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Abstract

The goal of this work is to solve a nonlinear parabolic PDE problem that arise in the
financial world by means of the so called PINNs methodology. We propose a novel treat-
ment of the boundary conditions that allows us to avoid, as far as possible, the heuristic
choice of the weights for the contributions of the boundary addends of the loss function
that come from the boundary conditions.

1 Introduction

In recent years there has been a growing interest in approximating the solution of partial differ-
ential equations (PDEs) by means of deep neural networks (DNNs), mathematically understood
as multiple chained compositions of nonlinear multivariate functions. DNNs are known for be-
ing Universal Approximators, property that has been exploited in the recent literature to solve
PDEs. The DNN is trained to learn data from a physical law that is given by a PDE. As a
result, a high dimensional nonlinear optimization problem is obtained. It must be solved using
nonlinear optimization algorithms. Recently, with the advances in automatic differentiation
algorithms (AD) and hardware (GPUs), this kind of technique has gained more momentum
in the literature and, currently, the most promising approach is known as Physics-informed
neural networks (PINNs), see [2]. The use of DNNs for solving PDEs has several advantages.
They can be used for solving nonlinear PDEs without any extra effort; and they yield accurate
approximations of the partial derivatives of the solution via AD. However, they also present
certain disadvantages, such as the difficulty in the treatment of the boundary conditions.

We propose a novel approach to deal with the boundary conditions that allows us to avoid
the heuristic choice of the weights for the contributions of the boundary addends to the loss
function.
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2 Problem formulation

We address a specific and challenging derivative valuation problem in the context of Coun-
terparty Credit Risk. Let Ω = [0, S+

1 ] × [0, S+
2 ] ⊂ R2 be a bounded and connected domain

and K (strike) and T > 0 (maturity of the contract). In addition, we define the spatial
boundaries of the domain Ω as Γ0

1 = (0, T ) × {0} × [0, S+
2 ], Γ0

2 = (0, T ) × (0, S+
1 ] × {0},

Γ+
1 = (0, T ) × {S+

1 } × (0, S+
2 ) and Γ+

2 = (0, T ) × (0, S+
1 ] × {S+

2 }. Consider the following
boundary value problem. Given a nonlinear function f ∈ C(R),

f(V̂ ) = λB(1−RB)V̂ − + λC(1−RC)V̂ + + sF V̂ +, (1)

where λB , λC ≥ 0 and RB , RC ∈ [0, 1] are the credit solvency parameters; and the second
order elliptic operator L,
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with σ1, σ2 > 0; rR1 , rR2 ∈ R and ρ ∈ [−1, 1] the Black Scholes model parameters. The goal is
to find V̂ : (t, S1, S2) ∈ [0, T ]× Ω −→ R such that

∂V̂
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◦
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i , i = 1, 2,

V̂ −K exp {−(r + λB(1− rB) + λC(1− rC))t} = 0, in Γ0
i , i = 1, 2,

V̂ −max{K −min{S1, S2}} = 0, in t = 0.

(3)

We want to approximate the risky derivative value V̂ under the “worst of” payoff (see the
last equation). This can be done by means of a feed-forward neural network, V̂θ(t, S1, S2) :=
V̂ (t, S1, S2; θ), where θ ∈ RP are the network parameters. Thus, we need to find the parameters
θ that yields the best approximation. This leads to a global optimization problem that can be
written in terms of the minimization of a loss function J (θ),
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(4)

where λX are preset hyperparameters that allow to impose a weight to each addend of the loss;
and Rθ

X are the left hand side terms of the boundary problem (3), which can be computed via
AD. The integrals are divided by the integration volume to work with dimensionless quantities.
Under such configuration, not always the optimization algorithm can get us close to a good
local minima. Although the reasons why this happens are poorly understood, [1] points to
the fact that training is focused on getting a small PDE residual, while having large errors
in the fitting of the boundary conditions. As a solution, we propose a novel approach based
on taking as a residual not the boundary condition itself, but the resulting PDE restricted
to the corresponding boundary. This will produce losses of an order of magnitude similar to
that produced by the interior residual. In our particular problem, our proposal translates into
imposing as boundary residuals. For i = 1, 2, i ̸= j,
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Boundary residuals given in (5) are obtained by substituting the boundary conditions given
for Γ+

1 , Γ
+
2 in the PDE; while those given in (6) come from considering the PDE in Γ0

1, Γ
0
2. This

is because the Dirichlet conditions in these boundaries are the solution of the PDE on them.

3 Numerical experiment

Having defined the mathematical model of (3) and how they fit under our reformulation via
PINNs, we compare the computed DNN solution with a reliable reference.

We consider a 4-layers, 60-units per layer DNN and the loss function (4) with the boundary
residuals defined in (5), (6). We use a grid of 141, 204 training points. The optimization process
has 20, 000 steps with Adam and 2, 500 steps with L-BFGS.

In Figure 1a the PINNs solution for the problem (3) at time t = T is presented, while Figure
1b shows the relative error compared with the reference values. The main source of error is
given by the region in which the solution is close to zero, where a relative error of the order of
10−2 is observed. This is mainly due to the non-differentiability of the initial condition. In the
remaining domain we have a relative error of the order of 10−3.
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(a) Solution surface by PINNs.
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(b) Relative error colour map.

Figure 1: DNN for the problem (3) with parameters: K = 50, T = 1, r = 0.03, σ1 = 0.25,
σ2 = 0.15, rR1

= 0.015, rR2
= 0.022, ρ = −0.65, λB = 0.02, λC = 0.07, RB = 0.5 and RC = 0.3.
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