the key
which encodes another restriction, namely the length of the key for the one-time pad should be
equal to the length of the message, which is crucial for the security of the one-time pad.

The following code gives the recursion principle and its action on constructors or the com-
putation rules for the type OTP.

otp-rec : {n : Nat} →
(B : Set) →
(b-msg : B) →
(b-cipher : B) →
(b-encrypt : (key : Vec Bit n) → b-msg ≡ b-cipher) →
OTP n → B

otp-rec B b-msg b-cipher b-encrypt message = b-msg

otp-rec B b-msg b-cipher b-encrypt cipher = b-cipher

postulate

β-otp-rec : {n : Nat} →
(B : Set) →
(b-msg : B) →
(b-cipher : B) →
(b-encrypt : (key : Vec Bit n) → b-msg ≡ b-cipher) →
{key : Vec Bit n} →
ap (otp-rec B b-msg b-cipher b-encrypt)

(otp-encrypt key) ≡ (b-encrypt key)

The recursion principle otp-rec states that when given a type B with point constructors
b-msg and b-cipher and path constructor b-encrypt, there exists a function of type OTP n →
B. otp-rec maps message and cipher to b-msg and b-cipher respectively. β-otp-rec gives

81

Applying Homotopy Type Theory to Cryptography Vivekanandan

the action of otp-rec on the path (otp-encrypt key) which maps it to the path (b-encrypt

key). Equation (9) gives the type of ap. The computation rules for point constructors message
and cipher are given as definitional equalities specified as part of otp-rec. The computation
rule for the path otp-encrypt is postulated as propositional equality.

The following code gives the induction principle and its computation rules for OTP.

otp-ind : {n : Nat} →
(B : OTP n → Set) →
(b-msg : B (message)) →
(b-cipher : B (cipher)) →
(b-encrypt : (key : Vec Bit n) →
transport B (otp-encrypt key) b-msg ≡ b-cipher) →
(x : OTP n) → B x

otp-ind B b-msg b-cipher b-encrypt message = b-msg

otp-ind B b-msg b-cipher b-encrypt cipher = b-cipher

postulate

β-otp-ind : {n : Nat} →
(B : OTP n → Set) →
(b-msg : B (message)) →
(b-cipher : B (cipher)) →
(b-encrypt : (key : Vec Bit n) →
transport B (otp-encrypt key) b-msg ≡ b-cipher) →
{key : Vec Bit n} →
apd (otp-ind B b-msg b-cipher b-encrypt)

(otp-encrypt key) ≡ (b-encrypt key)

The induction rule otp-ind states that when given a type B : OTP n → Set along with points
b-msg, b-cipher and path b-encrypt, there exists a dependent function (x : OTP n) → B

x. The computation rule for path b-encrypt is postulated as propositional equality. Equation
(10) gives the type of apd and equation (11) gives the type of transport where p is the path
(otp-encrypt key).

3.2 Implementation of one-time pad in the universe

The functional programming aspect of homotopy type theory allows us to implement any cryp-
tographic schemes. In this section, we will develop a concrete model for the higher inductive
type OTP described in section 3.1. The encryption function for the one-time pad is straightfor-
ward, and it is implemented using xor. The encryption of one-time pad is defined using the
following function.

OTP-encrypt : {n : Nat} →
(key : Vec Bit n) →
(message : Vec Bit n) → Vec Bit n

OTP-encrypt {n} key message = message xorBits key

where xorBits perform xor on two vectors of equal length.

Similar to keys, we have chosen to use the type Vec Bit n to represent the point constructors
message and cipher of the higher inductive type OTP in the universe. Therefore, the path

82

Applying Homotopy Type Theory to Cryptography Vivekanandan

otp-encrypt should be mapped to an equivalence formed by OTP-encrypt between types Vec

Bit n and Vec Bit n. To create an equivalence for the function OTP-encrypt, we need a proof
element of type given by equation (5). To construct a proof element of (5), we need a function
g : Vec Bit n → Vec Bit n, a proof element of f◦g ∼ id, and a proof element of g◦f ∼
id. For the one-time pad, the encryption function is also its inverse. So both f and g are
represented by OTP-encrypt in this case. Therefore, the types f◦g ∼ id and g◦f ∼ id are
definitionally the same. The equivalence formed by OTP-encrypt is defined as follows.

OTP-equiv : {n : Nat} → (key : Vec Bit n) → Vec Bit n ' Vec Bit n

OTP-equiv key = ((OTP-encrypt key) ,

equiv1 (mkqinv

(OTP-encrypt key)

(α-OTP key)

(α-OTP key)))

(α-OTP key) : (OTP-encrypt key (OTP-encrypt key msg)) ≡ msg

In the above code, (OTP-equiv key) is of the type given by equation (2). equiv1 forms
a proof element of the type given by equation (3). The type of mkqinv is given by equation
(6) which takes an element of (5) as input and gives an element of (3) as output. (α-OTP

key) is a proof which says the encryption of msg, implemented by OTP-encrypt, followed by
its decryption, which is also implemented by OTP-encrypt in this case, is the same as msg.

3.3 Mapping OTP into the universe

The higher inductive type OTP defined in section 3.1 can now be mapped into the universe
using univalence. The abstract nature of higher inductive types also means that we can map
the same type to more than one concrete implementation in the universe whenever compatible.
The equivalence (OTP-equiv key) respects the path structure specified by the constructor
otp-encrypt. Because of this, a path formed by univalence given by (ua (OTP-equiv key))

represents the path structure of otp-encrypt in the universe. This correspondence allows us
to define a mapping I-OTP which maps the points message, cipher of OTP to type Vec Bit

n and a mapping I-OTP-path which maps the path (otp-encrypt key) to (ua (OTP-equiv

key)).

I-OTP : {n : Nat} → OTP n → Set

I-OTP {n} bits = otp-rec Set (Vec Bit n) (Vec Bit n)

(λ key → ua (OTP-equiv key)) bits

I-OTP-path : {n : Nat} → (key : Vec Bit n) →
ap I-OTP (otp-encrypt {n} key) ≡ ua (OTP-equiv key)

I-OTP-path {n} key = β-otp-rec Set (Vec Bit n) (Vec Bit n)

(λ k → ua (OTP-equiv k))

I-OTP is defined using the recursion principle otp-rec of the higher inductive type OTP. It
maps the points of OTP to the type Vec Bit n in the universe represented by Set. I-OTP-path
maps the path (otp-encrypt key) to (ua (OTP-equiv key)) using β-otp-rec. Now we can
define an interpreter function ITP using coe given by equation (7) as follows.

ITP : {n : Nat} → {a b : OTP n} →
(p : a ≡ b) →

83

Applying Homotopy Type Theory to Cryptography Vivekanandan

(I-OTP a) → (I-OTP b)

ITP {n} {a} {b} p = coe (ap I-OTP p)

When we give the path otp-encrypt as input, the interpreter ITP returns the encryption
function OTP-encrypt. By accessing a concrete implementation in the universe using a higher
inductive type, we get the certificate or guarantee specified by the path structures of the higher
inductive type. In the case of OTP, the functional correctness property is part of the equivalence
(OTP-equiv key) given by (α-OTP key), and the path otp-encrypt will reflect this through
the mapping specified by I-OTP-path.

We will consider an example of using ITP to extract OTP-encrypt and its application on a
vector.

pf : (ITP (otp-encrypt (1b :: (0b :: []))) (1b :: (1b :: [])))

≡ (0b :: (1b :: []))

In the above code, ITP takes otp-encrypt as input with key (1b :: (0b :: [])) and
plain-text (1b :: (1b :: [])) and returns the cipher-text (0b :: (1b ::[])) as output.

4 Encoding Properties as Higher Dimensional Paths

The path otp-encrypt described in the previous section is one-dimensional. We can also
encode domain-specific cryptographic properties as higher dimensional paths. In this section,
we will design properties of a database model with multi-layered encryptions in the style of
cryptDB [3] as higher dimensional paths. CryptDB has different layers of encryption known as
onion layers of encryption. The idea of cryptDB is to allow computation on top of encrypted
data without the need to decrypt them. For example, homomorphic encryption can be used to
implement addition, and deterministic encryption can be used to perform equality comparison
on top of encrypted data. Similarly, order-preserving encryption can be used to implement
inequality comparisons on encrypted data. A higher inductive type can be used to define
the computational behavior of cryptDB. We will consider the following higher inductive type
specification to discuss encoding domain-specific laws of cryptDB as higher dimensional paths2.
CryptDB involves non-bijective functions, and can be implemented using singleton types [2].
In this section, we will not be focusing on the implementation details or mapping types into
the universe.

data encDB : Set where

-- point constructors

tab : encDB

tabDET : encDB

tabHOM : encDB

tabOPE : encDB

-- one-dimensional paths

hom-enc : tab ≡ tabHOM

det-enc : tab ≡ tabDET

ope-enc : tab ≡ tabOPE

2We have simplified the higher inductive type encDB for ease of understanding. Please see section 5 for
implementation details.

84

Applying Homotopy Type Theory to Cryptography Vivekanandan

tabHOM tabHOM

tabtab

enc­increment

increment

 paillier­homhom­enc ! hom­enc

Figure 1: Homotopy representing the homomorphic property of paillier cryptosystem. The path
hom-enc concatenated with enc-increment and (! hom-enc) is equal to the path increment.

The higher inductive type encDB specifies a lot of restrictions and a mapping to a concrete
implementation should respect those restrictions. For example, it says that homomorphic en-
cryption is a function that takes a plain-text table tab as input and gives an encrypted version
of the table tabHOM as output. The inverse path (! hom-enc) specifies the decryption func-
tion. Similarly, the paths det-enc and ope-enc specifies the deterministic and order-preserving
encryption schemes respectively. The higher inductive type encDB acts as a single interface giv-
ing a lot of information on underlying implementation of a cryptographic setting. It provides us
with a graphical model composed of points, paths, paths between paths or higher dimensional
paths to specify the correctness properties and various domain-specific laws of a cryptographic
construction. In the remainder of this section, we will discuss homotopies or path between
paths describing properties specific to homomorphic encryption, deterministic encryption, and
order-preserving encryption.

4.1 Homomorphic Encryption

Homomorphic encryption can be used to perform computations on cipher-text. In cryptDB,
homomorphic encryption is implemented using paillier cryptosystem. According to the homo-
morphic property of paillier cryptosystem [16], the addition of two plain-texts will be equal
to the multiplication of their corresponding cipher-text. We can express this property as a
two-dimensional path saying homomorphic encryption of a plain-text concatenated with a path
expressing homomorphic multiplication concatenated with homomorphic decryption is the same
as the regular addition performed on the plain-text.

The encoding of cryptDB in homotopy type theory involves non-bijective queries. Mapping
a non-bijective query into the universe is not possible in the current type-theoretic setting.
However, we can map a non-bijective path to singleton types in the universe [2]. Such a
mapping holds because any function between singleton types is automatically a bijection.

4.2 Deterministic Encryption

Deterministic encryption generates the same cipher-text on multiple encryptions of the same
plain-text. In cryptDB, a deterministic encryption scheme is used to perform equality com-
parisons on encrypted data. The correctness property of deterministic encryption requires
DET (m1) ≡ DET (m2) when m1 ≡ m2. We can specify this property as a heterogenous path
over a path of type m1 ≡ m2. For example, when tab and det-enc encode the plain-text as

85

Applying Homotopy Type Theory to Cryptography Vivekanandan

an implicit argument given by tab : {m} → encDB and det-enc : {m} → tab ≡ tabDET

respectively, we can define the following two-dimensional path.

det-correctness : (p : m1 ≡ m2) →
transport (λ x → tab {x} ≡ tabDET) p (det-enc {m1})

≡ (det-enc {m2})

det-correctness says that the path (det-enc {m1}) ≡ (det-enc {m2}) lies over p :

m1 ≡ m2.

4.3 Order-Preserving Encryption

Order-preserving encryption [17] allows inequality comparisons on encrypted data without the
need to decrypt them. Order-preserving encryption requires, for plain-texts x and y, if (x < y)
then OPE(x) < OPE(y). We cannot specify this property in the style of det-correctness
because inequality relation does not form paths. However, we can use a different approach to
model this restriction in a higher inductive type. For example, consider a function bigE (m1,

m2) which returns the biggest of two elements. When there exists a path p’ : bigE(m1, m2)

≡ bigE(c1, c2), where c1 and c2 are the OPE cipher values of m1 and m2 respectively, lying
in the space encDB, we can design a two-dimensional path saying ope-encrypt is the same path
as p’. This two-dimensional path will hold only when the order-preserving encryption respects
the inequality relation between the plain-texts.

The two-dimensional paths discussed above capture different domain-specific laws that
should be respected by any concrete implementation of a multi-layered database in the style
of cryptDB. By specifying the above paths as constructors of encDB and by mapping encDB to
a concrete implementation in the universe similar to OTP in section 3, we can achieve various
guarantees on the correctness of the implementation. The mapping of the higher inductive type
into the universe alone is enough to guarantee on the correctness of properties specified by the
path constructors because of univalence and functoriality. By having a higher inductive type
front-end for a cryptographic implementation, we eliminate the need to generate individual
proofs for different domain-specific properties. Also in a higher inductive type framework, we
have a way to relate proofs of different properties because of the encoding of proofs as paths or
higher dimensional paths of a single type.

5 Implementation

In cryptDB, functions implementing queries like insert and delete are not bijective and therefore
cannot be encoded as paths in a higher inductive type. To address this problem, we used the
patch theory [2] approach to encode cryptDB. The higher inductive type representing cryptDB
is contractible which allowed us to map the paths representing the non-bijective queries to
singleton types in the universe. This mapping is possible since any function between a singleton
type is automatically a bijection. We declared the query operations using history type [2],
a higher inductive type that records all the query information. The higher inductive type
representing the cryptDB then depends on the history type. We implemented this model in
Agda3 by declaring the higher inductive types as rewrite rules [30] using {-# REWRITE , ...#-}

pragma. We automated the code generation for the dependent and non-dependent elimination

3A detailed implementation can be found in the associated github repository. See
https://github.com/pavenvivek/LPAR-2018.

86

Applying Homotopy Type Theory to Cryptography Vivekanandan

rules corresponding to the higher inductive types using an automation tool [33] based on Agda’s
new support for elaborator reflection [31].

6 Related Work

The work discussed in this paper takes the first step towards formal specification of crypto-
graphic protocols based on types. There are other works which support formal specification
of cryptographic constructions using different settings for handling cryptographic primitives
including shared-key and public-key cryptography, signatures, hash functions, message authen-
tication codes, etc. In this section, we will review few of those works most of which are well-
developed and have a bigger scope compared to the framework discussed in this paper.

The Foundational Cryptography Framework (FCF) [5] implements a probabilistic program-
ming language embedded inside Coq proof assistant. Unlike Agda, the Coq proof assistant is
based on the Calculus of InductiveConstruction. However, the recent version of Coq allows
the sort Set to be predicative. The probabilistic programming language defined by FCF enables
the specification of cryptographic schemes, security definitions, and hard problems. A shallow
embedding of the probabilistic language allows FCF to have access to the capabilities of the
metalanguage (Coq) including dependent types and higher-order functions.

The work of [22] implemented in CryptoVerif provides a mechanized prover for showing cor-
respondence assertions which are useful to express authentication properties for cryptographic
protocols in the computational model. The proof construction follows the sequences of games
approach in cryptography. CryptoVerif is based on ProcessCalculus extended with parametric
events to serve in the definition of correspondences. CryptoVerif incorporates efficient automa-
tion reducing the proof development effort but lacks interactive proof development features
which makes it more specific to only a subset of cryptographic constructions when compared
to FCF or EasyCrypt.

ProVerif [21] is a cryptographic protocol verifier for the automated reasoning of security
properties based on Dolev-Yao model. It can be used for proving secrecy, authentication,
and equivalences between processes differing only by terms. The input protocols to ProVerif
are modeled using PiCalculus and internally translated using Horn clauses. The security
properties which needs to be proved are translated to derivability queries on these clauses.
ProVerif can handle different cryptographic primitives including shared-key and public-key
cryptography, hash functions, and Diffie-Hellman key agreements.

CertiCrypt [19], a framework built upon the Coq proof assistant, enables machine-checked
construction and verification of cryptographic schemes. The proof development in CertiCrypt
is time-consuming, and EasyCrypt [18] was developed to address this limitation by speeding
up the construction of proofs using automation based on SMT solvers. Both CertiCrypt and
EasyCrypt has a deep embedding of a probabilistic programming language which is used for
proof construction. The deep embedding makes them inaccessible to the cozy features of the
host language (Coq) such as dependent-types, higher-order functions, modules, etc.

Verypto [14], a framework implemented in Isabelle proof-assistant [22], provides a formal
language for the specification and verification of game-based cryptographic security proofs.
Verypto includes a probabilistic higher-order functional programming language with recursive
types, references, and events to express constructs of a game-based security proof. The language
handles stateful higher-order objects such as oracles, arbitrary data types and supports event-
based reasoning patterns. Like CertiCrypt and EasyCrypt, the probabilistic programming
language used for proof construction in Verypto follows a deep embedding.

87

Applying Homotopy Type Theory to Cryptography Vivekanandan

7 Limitations and Future Work

A limitation of homotopy type theory is that the univalence can be added only as an axiom.
This limitation weakens the good computational properties of type theory. We would like to
develop the technique described in this paper using a particular model of homotopy type theory
known as the cubical type theory [27]. In cubical type theory, the univalence computes and is
no longer an axiom.

Another limitation is that the mapping of higher inductive type into the universe requires
the functions represented by paths to be bijective. We cannot specify all functions as bijections.
The functions with simple retractions are not acceptable. Every function should have inverses
to be expressed as paths. One way to work around this problem is to encode functions as
mappings between singleton types in the universe [2]. Any function mapping between two
singleton types is automatically a bijection. So a path representing a non-bijective function
in a higher inductive type can be mapped to bijection formed by a function between singleton
types in the universe. But this solution can be applied only for contractible types. Future work
in this direction would be to characterize mapping of partial bijections to paths using the tools
of homotopy theory. Another direction is to develop type theory with non-symmetric paths
based on directed type theory [8].

Probabilistic encryption schemes are not bijective. It might not be possible to map them to
singleton types in the universe because they compute to different values during each execution
with overwhelming probability and does not uniquely identify the contents of a singleton type.
Another limitation is the difficulty involved in deriving proofs for bijections. This limitation
increases development time and effort. But after application development, we can achieve
overwhelming guarantee on the correctness of the application. In the real-world applications,
bug fixing has taken much more effort than the original development effort [9][10][11]. So the
cost of the increase in development effort can be ignored considering the benefits achieved.
It can be very significant especially when implementing cryptographic protocols because a
flawed implementation of cryptographic protocol leads to serious security issues resulting in the
compromise of the entire application. However, the performance is out of scope for this paper.
Agda also has a robust reflection library which can be used to automate the code generation for
higher inductive types [33]. Automated code generation can reduce the development effort to
some extent. In the future, we would like to encode the security properties of a cryptographic
scheme as paths in a higher inductive type and explore how to achieve security guarantees using
this setting.

The main purpose of the discussion in this paper is to drive the progress in homotopy type
theory research from an application perspective on the programming side. Cryptography is a
very significant and vast field, and it would be interesting to see if homotopy type theory can
find application in this domain. This paper takes a very first step towards this direction.

8 Conclusion

This paper presented a new direction for the formal specification of cryptographic protocols
based on types. It gave a real-world application of homotopy type theory in an attempt to solve
an important problem in cryptography, namely verifying the correctness of the implementation.
It also extended the types in an interesting way by allowing them to act as formal certificates
guaranteeing on the correctness properties. Homotopy type theory is still developing and it
takes more time and more hard work to get it done. In the meantime, the current features of
homotopy type theory such as the higher inductive type and the univalence axiom have been

88

Applying Homotopy Type Theory to Cryptography Vivekanandan

put to use by this paper to model an industrial application. Applying homotopy type theory
to cryptography is an important topic to explore, and this paper can motivate more research
in this direction. In spite of the limited scope of this framework, we still feel this discussion is
necessary because the ongoing works [26][27] are promising, and it can motivate more research
on the programming side of homotopy type theory.

The limitations of homotopy type theory, namely having univalence only as an axiom and
the requirement for functions to have inverses has restricted us to only a subset of cryptographic
schemes to be benefitted by the model described in this paper. Nevertheless, there is a lot of
work going on to improve type theory to allow for univalence to compute and mapping of non-
bijective functions into the universe which can reduce the restrictions and enable us to encode
more interesting cryptographic constructions using the higher inductive type model. Also, this
paper introduces the tools of homotopy type theory to the cryptographic community and acts
as a precursor of more interesting type theoretical settings to follow which can significantly
improve the framework described in this paper.

References

[1] The Univalent Foundations Program, Institute for Advanced Study. Homotopy Type Theory: Uni-
valent Foundations Of Mathematics (2013).

[2] Anguili, C., Morehouse, E., Licata, D., Harper, R.: Homotopical Patch Theory. In: International
Conference on Functional Programming (ICFP), Sweden (2014).

[3] Popa, R.A., Redfield, C.M.S, Zeldovich, N., Hari Balakrishnan, H. : CryptDB: Protecting Con-
fidentiality with Encrypted Query Processing. In: Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP), Portugal (2011).

[4] Duan, J., Hurd, J., Li, G., Owens, S., Slind, K., Zhang J.: Functional Correctness Proofs of Encryp-
tion Algorithms. In: Proceedings of the 12th international conference on Logic for Programming,
Artificial Intelligence, and Reasoning, pp. 519–533. Jamaica (2005).

[5] Petcher, A., Morrisett, G.: The Foundational Cryptography Framework. In: Focardi R., Myers
A. (eds) Principles of Security and Trust (POST). Lecture Notes in Computer Science, vol 9036.
Springer, Berlin, Heidelberg (2015).

[6] Norell, U.: Towards a practical programming language based on dependent type theory. PhD thesis,
Chalmers University of Technology, Sweden (2007).

[7] Licata, D.: Running Circles Around (In) Your Proof Assistant; or, Quotients that Compute. http:
//homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant

(2011).

[8] Licata, D., Harper, R.: 2-dimensional directed type theory. In: Mathematical Foundations of Pro-
gramming Semantics (MFPS) (2011).

[9] Ben Othmane, L., Chehrazi, G., Bodden, E., Tsalovski, P., Brucker, A.D., Miseldine, P.: Factors
Impacting the Effort Required to Fix Security Vulnerabilities. In: Lopez J., Mitchell C. (eds)
Information Security (ISC). Springer LNCS. Cham (2015).

[10] Hamill, M., Goseva-Popstojanova, K.: Software faults fixing effort: Analysis and prediction. In:
Technical report 20150001332, NASA Goddard Space Flight Center. Greenbelt, MD United States
(2014).

[11] Cornell, D.: Remediation statistics: what does fixing application vulnerabilities cost? In: Pro-
ceedings of the RSAConference. San Fransisco, CA, USA (2012)

[12] Lazar, D., Chen, H., Wang, X., Zeldovich, N.: Why does cryptographic software fail?: a case study
and open problems. In: Proceedings of 5th Asia-Pacific Workshop on Systems (APSys). Beijing,
China (2014).

89

http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant
http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant

Applying Homotopy Type Theory to Cryptography Vivekanandan

[13] Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., Li, F., Weaver, N., Amann,
J., Beekman, J., Payer, M., Paxson, V.: The Matter of Heartbleed. In: Proceedings of the 2014
Conference on Internet Measurement Conference. Vancouver, BC, Canada (2014).

[14] Berg, M.: Formal Verification of Cryptographic Security Proofs. Ph.D. thesis, Saarland University
(2013), http://www.infsec.cs.uni-saarland.de/~berg/publications/thesis-berg.pdf

[15] Kokke, P., Swierstra, W.: Auto in Agda. In: Hinze R., Voigtländer J. (eds) Mathematics of
Program Construction (MPC). Springer LNCS, vol 9129. Cham (2015).

[16] Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Proceed-
ings of the 18th Annual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT). Prague, Czech Republic (1999).

[17] Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y.: Order preserving encryption for numeric data.
In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. Paris,
France (2004).

[18] Gilles, B., Grégoire, B., Heraud, S., and Béguelin, S.Z.: Computer-aided security proofs for the
working cryptographer. In: Advances in Cryptology - CRYPTO 2011. Lecture Notes in Computer
Science, vol. 6841, pp. 71–90 (2011).

[19] Gilles, B., Grégoire, B., and Béguelin, S.Z.: Formal certification of code-based cryptographic
proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2009. pp. 90–101 (2009).

[20] Blanchet, B.: Computationally sound mechanized proofs of correspondence assertions. In: 20th
IEEE Computer Security Foundations Symposium (CSF’07), pp.97–111. Venice, Italy (2007).

[21] Blanchet, B.: Modeling and Verifying Security Protocols with the Applied Pi Calculus and
ProVerif. In: Foundations and Trends in Privacy and Security. vol. 1, num. 1-2, pp.1–135 (2016).

[22] Nipkow, T., Paulson L. C., and Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order
Logic. Lecture Notes in Computer Science, vol. 2283, Springer (2002).

[23] Russell, B.: The Principles of Mathematics: WW Norton & Company (1996).

[24] Martin-Löf, P.: “An Intuitionistic Theory of Types: Predicative Part”. Studies in Logic and the
Foundations of Mathematics; 80 (1975), 73–118.

[25] Martin-Löf, P.: “Constructive Mathematics and Computer Programming”. Studies in Logic and
the Foundations of Mathematics; 104 (1982), 153–175.

[26] Angiuli, C., Harper, R., and Wilson, T.: Computational Higher-dimensional Type Theory.
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL’17), Paris, France (2017).

[27] Cohen, C., Coquand, T., Huber, S., and Mörtberg, A.: Cubical Type Theory: a constructive
interpretation of the univalence axiom. 21st International Conference on Types for Proofs and
Programs (2015).

[28] Altenkirch, T.: Containers in homotopy type theory. Talk at Mathematical Structures of Compu-
tation, Lyon (2014).

[29] Abbott M., Altenkirch, T. and Ghani, N.: Containers: constructing strictly positive types. Theo-
retic Computer Science (2005).

[30] Cockx, J. and Abel, A.: Sprinkles of Extensionality for Your Vanilla Type Theory. 22nd Interna-
tional Conference on Types for Proofs and Programs (TYPES 2016).

[31] Christiansen, D. and Brady, E.: Elaborator Reflection: Extending Idris in Idris. In: Proceedings of
the 21st ACM SIGPLAN International Conference on Functional Programming (ICFP ’16). Nara,
Japan (2016).

[32] Roundy, D.: Darcs: Distributed version management in haskell. ACM SIGPLAN Workshop on
Haskell (2005).

[33] Vivekanandan, P.: Code Generation for Higher inductive Types. The 26th International Workshop
on Functional and Logic Programming (WFLP’18). Frankfurt, Germany (2018).

90

http://www.infsec.cs.uni-saarland.de/~berg/publications/thesis-berg.pdf

	Introduction
	Background
	Higher Inductive Type front-end for OTP
	One-time Pad
	Implementation of one-time pad in the universe
	Mapping OTP into the universe

	Encoding Properties as Higher Dimensional Paths
	Homomorphic Encryption
	Deterministic Encryption
	Order-Preserving Encryption

	Implementation
	Related Work
	Limitations and Future Work
	Conclusion

