
Kalpa Publications in Computing
Volume 4, 2018, Pages 234–247

28th International Workshop on
Principles of Diagnosis (DX’17)

Intermittent Fault Diagnosis as Discrete Signal Estimation:
Trackability analysis∗

Xavier Pucel1 and Stéphanie Roussel1

Department of Information Processing and Systems (DTIS),
ONERA, Toulouse, France

Firstname.Lastname@onera.fr

Abstract

We address the problem of intermittent fault diagnosis as an instance of discrete signal estimation,
in the context of fault management in autonomous systems and autonomous vehicles. We propose
an estimation approach based on constrained optimization using conditional preference theories. We
show that in some cases, our estimator can fail to find an estimation for the system. We provide a way
to detect and eliminate these cases at design time.

1 Introduction
Autonomous systems and autonomous vehicles such as drones and rovers face the challenge of manag-
ing aleas such as physical degradation, software bugs, or environmental perturbations, that can prevent
them from reaching their goal. More precisely, aleas degrade the performance of some of the system’s
functions, which impacts the success of the system’s actions. For example, the action of moving to a
specific place can either succeed properly, succeed with delay, or fail. This action’s outcome depends
on the propulsion function and on the self localization function. These functions themselves depend on
other functions such as power supply, actuators and sensors, etc. The action’s outcome also depends on
environmental conditions such as ground quality (slippery, sandy), or GNSS signal quality.

Informally, alea management is usually decomposed into the following steps: (1) detection of ab-
normal behaviour, (2) explanation of this anomaly, (3) evaluation of the performance of each relevant
system function and the expected outcome of each relevant system action, and (4) possible reconfigura-
tion of the autonomous mission. In this paper, we address steps (1) to (3) as an estimation problem of
discrete-valued signals.

In our experience, it is very impossible to assess with utmost certainty whether an alea is due to
a cause internal to the system, or external. It is also usually impossible to assess with total certainty
whether its effects will be temporary or permanent. Robot operators usually manage aleas with a “try
and see” approach as long as it is safe for the robot and the environment, and their decisions are educated
guesses more often than logical inferences. Alea simply disappearing with no reason are, in practice,

∗The research leading to the presented results has been partially funded by the SWARMs European Project (Smart and Net-
working Underwater Robots in Cooperation Meshes), under Grant Agreement No. 662107-SWARMs-ECSEL-2014-1.

M. Zanella, I. Pill and A. Cimatti (eds.), DX’17 (Kalpa Publications in Computing, vol. 4), pp. 234–247

Intermittent Fault Diagnosis as Discrete Signal Estimation: Trackability analysis Xavier Pucel and Stéphanie Roussel

as frequent as them appearing. This is why be put a lot of emphasis on intermittent fault modelling and
diagnosis.

Our approach consists in modelling the expected performance of each function with a discrete-
valued signal (e.g. nominal / degraded / lost). We use a discrete-event model to describe the
dynamics behind the performance variations of each function, that is used for finding possible expla-
nations for the system’s observable behaviour. This task, usually called model-based diagnosis, can be
viewed as an instance of discrete-valued signal estimation: boolean or discrete signals are used to model
the occurrence of fault events, the health status of components, the performance of each function, the
outcome of each action, etc. The behavioural model constrains the values that each signal can take as
function of each other’s values, and of their own past values as well. The diagnosis problem consists
in estimating the value of some signals while measuring the value of other signals. These signals can
represent very different quantities:

• the system’s internal state, and its inputs;

• the health status of the system components;

• the expected performance of the system’s functions (power supply, movement, sensors, etc);

• the expected outcome of actions (data acquisition, communication, etc).

Thus, the estimation approach can be used for diagnosis purposes, but can also provide some forecast
mechanism about the mission success, if the model contains some knowledge about this.

In most practical applications, there are constantly several consistent values for most signals to be
estimated. Our approach is to select one value among the consistent ones using a preference model
specified by the system’s designer. This approach has two advantages. First, a single, clear situation
assessment simplifies the decision process that is usually performed by a planner. Second, a preference
model lets the designer control whether to select optimistic estimations that will let the system try to
fulfil its mission, or pessimistic estimations that will encourage conservative behaviour.

The diagnosis approach presented here has been described in [1], as well as some limitations, the
most important one being the possibility that the estimator diverges from the real system state and as
a consequence fails to produce an estimation. In this paper we adress the problem of detecting and
eliminating such failures at design time.

The paper is organized as follows. First, the estimation model is described, and the notions of pref-
erence is formally defined. Then, the state estimation problem is defined, and an estimator synthesis
method is presented. Third, the problem of potential deadlocks is explained, and an approach based on
model-checking is presented for detecting such deadlocks. Finally, general hints for deadlock elimina-
tion are discussed.

2 Estimation model
The estimation model is based on a set S of system states. The model is a triple (s0,∆,Γ) where s0 ∈ S
is the initial state, ∆ is the system’s behavioural model, and Γ is the estimator’s preference model. ∆
describes the system’s transition relation→∆ ⊆ S×S , and describes which states are possible successors
to a state s. For estimation purposes, Γ orders the possible successors of every state s, and defines a
unique preferred successor. Formally, Γ defines a total order �Γ⊆ →∆ ×→∆ on the transitions defined
by ∆.

We represent the system states with a set Vnow of discrete-valued variables that model the system’s
internal state, its inputs, and outputs. We assume a synchronous model where time steps all last the
same predefined duration; discrete events are modeled by a dedicated boolean variable, true at the time

235

Intermittent Fault Diagnosis as Discrete Signal Estimation: Trackability analysis Xavier Pucel and Stéphanie Roussel

step during which event occurs and false otherwise. For the sake of clarity, we assume all variables are
boolean in the model.

We adopt the usual notations of propositional logic.

• Let V be a set of propositional variables, then an assignment a to V is a function from V to B =
{true, false}.

• If x ∈ X, then x (resp. x) denotes the specific assignment to {x} that assigns value true (resp.
false) to x.

• If a and b are two assignments to two disjoint sets A and B then ab is the assignment to A∪ B such
that ∀x ∈ A, ab(x) = a(x) and ∀x ∈ B, ab(x) = b(x).

• If a is an assignment to X and A ⊆ X, then a↓|A is the restriction of a to A.

• The satisfaction relation |= between assignments and propositional formulas is defined by: a |=
true, a 6|= false, a |= x iff a(x) = true, a |= ¬F iff a 6|= F,
a |= F1 op F2 iff (a |= F1) op (a |= F2) with op ∈ {∧,∨, . . .}.

• scope(F) is the set of variables mentioned in F.

• If a is an assignment, we note form(x) the formula representing x, e.g. form(v1 v2) = v1 ∧¬v2.

A state s ∈ S is an assignment to Vnow, which means S = 2Vnow . To model transitions, we need
to represent relations between the current state and the previous state. We introduce an additional set
of variables Vpre = {pre(v)|v ∈ Vnow} that represent the system’s state at the previous time step, and
define V = Vnow ∪ Vpre. O ⊆ Vnow denotes the set of observable variables, and E ⊆ Vnow the set of
estimated variables. Without loss of generality we assume that O ∩ E = ∅. We note Obs = 2O the set of
possible observations, and Est = 2E the set of possible estimations.

For every state s ∈ S , pre(s) represents the assignment s applied to the previous state variables, i.e.
∀v ∈ Vnow, pre(s)

(
pre(v)

)
= s(v). So in the following, if s and t are two assignments, then pre(s)t is

an assignment that applies s at the previous time step, and t at the current time step.
The first part of the model, ∆, consists in a set of propositional formulas over V that specifies a set

of admissible transitions→∆ 1. A pair of states (s, t) belongs to→∆ , which we note s→∆ t , if and only if the
assignment pre(s)t satisfies all the formulas in ∆, i.e. s→∆ t if and only if pre(s)t |= ∆. s0 is the initial
state. A state is admissible if and only if it is reachable from s0 via a sequence of admissible transitions.

The second part of the model Γ is an ordered list (γ1, · · · , γp) of preferences of the form γi =
(vγi, Cγi) where vγi ∈ V is the target variable and Cγi is a propositional formula over V, and describes
the condition for preferring vγi to vγi.

Definition 1 (Preference satisfaction). A transition s→∆ t satisfies preference γi = (vγi, Cγi) if and only
if the assignment pre(s)t satisfies the formula (vγi ↔ Cγi). We note s→∆ t |= γi.

Due to the definition of satisfaction, and for the sake of clarity, a preference can equivalently be
described as γi = (vγi, Cγi) or γi = (¬vγi ,¬Cγi). We assume that the preference dependences form
no cycle, i.e. that for any two preferences γi and γj , i < j, the condition of γi does not depend on the
target of γj , i.e. vγj /∈ Cγi . Informally, γi is considered more important than γj , so it must not depend
on the outcome of γj . See [2] for a more in-depth discussion on the consistency of preference models.

Definition 2 (Transition preference order). A transition s→∆ t is preferred to another s ′→∆ t ′, noted
s→∆ t �Γ s ′→∆ t ′, if and only if there exists an index i such that s→∆ t |= γi, s ′→∆ t ′ 6|= γi, and for
every j ∈ [1..i], s→∆ t |= γj ↔ s ′→∆ t ′ |= γj .

1In a small abuse of notation, we use ∆ to denote both the set of formulas {δ1, · · · , δn} and the conjunction δ1 ∧ · · · ∧ δn.

236

Intermittent Fault Diagnosis as Discrete Signal Estimation: Trackability analysis Xavier Pucel and Stéphanie Roussel

Power
Supply

hpow swpos

A1

h1

A2

h2

a1

a2
al2

Figure 1: A system with one power supply and two redundant actuators. The power supply is subject
to a permanent fault. The first actuator and the power supply are subject to random intermittent faults.
When a fault occurs on actuator A2, it reboots, and sends an alarm just after.

As described in [1], the PTLTL logic (propositional logic enriched with past temporal operators
Y for yesterday and S for since) is a convenient and efficient specification language for ∆. Γ can be
described by a conditional preference theory, where the preference conditions are specified in PTLTL
as well. When written using PTLTL sentences, the estimation model can be flattened into propositional
logic formulas by introducing variables for aliasing temporal operators, and memoizing some variable’s
past values. The flattening operation is linear in time and memory [3].

With the aforementioned assumptions made on Γ, �Γ may be only a partial order. A sufficient
condition for it to be a total order is to assume there exists one preference for each variable in V. This
guarantees that for any state and any input, there exists a unique preferred successor state. However, as
we will see in definition 4, there is no need for preferences on observable variables nor for previously
estimated variables (pre(v) for v ∈ E) since there is no ambiguity on their value in the estimation
process.

We naturally extend the observable projection from states to paths.

Definition 3 (System Path, Observable path). A system path is a sequence of states p = (s0, · · · , sn) ∈
S∗ such that si→∆ si+1 for i ∈ [0..n[. We note L∆ ⊆ S∗ the language of all system paths, ‖p‖ the length
of p, p[i] the i-th state in p, and p[i..j] = (si, · · · sj), with 0 ≤ i ≤ j ≤ ‖p‖.

The observable projection of a path p ∈ S∗ is the sequence Pobs(p) = (p[0]↓O, · · · , p[n]↓O).

Example 1. We consider a switch mechanism between two redundant actuatorsA1 andA2, powered by
a common power supply, as represented in Figure 1. Our system is modeled by the following variables:
swpos : switch position (true when actuator A1 is active)
hpow : power supply health status (true when nominal)
hi : actuator Ai health status (true when nominal)
ai : actuator Ai active (true when operating)

al2 : actuator A2 alarm event
yi : symptom that Ai is not functioning

oyi : symptom yi has appeared in the past

The above variables correspond to set Vnow.

The set of observable variables is O = {swpos, a1, a2, al2}, and the set of estimated variables is E =
{hpow, h1, h2}.

237

Intermittent Fault Diagnosis as Discrete Signal Estimation: Trackability analysis Xavier Pucel and Stéphanie Roussel

The transition relation is defined as:

∆ =



hpow→ pre(hpow)
a1↔ (hpow ∧ swpos ∧ h1),
a2↔ (hpow ∧ ¬swpos ∧ h2),

al2↔ (¬pre(h2) ∧ h2),
y1↔ (swpos ∧ ¬a1),
y2↔ (¬swpos ∧ ¬a2),

oy1↔ (pre(oy1) ∨ y1),
oy2↔ (pre(oy2) ∨ y2)



(δ1)
(δ2)
(δ3)
(δ4)
(δ5)
(δ6)
(δ7)
(δ8)

A fault in the power supply is permanent (δ1). Each actuator is active if and only if the power supply
is healthy, the switch is in the appropriate position, and it is healthy (δ2)(δ3). When actuator A2 fails,
it tries to reboot. If it succeeds, it sends an alarm event indicating its status is back to ok (δ4). For
clarity purposes, we introduce “symptom” variables yi, indicating when we expect actuator i to be
working and it is not (δ5)(δ6). We memoize if each symptom has happened in the past (δ7)(δ8). All
components are subject to intermittent faults for which we have no model, this is why we model their
status as unobserved input variables indicating their health status.

The initial state is:
s0 = swposhpowh1h2a1a2al2y1y2oy1oy2

The preference model implements the following estimation strategy. When a symptom appears on
only one actuator, we assume the cause is an actuator failure. However, once a symptom has appeared
on each actuator, we blame the battery. Moreover, once we estimate an actuator to be faulty (or healthy),
we keep this estimation until we have evidence its health status has changed.

Γ =


(
¬hpow, oy1 ∧ oy2

)(
¬h1, ¬pre(h1) ∨ (y1 ∧ hpow)

)(
¬h2, ¬pre(h2) ∨ (y2 ∧ hpow)

)
 (γ1)

(γ2)

(γ3)

When a symptom has occurred on both actuators, we prefer explanations in which the power supply
is faulty (γ1). We prefer explanations in which actuators are healthy when they were healthy at the
previous time step, and when if there is a symptom, it is already explained by a power supply failure
(γ2)(γ3).

We did not specify any preference for y1, y2, oy1, oy2, since ∆ will leave no ambiguity for these
variables. It is possible to add a dummy preference (v,>) for each of these variables, with no impact
on the estimator’s behaviour.

3 Estimation process
Despite the assumptions made on the preference model (at most one preference per variable, acyclic
preference conditions), the preferred successor state of a given state for a given observation remains a
difficult task.

Definition 4 (State estimation problem). Given a model (s0,∆,Γ), a previous estimated state for a
previous observation ŝ ∈ Obs × Est and a current observation obs ∈ Obs , the estimation problem
consists in finding the successor of ŝ that produces obs and that is preferred by �Γ. Formally, if there
exists a transition s→∆ t such that:

s↓O∪E = ŝ, t↓O = obs, and (1)
∀s ′→∆ t ′ satisfying (1), s→∆ t �Γ s ′→∆ t ′ (2)

238

Intermittent Fault Diagnosis as Discrete Signal Estimation: Trackability analysis Xavier Pucel and Stéphanie Roussel

System : s0 s1 . . .

Estimator : init ŝ0 ŝ1 . . .s0↓O s1↓O

Figure 2: System / Estimator synchronization. The estimator uses a special init state for startup.

then t̂ = t↓O∪E is the estimated state. If no transition satisfies (1), the estimated state is undefined.

The state estimation problem is an instance of constrained outcome optimisation in CP-theories,
several algorithms have been suggested to solve it [4]. Our approach, detailed in [1], is to reduce it to a
boolean optimization problem, encoded as a Partial Weighted MaxSAT query [5] as follows:

1. Assignments ŝ and obs are encoded into hard clauses;

2. Constraints in ∆ are encoded into hard clauses;

3. For every preference γi, i ∈ [1..p], the constraint vγi ↔ Cγi is encoded into soft clauses with
weight 2p−i;

The solution to the MaxSAT query encodes the preferred successor state for ŝ for observation obs.

Definition 5 (Estimator). An estimator for a model (s0,∆,Γ) with respect to observable variables O
and estimated variables E is a deterministic automaton (Eest, Sest, init, estim) where:
– Eest = Obs is the input alphabet;
– Sest = (Obs × Est) ∪ {init} is the set of estimator states;
– init is the initial state;
– estim is a partial transition function defined as:

– estim(init, s0↓O) = s0↓O∪E, and
– estim(ŝ, obs) = t̂ if and only if t̂ is defined, and is the estimated state for ŝ and obs.
The initialization of the estimator and its relation with the system are illustrated in Figure 2. We

note Lestim ⊆ Obs∗ the language accepted by the estimator.

There are two important assumptions about the estimation process. The first assumption is that the
estimated state estim(ŝ, obs) only depends on the previous estimated state ŝ , and not on the history of
the system. However, it is possible to introduce variables for memoizing past features, and expressing
preferences on these variables. This task is especially easy when using PTLTL for modeling (see [1]).
The second assumption is that the estimated state estim(ŝ, obs) only depends on the variables of E ∪ O
at the previous time step, and not on other variables. This is a feature that is particularly helpful in
managing divergence, as we will see in section 5.

Example 2 (Estimation). In our example, we have E ∪ O = {hpow, h1, h2, swpos, a1, a2, al2}. Let ŝ0 =
s0↓O∪E, and let nothing particular happen, we have obs1 = swposa1a2al2 . The estimated state is
ŝ1 = obs1hpowh1h2 . hpow and h1 are enforced by δ2, and h2 is deduced by applying preference γ3.

From ŝ1, let A1 fail. We receive observation obs2 = swposa1a2al2 . The estimated state is ŝ2 =
obs2hpowh1h2 . hpow is obtained by applying preference γ1 (since oy2 is false by δ6 and δ8), then
preference γ2 imposes h1 and γ3 gives h2 .

If, in response to estimation ŝ1, the operator switches to actuator A2, and we receive observation
obs3 = swposa1a2al2 , the estimated state is ŝ3 = obs3hpowh1h2 . δ3 enforces hpowh2 , and γ2 prefers
h1 , since in ŝ2, h1 is false.

Finally, let the operator switch back to A1, and let us observe obs4 = swposa1a2al2 . The estimated
state ŝ4 = obs4hpowh1h2 is returned. Note that in ŝ4, preference γ2 is violated: the condition is falsified
(since pre(h1) is false in ŝ3), so for γ2 to be satisfied we need h1 . However, δ2 enforces h1 , and wins

239

Intermittent Fault Diagnosis as Discrete Signal Estimation: Trackability analysis Xavier Pucel and Stéphanie Roussel

over γ2. This illustrates how preferences are soft constaints that are only applied when ∆ allows both
values for some variable.

4 Divergence, Deadlocks and Trackability
At each time step, for a given state and input, there may be several possible successor states, which
means that an estimator may choose the wrong branch. In this case, the estimator diverges from the real
system state. This is the source of several potential problems that should be at least detected at design
time.

Example 3 (Divergence and deadlock). From ŝ0 = s0↓O∪E, let us receive observation obs1 =
swposa1a2al2 , which yields estimation ŝ1 = obs1hpowh1h2 as described in Example 2.

Let the next observation be obs2 = swposa1a2al2 : actuator A2 sends a “reboot finished” alarm.
The assignment pre(ŝ1) entails pre(h2), which, along with observation al2 , violates constraint δ4.
There is no estimated state for this scenario.

Informally, at time step 1, actuator A2 failed silently, but the estimator diverged and decided that
h2 was true because of preference γ3. At time step 2, observation al2 and rule δ4 are inconsistent with
the previous estimated state. Consequently by definition 4 there is no estimated state at time step 2. The
artefact composed of the system and the estimator cannot evolve synchronously, and deadlocks.

This deadlock phenomenon is due to the fact that the system and the estimator can take two exe-
cution branches that display the same observations at first, then different observations after some time.
Whatever branch the system takes, the estimator may choose according to its preference model. If
the estimator chooses the wrong branch, then later on the system will produce observations that are
inconsistent with the previous choices of the estimator.

This problem exists as well when diagnosing permanent faults, and has been addressed in the lit-
terature [6, 7]. Some online solutions have been proposed: backtrack in time to identify the correct
execution branch, or reset the estimator to a “any state” estimation. In this paper, we attempt to detect
and eliminate this problem at design time.

4.1 Trackability
The intuition behind trackability is the same as in [6]. A system is trackable by an estimator if and
only if the estimator for the variables in E accepts all the observation sequences from the system. As
illustrated in example 3, this is not always the case.

Definition 6 (Trackability). A system with language L∆ ⊆ S∗ is trackable if and only if ∀p ∈
L∆, Pobs(p) ∈ Lestim .

Checking trackability can be done in a way that resembles so-called “Twin-Plant” approach to diag-
nosability [8] or regular language difference algorithms for automata. We construct a tracking plant by
introducing new variables v̂ not in V and build a transition system as follows.

Definition 7 (Tracking Plant). Let (s0,∆,Γ) be an estimation model, and let O and E be the sets
of observable and estimated variables respectively. The tracking plant (TP) is the Kripke Structure
(ST , IT , RT , LT) defined as follows:
– The set of states ST = S×(Obs×Est)×B is encoded with the variables V∪{v̂ | v ∈ O∪E}∪{track}.

The initial state is unique: IT = {(s0, s0↓O∪E,>)}.
– The labelling function LT : ST → B, defined by LT

(
(s, ŝ, k)

)
= k, simply records the value of

variable track.

240

Intermittent Fault Diagnosis as Discrete Signal Estimation: Trackability analysis Xavier Pucel and Stéphanie Roussel

– The transition relation RT ⊆ ST × ST is defined by the following conditions:(
(s, ŝ,>), (t , t̂ ,>)

)
∈ RT if and only if s→∆ t and

t̂ = estim(ŝ, t↓O)
(3)(

(s, ŝ,>), (t , ŝ,⊥)
)
∈ RT if and only if s→∆ t and

estim(ŝ, t↓O) is undefined
(4)(

(s, ŝ,⊥), (s, ŝ,⊥)
)
∈ RT (5)

Informally, the tracking plant runs the system model ∆ and the estimator side by side, and annotates
each step with a variable track initially set to >. (3) requires that when the estimator accepts the
observation t↓O, it estimates the next state, and track is kept to >. When estim is undefined, (4)
requires that track switches to false, indicating that the system has generated an observation that the
estimator does not accept. (5) lets the TP be alive for consistency with Kripke Structure axioms.

Proposition 1 (Trackability condition). A deadlocking path is a path of the tracking plant p ∈ ST∗

ending in a state where track is false.
The estimation model (s0,∆,Γ) is trackable with respect to O and E if and only if the tracking plant

contains no deadlocking path.

Proof by induction. Let there be a model (s0,∆,Γ) with ∆ = ⊥. We have →∆ = ∅, L∆ = s0, and
the estimator only contains the initial transition, i.e. Lestim = {s0↓O}, thus by definition 6 the system
is trackable. Moreover, the TP has no transition either, its only state is (s0, s0↓O∪E,>), it contains no
deadlocking path. Proposition 1 is verified.

Let a model (s0,∆,Γ) satisfy proposition 1, and let us add a single transition from s to t. We note
→∆ ′ =→∆ ∪ (s, t), ∆′ = ∆ ∨ form(pre(s)t), and L′∆ = L∆ ∪ {p.s.t | p.s ∈ L∆}. The model(s0∆′,Γ)
has an estimator that accepts language L′estim and its tracking plant is noted TP′.

Let q ∈ L′∆ denote any path of length n ending with s, and such that Pobs(q) ∈ L′estim . This means
that there exists a unique path in the estimator q̂ ∈ Est∗ such that q̂ [i + 1] = estim ′(q̂ [i], q↓O) for
i ∈ [1..n[(def. 5). Consequently, the state (q [n], q̂n,>) is reachable in the TP′ via transitions of type
(3).

Let us assume that for all such q, estim ′(q̂ [n], t↓O) is defined and equal to t̂ . Then Pobs(q.t) ∈
L′estim (def. 5) and the system is trackable (def. 6). Also, TP′ contains the transitions of TP plus(
(q [n], q̂n,>), (t , t̂ ,>)

)
by rule (3), which introduces no deadlocking path.

Let us now assume that there exists a q such that estim ′(q̂ [n], t↓O) is undefined. Then q̂ [n] has no
transition labelled t↓O (def. 5), thus Pobs(q.t) /∈ L′estim and the system is not trackable. Moreover, TP′

contains the transitions of TP plus
(
(q [n], q̂n,>), (t , q̂n,⊥)

)
by rule (4), which introduces a deadlocking

path.

In [8], diagnosability checking is done by model-checking a similar construction called “coupled
twin plant”. In our approach, the system is trackable if and only if the tracking plant satisfies the CTL
formula AG(track) (or equivalently ¬EF (¬track)). Thus, a model-checker for CTL logic [9] can
check a system’s trackability if we can feed it with a description of the Tracking Plant.

However, as stated in section 3, the estimator’s transition function estim is expressed as a boolean
optimization problem called Partial Weighed MaxSAT. The framework of symbolic model checking
only accepts transition functions expressed as a constraint satisfaction problem (with hard constraints
only). In the next section, we attempt to translate the optimization problem into a satisfaction problem.

241

Intermittent Fault Diagnosis as Discrete Signal Estimation: Trackability analysis Xavier Pucel and Stéphanie Roussel

4.2 Preferences as hard constraints
It is possible to translate each preference into a constraint that will reject suboptimal transitions. The
constraints encode the following idea: “for each preference γi, for each state such that both vγi and
vγi are admissible, independently of preferences γj , j > i, choose the one value that satisfies γi”.
To express such constraints, we need to define quantifiers as follows. Fv=> (resp. Fv=⊥) denotes the
formula F in which every occurrence of v is substituted by> (resp. ⊥). We define ∃v, F = Fv=>∨Fv=⊥,
and ∀v, F = Fv=> ∧ Fv=⊥.

Definition 8 (Unconditional optimality constraint). The optimality constraints Φ1 . . .Φp respectively
associated to preferences γ1 . . . γp are defined as follows:

Φ1 = ∆ ∧
((
∀vγ1, (∃vγi)i∈[2..p],∆

)
→ (vγ1 ↔ Cγ1)

)
· · ·

Φj = Φj−1∧
((
∀vγj, (∃vγi)i∈[j+1..p],Φj−1

)
→ (vγj ↔ Cγj)

)
· · ·

Φp = Φp−1∧
((
∀vγp,Φp−1

)
→ (vγp ↔ Cγp)

)
A transition s→∆ t that satisfies Φp is optimal with respect to�Γ. Hence, for a previous estimated state ŝ
and an observation obs, the state pre(ŝ)obst̂ that satisfies Φp is unique and we have estim(ŝ, obs) = t̂ .

Example 4. Preference γ1 = (hpow,¬oy1 ∨ ¬oy2) is associated with constraint:

Φ1 = ∆ ∧
(

(∀hpow, ∃h1, ∃h2,∆)→
(
¬hpow ↔ (oy1 ∧ oy2)

))
= ∆ ∧

((
(∀hpow, δ1) ∧ (∀hpow,∃h1, δ2) ∧ (∀hpow, ∃h2, δ3)∧

(∃h2, δ4) ∧ δ5 ∧ δ6 ∧ δ7 ∧ δ8
)

→
(
¬hpow ↔ (oy1 ∧ oy2)

))
= ∆ ∧

((
(∀hpow, ∃h1, δ2) ∧ (∀hpow, ∃h2, δ3)

)
→

(
¬hpow ↔ (oy1 ∧ oy2)

))2

= ∆ ∧
((

pre(hpow) ∧ ¬a1 ∧ ¬a2
)

→
(
¬hpow ↔ (oy1 ∧ oy2)

))
The constraint can be read as follows. If the power supply was working at the last time step and no

actuator is working (this means at least one component is failing), then let hpow be false only if there has
been a symptom on both actuators. This exactly implements the preference γ1.

In practice, the constraint Φp is computationally very difficult to encode. Experiments with BDDs
[10], or QBF [11] failed to scale up to moderately complex examples. While the scalability problems of
BDDs are well known, in the case of QBF, the difficulty resides mainly in normalizing of the formulas
into QCNF. Since the quantifiers are nested deeply into equivalence formulas, each of which must be
expanded twice for normalization, the problem quickly explodes in the number of preferences.

As a consequence, we cannot check trackability directly on the tracking plant. Instead, we use an
approximation of the estimator’s transition function to construct an approximate tracking plant.

2∆ implies δ4 which implies ∃h2, δ4. Since ∆ holds, ∃h2, δ4 can be removed from the condition. The same applies to δ5 to
δ8.

242

Intermittent Fault Diagnosis as Discrete Signal Estimation: Trackability analysis Xavier Pucel and Stéphanie Roussel

4.3 Approximation of Preferences
In order to model-check the tracking plant and verify if the system is trackable, we now describe an
approach where the transition function of the estimator estim is overapproximated. Informally, this
means that some spurious transitions are added to the estimator in order to simplify the expression of
its transition relation. As a consequence, the tracking plant also contains spurious transitions, and the
model-checker may discover spurious deadlocking paths.

We assume we are using a model-checker that returns a counter example when the property is not
valid on the system. In our case, this means that when checkingAG(track), a counter example consists
in a deadlocking path. Our approach consists in checking if the counter example is spurious by checking
that all its transitions are optimal with respect to �γ . In the case the deadlocking path is spurious, it
violates at least one preference that could have been satisfied. We encode this knowedge in a constraint,
use it to refine the approximation of the estimator’s transition relation and iterate the process.

Upon discovery of a proper deadlocking path, it must be eliminated. Various elimination techniques
are discussed in section 5.

Definition 9 (Approximate Tracking Plant). The Approximate Tracking Plant (ATP) for a model
(s0,∆,Γ), respective observable and estimated variable sets O and E, and a set Ξ of learned constraints,
is the Kripke Structure (ST , IT , RTΞ , L

T) with the same states, initial states and labelling function as
the tracking plant, and such that RTΞ is defined by the following conditions:(

(s, ŝ,>), (t , t̂ ,>)
)
∈ RTΞ if and only if s→∆ t and

pre(ŝ)̂tt↓O |= ∆ ∪ Ξ
(6)(

(s, ŝ,>), (t , ŝ,⊥)
)
∈ RTΞ if and only if s→∆ t and

∀t̂ ∈ Est ,pre(ŝ)̂tt↓O 6|= ∆ ∪ Ξ
(7)(

(s, ŝ,⊥), (s, ŝ,⊥)
)
∈ RTΞ (8)

An approximate deadlocking path is a path in the ATP ending in a state where track is false.

When Ξ is empty, the ATP ignores the preferences, and assumes that the estimator can follow any
path accepted by ∆. Thus, it accepts more paths than the tracking plant. When it is model checked for
the property AG(track), two outcomes are possible. On the one hand, if the property is valid on the
ATP, it is thus valid on the TP, and the system is trackable. On the other hand, if the property is not valid
on the ATP, a counter example is produced, under the form of an approximate deadlocking path. The
next step is to validate whether this approximate deadlocking path is a valid deadlocking path.

Definition 10 (Deadlocking path validation). An approximate deadlocking path p =
(
(s0, ŝ0, k0), · · · ,

(sn, ŝn, kn)
)

is a valid deadlocking path if and only if ŝi+1 = estim(ŝi, si+1↓O) for i ∈ [1..n[. It is
spurious otherwise.

Note that computing estim(ŝ, si+1↓O) is done by calling a MaxSAT solver as described in section
3. Validating a path thus requires n MaxSAT calls, which is quite tractable in our experiments.

A spurious approximate deadlocking path is such that at some index i, we have ŝi+1 6=
estim(ŝi, si+1↓O). We note ei = estim(ŝi, si+1↓O). Consequently there exists a preference that is
violated by the estimator’s transition while it could have been satisfied. This preference γj = (vj, Cj)
is actually the first preference (by index) such that ŝi+1(vj) 6= ei(vj).

The final step in our approximation refinement is to identify from γj what can be learned and
added into Ξ. In definition 8, the sufficient condition for γj to be applicable is defined as cond j =
(∃vγk)k∈[j+1..p],∀vj,Φj−1. By construction the scope of cond j does not contain any variable vγk, j ≤

243

Intermittent Fault Diagnosis as Discrete Signal Estimation: Trackability analysis Xavier Pucel and Stéphanie Roussel

k, since they have been quantified out. The assignment pre(ŝi)si+1↓O necessarily satisfies this con-
dition, since γj should have been applied. Moreover, variables in {vγk | j ≤ k}) do not impact this
preference. Thus, the we have learned one model of cond j , that, when it occurs, is sufficient to trigger
the application of γj .

Definition 11 (Learned condition). Let a spurious approximate deadlocking path p =
(
(s0, ŝ0, k0), · · · ,

(sn, ŝn, kn)
)

violate preference γj at time step i. The learned condition ξ is defined by:

cond =
(
pre(ŝi)si+1↓O

)
↓V−{vγk | j≤k}

ξ =

{
form(cond)→ vγj if cond |= Cγj
form(cond)→ ¬vγj if cond 6|= Cγj

Where form(x) is a formula accepting only x as a model.

We add the learned condition ξ to Ξ and iterate the deadlock search until a proper deadlock is found,
or until it is proved that the estimator will not deadlock.

Example 5. The ATP can detect a deadlocking path as follows (variables â1,â2,ŝwpos,âl2, are omitted
as they have the same value as their system counterpart):

0. swposhpowh1h2a1a2al2y1y2oy1oy2 ĥpow ĥ1 ĥ2 >
1. swposhpowh1h2a1a2al2y1y2oy1oy2 ĥpow ĥ1 ĥ2 >
2. swposhpowh1h2a1a2al2y1y2oy1oy2 ĥpow ĥ1 ĥ2 ⊥

At step 1, actuator A1 fails, and the estimator has an explanation for it, thus a transition of type (6)
is fired. In this path the approximate estimator explains observation a1 by blaming the power supply.
In reality, this explanation violates preference γ1, which could have been satisfied (see Example 2). At
step 2, A1 is back to normal and produces observation a1 . The approximate estimator cannot explain
this since it assumed the power supply has permanently failed. Thus a transition of type (7) is fired, and
track is set to ⊥.

Since preference γ1 has been violated at step 1 while it could have been satisfied, this deadlocking
path is spurious. We learn the clause:

ξ = form(swposa1a2y1y2oy1oy2)→ hpow

= (swpos ∧ a1 ∧ ¬a2 ∧ y1 ∧ ¬y2 ∧ oy1 ∧ ¬oy2)→ hpow

The most expensive operation in the deadlock search is the model-checking phase, since symbolic
model-checking of CTL formulas is PSPACE [12] in ‖V‖, while the other steps are at most NP-HARD in
‖V‖. Since the analysis takes place at design time, it is acceptable to consider somewhat time-consuming
algorithms.

5 Deadlock elimination
A proper deadlock is an actual problem for the estimator, and should be eliminated at design time. The
most straightforward way is to modify the system, either by making some variables observable, or by
modifying the system behaviour. However, another way to look at deadlocks is that they are caused
by an attempt to estimate signals that cannot be estimated with certainty, or at least not with the fault
management policy specified by the preference model. From this point of view, the correct way to
eliminate a deadlock is to try and estimate another signal. We present here two examples that illustrate
two generic elimination solutions: delayed estimation, and conditional estimation.

244

Intermittent Fault Diagnosis as Discrete Signal Estimation: Trackability analysis Xavier Pucel and Stéphanie Roussel

Example 6 (Delayed estimation). The deadlock illustrated in Example 3 can be eliminated by intro-
ducing an additional variable ph2 (for previous h2) initialized to true, an additional hard constraint
δ9 = ph2 ↔ pre(h2) in ∆, an additional dummy preference γ4 = (ph2,>) in the last position of Γ,
and setting E = {hpow, h1, ph2}.

This eliminates the deadlock because the estimator remembers only the values for variables in E∪O.
We removed h2 from this set and replaced it with ph2. Now, this means that the estimator is not bound
by the value it assigned h2 by preference γ3: it can assign ph2 even if it assumed h2 at the previous time
step.

In detail, the scenario from Example 3 now unfolds as follows. From ŝ0 = s0↓O∪Eph2 , we receive
observation obs1 = swposa1a2al2 . This prompts estimation ŝ1 = obs1hpowh1ph2 , in this case ph2 is
determined by preference γ3 and rule δ9, and preference γ4 is not applied. Then, observation obs2 =
swposa1a2al2 , the estimator successfully finds the state ŝ2 = obs2hpowh1ph2 .

This example illustrates how the value of h2 is not trackable, but its previous value is. This notion is
similar in intent to the concept of diagnosability introduced in [13], where a permanent fault is diagnos-
able when an observer can deduce its occurrence after a bounded delay. The definition of trackability
in [6] is more similar to ours, even though it addresses only permanent faults as well. The discussion
about the size of the “prediction window” corresponds precisely to a delayed diagnosis.

Example 7 (Conditional estimation). Another proper deadlocking path exists, when a temporary fault
occurs on each actuator during operation, then everything is back to normal. The estimator incorrectly
blames the power supply, and cannot explain that everything comes back to normal. Formally, the
proper deadlocking path is:

0. swposhpowh1h2a1a2al2y1y2oy1oy2 ĥpow ĥ1 ĥ2 >
1. swposhpowh1h2a1a2al2y1y2oy1oy2 ĥpow ĥ1 ĥ2 >
2. swposhpowh1h2a1a2al2y1y2oy1oy2 ĥpow ĥ1 ĥ2 >
3. swposhpowh1h2a1a2al2y1y2oy1oy2 ĥpow ĥ1 ĥ2 ⊥

At time step 1, actuator 1 fails. At time step 2, the switch is flipped, actuator 1 is back to normal, and
actuator 2 fails. There have now been symptoms on both actuators, the estimator blames the power
supply. At time step 3, actuator 2 is back to normal. This deadlocking path is due to the fact that our
fault management policy chooses a permanent fault over an intermittent one.

There are times when a power supply failure can be detected with certainty: when A2 just rebooted,
we know A2 is working. If in this instant the switch is positioned towards A2, we can deduce the
value of hpow. Thus if we introduce a variable surefailpow, a constraint surefailpow ↔ (¬swpos ∧
pre(al2) ∧ ¬hpow), some dummy preference (surefailpow,⊥), and estimate this variable instead of
hpow (i.e. E = {surefailpow, h1, h2}), the deadlock is eliminated. It is a form of conditional estimation,
since the value of hpow can be deduced from that of surefailpow only when some conditions are met,
namely when surefailpow is true.

Another way to eliminate this deadlock is to model and estimate the “confidence” we have in the
power supply’s health. While a fault in the power supply is permanent, our confidence in it can be
intermittent. With a variable cpow, a rule cpow → hpow a preference γ5 = (cpow, pre(cpow)), it we
estimate cpow instead of hpow (i.e. E = {cpow, h1, h2}), the deadlock is eliminated as well, since at step
3, instead of violating constraint δ1, we will be violating preference γ5.

The last example illustrates how a way to manage deadlocks can be to estimate other signals. This
is very important, since it also impacts which reconfigurations can be made. When a designer chooses
to eliminate a deadlock by estimating a delayed or conditional version of a signal, they can adapt the
reconfiguration policy adequately.

245

Intermittent Fault Diagnosis as Discrete Signal Estimation: Trackability analysis Xavier Pucel and Stéphanie Roussel

6 Conclusion

Adressing the problem of fault diagnosis as a discrete signal estimation problem increases the expres-
siveness of the model: we are not limited only to permanent physical degradations, but can model
and estimate intermittent perturbations, function performance (past, present), action outcomes (past,
present), and even make some form of prediction, for example via a confidence model, about function
performance and action outcomes. This is very convenient for specifying fault management policies for
autonomous systems and vehicles.

In terms of modeling expressiveness, the diagnosis approaches most similar to ours are based on
probabilistic models such as [7]. In these approaches, the preferred transition(s) are the most probable
ones. The main, well known limitation of probabilistic approaches is the difficulty to set the probabil-
ities. This is especially true for autonomous systems: during the inevitable testing phase, the problem
of adjusting the probabilities so that the system passes a given set of unit tests is very difficult. We
claim that the modeling framework of conditional preferences is more designer-friendly when it comes
to validating the system against a set of unit tests. For a comparison with other diagnosis modelling
approaches, see [1].

With greater expressiveness comes greater computational difficulty. Our estimator executes a
MaxSAT query at each time step, which has poor worst case execution time. Moreover, verifying
that the model does not deadlock is a computationally difficult task. Our approach of model-checking
overapproximations or the estimator and iteratively refining them is inspired by [14], who initially de-
velopped this method for software systems. While our approach will ultimately find deadlocks if they
exist, proving an estimation model is deadlock free can only be done on finite horizons with bounded
model-checking [15], unless the model-checker handles the estimator’s transition function, which is un-
likely on realistic examples. It would be interesting to define restricted models for which more efficient
algorithms exist.

There are multiple directions for the future development of this approach. First, experimental results
should be produced for non-trivial examples. Second, the definition of the Approximate Tracking Plant
and of the learned conditions could take advantage of the structure of the transition relation in order to
minimize the number of iterations, which is the most important factor in the performance of our analysis.
Third, properties other than trackability shall be defined and checked. In particular, the correctness and
the stability of the estimation are important properties when designing a fault management system. By
correctness we mean that the estimator should converge to the exact value in a given amount of time, and
by stability we mean that the estimator should not introduce spurious fault events, which may trigger
useless system reconfigurations.

References
[1] Cedric Pralet, Xavier Pucel, and Stéphanie Roussel. Diagnosis of intermittent faults with conditional prefer-

ences. In Proceedings of the 27th International Workshop on Principles of Diagnosis (DX’16), 2016.
[2] Craig Boutilier, Ronen I Brafman, Carmel Domshlak, Holger H Hoos, and David Poole. Cp-nets: A tool for

representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res.(JAIR),
21:135–191, 2004.

[3] E. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, Volume B:Formal Models and Semantics, pages 995–1072. Elsevier, 1990.

[4] Nic Wilson. Computational techniques for a simple theory of conditional preferences. Artificial Intelligence,
175(7):1053–1091, 2011.

[5] J. Marques-Silva, J. Argelich, A. Graça, and I. Lynce. Boolean lexicographic optimization: algorithms &
applications. Ann. Math. Artif. Intell., 62(3-4):317–343, 2011.

246

Intermittent Fault Diagnosis as Discrete Signal Estimation: Trackability analysis Xavier Pucel and Stéphanie Roussel

[6] Alban Grastien, Anbu Anbulagan, et al. Incremental diagnosis of DES with a non-exhaustive diagnosis engine.
In Proceedings of the 20th International Workshop on Principles of Diagnosis. Linkoping University Institute
of Technology, 2009.

[7] James Kurien and P Pandurang Nayak. Back to the future for consistency-based trajectory tracking. In
AAAI/IAAI, pages 370–377, 2000.

[8] Alessandro Cimatti, Charles Pecheur, and Roberto Cavada. Formal verification of diagnosability via symbolic
model checking. In Georg Gottlob and Toby Walsh, editors, IJCAI-03, Proceedings of the Eighteenth Inter-
national Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003, pages 363–369.
Morgan Kaufmann, 2003.

[9] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore, Marco Roveri,
Roberto Sebastiani, and Armando Tacchella. Nusmv 2: An opensource tool for symbolic model checking. In
International Conference on Computer Aided Verification, pages 359–364. Springer, 2002.

[10] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial Intelligence
Research, 17(1):229–264, 2002.

[11] Mikolas Janota, Charles Jordan, Will Klieber, Florian Lonsing, Martina Seidl, and Allen Van Gelder. The
QBFGallery 2014: The QBF competition at the FLoC olympic games. Journal on Satisfiability, Boolean
Modeling and Computation, 9:187–206, 2016.

[12] Philippe Schnoebelen. The complexity of temporal logic model checking. Advances in modal logic, 4(393-
436):35, 2002.

[13] Meera Sampath, Raja Sengupta, Stéphane Lafortune, Kasim Sinnamohideen, and Demosthenis Teneketzis.
Diagnosability of discrete-event systems. Automatic Control, IEEE Transactions on, 40(9):1555–1575, 1995.

[14] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-guided abstrac-
tion refinement. In Computer aided verification, pages 154–169. Springer, 2000.

[15] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yunshan Zhu. Bounded model
checking. Advances in computers, 58:117–148, 2003.

247

	Introduction
	Estimation model
	Estimation process
	Divergence, Deadlocks and Trackability
	Trackability
	Preferences as hard constraints
	Approximation of Preferences

	Deadlock elimination
	Conclusion

