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Abstract

Tool Presentation: We present ORBITADOR, a tool for stability analysis of dynamical systems.
ORBITADOR uses a method that generates a bounded invariant set of a differential system with a
given set of initial conditions around a point x0 to prove the existence of a limit cycle. This invariant
has the form of a tube centered on the Euler approximate solution starting at x0, which has for radius
an upper bound on the distance between the approximate solution and the exact ones. The method
consists in finding a real T > 0 such that the “snapshot” of the tube at time t = (i+1)T is included in
the snapshot at t = iT , for some integer i with adding a small bounded uncertainty. This uncertainty
allows using an approximate value T of the exact period. We successfully applied ORBITADOR to
several classical examples of periodical systems.

1 Introduction
The analysis of stability and convergence of numerical schemes for differential systems is often based
on the property of contraction of the space of solutions [2, 11].

Given a differential system Σ : dx/dt = f(x) of dimension n, an initial point x0 ∈ Rn, a real
ε > 0, and a ball B0 = B(x0, ε)

1, we present the tool which implements a method allowing to find
a bounded invariant set of Σ containing the trajectories starting at B0. We first add a (small) bounded
uncertainty w(t) to the system, whose values belong to a convex setW of dimension m. We thus obtain
a disturbed system of the form ΣW : dx/dt = f(x,w), and we look for a bounded (forward) invariant
set for ΣW . This invariant set has the form of a tube whose center at time t is the Euler approximate
solution x̃(t) of the system starting at x0, and radius is a function δε,W(t) bounding the distance between
x̃(t) and any exact solution x(t) of ΣW starting at B0. The tube can thus be described as

⋃
t≥0BW(t)

where BW(t) ≡ B(x̃(t), δε,W(t)). To find a bounded invariant set, we then look for a positive real
T such that BW((i + 1)T ) ⊆ BW(iT ) for some i ∈ N. In case of success, we show that the set
IW =

⋃
t∈[iT,(i+1)T ]BW(t) constitutes a bounded invariant set for ΣW (and also for Σ corresponding

to the particular caseW = 0).
The integrated approach in ORBITADOR allows to study the stability of dynamical systems.

1B(x0, ε) is the set {z ∈ Rn | ‖z − x0‖ ≤ ε} where ‖ · ‖ denotes the Euclidean distance.
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Outline: Section 2, describes the method used in ORBITADOR to proof the existing of limit cycles
and study the stability of differential systems. In Section 3, we expose the organization and the features
of ORBITADOR. Section 4 gives the results obtained on the biped example. Section 5 concludes this
work.

2 Method

2.1 Explicit Euler time integration and error bounds

Let us consider the differential system:

dx(t)

dt
= f(x(t)),

with states x(t) ∈ Rn. denotes the state of the system at time t.
We will use x(t;x0) (or sometimes just x(t)) to denote the exact continuous solution of the system

at time t, for a given initial condition x0.
We use x̃(t; y0) (or just x̃(t)) to denote Euler’s approximate value of x(t; y0) (defined by x̃(t; y0) =

y0 + tf(y0) for t ∈ [0, τ ], where τ is the integration time-step).
We suppose that we know a bounded region S ⊂ Rn containing the solutions of the system for a set

of initial conditions B0 and a certain amount of time.
We now give an upper bound to the error between the exact solution of the ODE and its Euler

approximation on S (see [10, 9]).

Definition 1. Let ε be a given positive constant. Let us define, for t ∈ [0, τ ], δε(t) as follows:

if λ < 0 : δε(t) =
(
ε2eλt + C2

λ2

(
t2 + 2t

λ + 2
λ2

(
1− eλt

))) 1
2

if λ = 0 : δε(t) =
(
ε2et + C2(−t2 − 2t+ 2(et − 1))

) 1
2

if λ > 0 : δε(t) =
(
ε2e3λt + C2

3λ2

(
−t2 − 2t

3λ + 2
9λ2

(
e3λt − 1

))) 1
2

where C and λ are real constants specific to function f , defined as follows:

C = sup
y∈S

L‖f(y)‖,

where L denotes the Lipschitz constant for f , and λ is the “one-sided Lipschitz constant” (or “logarith-
mic Lipschitz constant” [2]) associated to f , i. e., the minimal constant such that, for all y1, y2 ∈ S:

〈f(y1)− f(y2), y1 − y2〉 ≤ λ‖y1 − y2‖2, (H0)

where 〈·, ·〉 denotes the scalar product of two vectors of S.
The constant λ can be computed using a nonlinear optimization solver (e. g., Sequential quadratic

programming (SQP) [7]) or using the Jacobian matrix of f (see, e. g., [2]).

Proposition 1. [9] Consider the solution x(t; y0) of dxdt = f(x) with initial condition y0 and the ap-
proximate Euler solution x̃(t;x0) with initial condition x0. For all y0 ∈ B(x0, ε), we have:

‖x(t; y0)− x̃(t;x0)‖ ≤ δε(t).
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2.2 Systems with bounded uncertainty
Let us now show how the method extends to systems with “bounded uncertainty”. A differential system
with bounded uncertainty is of the form

dx(t)

dt
= f(x(t), w(t)),

with t ∈ Rn≥0, states x(t) ∈ Rn, and uncertainty w(t) ∈ W ⊂ Rm (W is compact, i. e., closed and
bounded). We assume that any bounded uncertainty trajectory is always bounded in the compact setW .
We denote this by w(·) ∈ W , i. e., w(t) ∈ W,∀t ≥ 0 (see [14, 13]). We suppose (see [8]) that there
exist constants λ ∈ R and γ ∈ R≥0 such that, for all y1, y2 ∈ S and w1, w2 ∈ W:

〈f(y1, w1)− f(y2, w2), y1 − y2〉 ≤ λ‖y1 − y2‖2 + γ‖y1 − y2‖‖w1 − w2‖ (H1).

This formula can be seen as a generalization of (H0) (see Section 2.1). Recall that λ has to be computed
in the absence of uncertainty (W = 0). The additional constant γ is used for taking into account the
uncertainty w. Instead of computing them globally for S, it is advantageous to compute λ and γ locally
depending on the subregion of S occupied by the system state during a considered interval of time. We
now give a version of Proposition 1 with bounded uncertainty w(·) ∈ W , originally proved in [8].

Proposition 2. [8] Consider a system ΣW with bounded uncertainty of the form dx(t)
dt = f(x(t), w(t))

satisfying (H1). Consider a point x0 ∈ S and a point y0 ∈ B(x0, ε). Let x(t; y0) be the exact solution of
the system ΣW , initial condition y0, and x̃(t;x0) the Euler approximate solution of the system dx(t)

dt =
f(x(t), 0) without uncertainty (W = 0) with initial condition x0. We have, for all w(·) ∈ W and
t ∈ [0, τ ]:

‖x(t; y0)− x̃(t;x0)‖ ≤ δε,W(t).

with

if λ < 0 : δε,W(t) =

(
C2

−λ4
(
−λ2t2 − 2λt+ 2eλt − 2

)
+

1

λ2

(
Cγ|W|
−λ

(
−λt+ eλt − 1

)
+ λ

(
γ2(|W|/2)2

−λ
(eλt − 1) + λε2eλt

)))1/2

if λ > 0 : δε,W(t) =
1

(3λ)3/2

(
C2

λ

(
−9λ2t2 − 6λt+ 2e3λt −2) + 3λ

(
Cγ|W|
λ

(
−3λt+ e3λt − 1

)
+ 3λ

(
γ2(|W|/2)2

λ
(e3λt − 1) + 3λε2e3λt

)))1/2

if λ = 0 : δε,W(t) =
(
C2
(
−t2 − 2t+ 2et − 2

)
+ (Cγ|W|

(
−t+ et − 1

)
+
(
γ2(|W|/2)2(et − 1) + ε2et

)))1/2
where |W| is the diameter ofW (maximum distance between 2 points ofW).

2.3 Correctness
Consider a differential system ΣW : dx/dt = f(x,w) with w ∈ W , an initial point x0 ∈ Rn, a real ε >
0 and a ball B0 = BW(x0, ε). Let BW(t) denote B(x̃(t), δε,W(t)) where x̃(t) is the Euler approximate
solution of the system without uncertainty and initial condition x0

2. It follows from Proposition 2
2Note that BW (0) = B0 because x̃(0) = x0 and δε,W (0) = ε.
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that
⋃
t≥0BW(t) is an invariant set containing B0. If moreover, we can find an integer i ≥ 0 and a real

T = kτ (for some k ∈ N) such thatBW((i+1)T ) ⊆ BW(iT ), then the set IW =
⋃
t∈[iT,(i+1)T ]BW(t)

is a bounded invariant which contains all the solutions x(t) of ΣW starting at B0, for t ∈ [iT,∞). In
the phase space, this bounded invariant has a “torus” shape. We have (see [4]):

Proposition 3. Suppose that there exist T > 0 (with T = kτ for some k) and i ∈ N such that:
BW((i + 1)T ) ⊆ BW(iT ). Then IW ≡

⋃
t∈[iT,(i+1)T ]BW(t) is a compact (i.e., bounded and closed)

invariant set containing, for t ∈ [iT,∞), all the solutions of ΣW with initial condition in B0. The set
IW is also an invariant for the unperturbed system Σ.

Proof. All solutions x(t) of ΣW starting from B0 are contained for t = (i+ 1)T in BW((i+ 1)T ) by
Proposition 2, hence in BW(iT ) by inclusion hypothesis. A solution starting from BW((i + 1)T ) ⊆
BW(iT ) after an additional time t′ = T finds itself in in BW((i + 1)T ) ⊆ BW(iT ). And so on, any
solution of IW starting from BW(iT ) returns periodically (with period T ) in BW(iT ). Similarly, any
point of BW(iT + t′) with t′ ∈ [0, T ) returns periodically (with period T ) in BW(iT + t′). The set
IW =

⋃
t∈[iT,(i+1)T ]BW(t) is thus an invariant of ΣW . It is also an invariant set for the unperturbed

system Σ corresponding to the particular caseW = 0.

Theorem 1. Suppose that there exist T > 0 (with T = kτ for some k) and i ∈ N such that: BW((i +
1)T ) ⊆ BW(iT ). Then there exists a closed orbit (limit cycle or fixed-point) for the unperturbed system
Σ which is contained in IW .

Proof. (Sketch) Consider a section V tranverse to the flow of the unperturbed system Σ, and the “first
return map” (or Poincaré map) T from V ∩ IW to V . This mapping is known to be continuous (and
even differentiable). Besides T (V ∩ IW) ⊆ V ∩ IW because IW is an invariant set of Σ. Therefore, by
Brouwer’s fixed-point theorem, there is a point M ∈ V ∩ IW such that T (M) = M . It follows that the
solution of Σ starting at M returns to M after some time, say T ∗. This defines a closed periodic orbit
of Σ passing by M of period T ∗.

3 ORBITADOR organization and principle

ORBITADOR is a tool that implements a formal method to prove formally the stability of dynamical
systems governed by differential equations.

3.1 Targeted user

The tool is intended to the user wishing to verify the existence of an attractive limit cycle, and to
construct an invariant set enclosing it.

3.2 Global architecture

ORBITADOR is written in Python, it is made of 1,037 lines of code, and can therefore run under any
operating system. We explain in Section 3.2 the global architecture of the system, that starts by the
input Python file describing the ODE and all specifications of the computed system. Using this input,
the method defined in Section 2 generates an invariant set IW that allows study the stability of the given
system. Graphical an numerical results can be provided as the output of the analysis.

The input file of ORBITADOR is composed of 3 main modules:
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Input
describing

ODE
(input system.py)

Method
(defined in
Section 2)

Invariant
set
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analysis
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numerical
results

(figures of
evolution
of states)ORBITADOR

Figure 1: Workflow of ORBITADOR

1. Problem Definition: In this module, the user defines the names of the states that constitute the
system, also the user specifies the names of the parameters and their values. After that, the user
gives the differential equations of the system. If the problem contains a guard condition and a
reset, it is possible to add them in the problem definition part.

2. Problem Configuration: In the problem configuration module, the user can set the options to run
ORBITADOR. Among these options, we find the time steps, the initial conditions of the system
or the starting point at initial time t0 the value of the uncertaintyW and the number of the periods.

3. Visualization: In the last module, the user specify the states to display. It can be a 1D plot where
the state is shown as a function of t or a phase portal where a state is shown as a function of an
other state, in this case it can be 2D or 3D plot (see, e. g., Fig. 3 for an example of a 2D-plot).

To launch ORBITADOR the user needs to run, in the terminal, the executable file orbitador followed
by the name of the input file:

./orbitador input_system.py

As shown in Fig. 2, to analyze a dynamical system using ORBITADOR, the user needs to give
as inputs its differential equations and initial conditions, also he needs to provide the time step τ , the
number of periods N in order to fix a maximum duration Tf = NT in which ORBITADOR tries to
find the index sought i (as defined in Proposition 3), the bounded uncertaintyW and the radius ε of the
initial ball B0. An approximate value T (= kτ for some integer k) of the period of the system can be
computed automatically by ORBITADOR or it can be fixed by the user as an input.
Using those inputs, ORBITADOR computes the local values of λ, L, C and γ as well as the function
δε,W (·) (as defined in Definition 1 and Section 2.2). Then ORBITADOR outputs the invariant set IW
(as defined in Proposition 3).

The tool, its source code, several examples and results are available on the website of ORBITADOR
https://lipn.univ-paris13.fr/˜jerray/orbitador/.

4 Example: Passive biped model
It is possible to use ORBITADOR in order to analyze the stability of hybrid systems, i. e., continu-
ous systems which, upon the satisfaction of a certain state condition (“guard”), may reset instanta-
neously the state before resuming the application of ODEs. Many works in the domain of symbolic
control have explained how to compute an overapproximation of the intersection of the current set
of reachability with the guard condition, and perform the reset operation (see, e. g., [3, 1, 6]). We
describe here the results of such an extension to the passive biped model [12], seen as a hybrid oscilla-
tor. The passive biped model exhibits indeed a stable limit-cycle oscillation for appropriate parameter
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dx(t)
dt = f(x(t), w(t))

value of x0

value of τ

value of N

value ofW

value of ε

IW (as defined in
Proposition 3)

δε,W(t)

λ

γ

CL

ORBITADOR

Figure 2: ORBITADOR’s structure

values that corresponds to periodic movements of the legs [15]. The model has a continuous state

variable x(t) = (φ1(t),
.

φ1(t), φ2(t),
.

φ2(t))>. The dynamics is described by
dx(t)

dt
= f(x) + w with

w ∈ W ⊂ R4 and

f(x) =


.

φ1
sin(φ1 − γ)

.

φ2

sin(φ1 − γ) +
.

φ21 sinφ2 − cos(φ1 − γ) sinφ2

 , Reset(x) =


−φ1

.

φ1 sin(2φ1)
−2φ1

.

φ1 cos 2φ1(1− cos 2φ1)


Guard(x) ≡ (2φ1 − φ2 = 0 ∧ φ2 < −δ).

The time-step used in Euler’s method is τ = 2 · 10−5, and ORBITADOR then automatically
computes an approximate value of the period equal to T = kτ with k = 194129. Also, we
choose N = 5 as the number of periods. Therefore, the maximum duration Tf of this experience is
Tf = NT = 5T = 19.4129s. For a system withW = [−0.0001, 0.0001]4 and set of initial conditions
B(x0, ε) with ε = 0.01 and x0 = (0.009,−0.05869,−0.0009629,−0.3432), ORBITADOR finds:
BW((i0 + 1)T ) ⊂ BW(i0T ) for i0 = 4.

On Fig. 3, the curve of Euler’s approximation x̃(t) is depicted in red for initial condition x0 and
t ∈ [0, Tf ]. The borders of the tube BW(t) ≡ B(x̃(t), δε,W(t)) are depicted in green. The black
vertical lines delimit the portion of the tube between t = i0T and t = (i0 + 1)T corresponding to the
invariant set IW enclosing the limit cycle.

It follows by Theorem 1 that, for any initial condition in B(x0, ε), the system converges towards an
attractive limit cycle contained in IW ≡

⋃
t∈[4T,5T ]BW(t).

The experiment above is performed on an ASUS X411UN Intel Core i7-8550U 1.80 GHz with 8 GiB
memory running Linux Mint 19. The proof takes 327 seconds of CPU time.

5 Conclusion
We presented ORBITADOR, a tool coded in Python that guarantees the existence of limit cycles and
constructs invariant sets around them. ORBITADOR uses a very general criterion of inclusion of one set
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Figure 3: Biped system with uncertainty w ∈ W = [−0.0001, 0.0001]4, initial radius ε = 0.001,
approximate period T = 3.8826s and time-step τ = 2 · 10−5.

in another. This is simpler than classical criteria based on contractivity properties or Lyapunov functions.
Also, by adding a small bounded uncertainty w ∈ W to the system, we can use an approximate value T
of the period and not an exact value.

In future work, we plan to upgrade ORBITADOR so that it computes dynamical systems with
control (see [5]).
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