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Abstract

The problem of conceiving a controller for networked systems is a challenging task because of the

complex interaction of its different components with each other and also with the environment around

them. The design process becomes more difficult if large-scaled systems are involved. We propose

reachability analysis of continuous systems to guarantee control requirements which because of the

complexity of the problem could not be taken into account during the control design. As example

we suggest a large-scalable platoon of trucks. We use our own support function implementation to

assess the performances of the obtained controlled platoon and then decide about the best performing

controller.

1 Introduction

Networked control systems are multi-agent systems which exchange information via a commu-
nication network. This information is captured by on-board sensors and then sent to the other
participants. This distributed and scalable structure presents a major challenge for the control
design. The example of a networked platoon of trucks requires not only common control require-
ments like stability, overshoot limitation and fast responses, but also string stability requirement
and collision-free guidance. Formulating all these requirements in the same framework leads
to a complicated optimization problem. Furthermore, the complexity increases drastically with
the dimension of the system. Many approaches have been proposed to overcome this problem.
Many of them like those proposed in [8] and [5] ignore the control part involving the H8 for-
mulation related to string stability and solve the remaining part using the well scalable linear
quadratic regulator (LQR)-control method. Other works solve only the H8 optimization part
[3]. Simulations are then used as tried-and-tested methods to test the ignored requirements. In
[7] the problem is expressed as a mixed H2{H8 problem, which is then formulated as a linear
matrix inequality (LMI) constraints by excluding the string stability condition. A controller for
a platoon of 3 trucks has been computed. In [2], this example has been proposed as a bench-
mark for testing verification tools. Thereby the safety analysis under dropout of communication
between the trucks has been investigated using reachability techniques. However the attempt
to compute a controller for a scalable length of the platoon appears to be hard because of the
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intractability of the LMI-formulation.
Our strategy consists of using the same platoon model proposed in [7], which differs from the
model proposed in [8] and [5], to perform a computation scheme for an LQR-based controller
that is easy scalable to the number of trucks. The LQR-control design is then followed by
a reachability analysis of the controlled platoon to check for the fulfillment of control perfor-
mances not considered in the control design formulation for the sake of feasibility.

The rest of the paper is organized as follows. In Section 2, we handle the control design
problem and describe the adopted control strategy. We introduce in Section 3 the reachabil-
ity technique based on support functions and represent a numerical algorithm for computing
reachable sets of linear continuous systems. We then illustrate in Section 4 our approach on
a controlled platoon of 5 and 10 trucks and show the obtained reachable sets for the 5 trucks
platoon as example followed by some comments. Finally, we wrap up this work with some
concluding remarks in Section 5.

2 Control Design

We first describe the infrastructure of a platoon of N trucks and then explain the control
strategy used to design the corresponding controller.

2.1 Platoon Structure

The platoon infrastructure is illustrated in Figure 1.
A platoon consists of N trucks automatically controlled to follow a manually driven leader
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Figure 1: WLAN cooperative platoon with N trucks and a leader ahead.

ahead. Each truck i is equipped with on-board sensors to measure the own relative distance
di to the truck in front, the relative velocity 9ei and the acceleration ai. It then computes
the spacing error ei defined as the difference between di and a reference distance dref,i. The
collected information ei, 9ei and ai is therefore sent by truck i via a WLAN network to the other
participants and receives in return via WLAN the data flow ej, 9ej and aj with j ‰ i from all
other trucks inside the platoon.
Figure. 2 shows the experimental scaled autonomous trucks in a platoon formation at the
Embedded Software Laboratory of RWTH Aachen.
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Figure 2: Experimental trucks and definition of the spacing error between successive trucks.

2.2 Platoon Model

The platoon is modeled as concentrated masses. The effective acceleration of each truck is
governed by the drivetrain dynamics approximated by a linear first order filter [7]. Its dynamics
is described by the following differential equations

:ei “ ai´1 ´ ai,

9ai “ ´
1

Ti

ai `
1

Ti

ui,
(1)

with Ti the time constant of the drivetrain of vehicle i and ui the corresponding control signal.

2.3 Control and Safety Requirements

For the control design, we first have to stabilize the system while assuring a good disturbance
rejection in terms of small and safe spacing errors ei with a reasonable control effort. To
express mathematically further control objectives, we have to define different transfer functions
and mappings. In [7], the following transfer functions and mapping have been defined

Gipsq “
eipsq

ei´1psq
,

Fv,ipsq “
pvi ´ vLqpsq

aLpsq
, Fa,ipsq “

aipsq

aLpsq
,

H : aL ÞÑ pe1, . . . , en, u1, . . . , unq
T
,

(2)

with H the mapping of aL to errors and control effort. The condition }Gi}8 ă 1 guarantees for
string stability expressed formally by ei ď ej for i ă j, where ă corresponds to the order of the
trucks in the platoon. The conditions }Fv,ipsq}8 ď γv and }Fv,ipsq}8 ď γa maintain, however,
the velocities and accelerations for all the followers respectively below γv }aL}8 and γa }aL}8,
thereby limiting the upper bounds of the overshoots on velocity and acceleration with respect
to the acceleration of the leader aL considered here as a disturbance. The control problem is
formulated in [7] as a mixed H2{H8 optimization problem:

min α. }F }8 ` β. }H}
2
s.t.

}Gi}8 ă 1 @i,
}F.,i}8 ă γ. @i.

(3)

where F is either Fv,ipsq, Fa,ipsq or a combination of both. The }.}
2
-norm minimization of

H guarantees hence for short distance errors with a low control effort. The minimization
problem (3) results in a feedback matrix K. The control input is then given by u “ Kx, where
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x “ r¨ ¨ ¨ ei, 9ei, ai ¨ ¨ ¨ sT P R
3n is the state vector and u is the control vector of the whole platoon.

The closed loop system can therefore be described by the following differential equation

9x “ Acl x ` Bcl aL, (4)

where Acl is a constant system matrix, Bcl is a constant input matrix and aL the acceleration
of the leader considered here as an uncertain input [1].

2.4 Controller Computation

Solving the problem (3) for a platoon of N trucks is challenging. In [7], a solution based on
LMI-formulation has been proposed for a platoon of 3 trucks without considering the string sta-
bility condition and the overshoot limitation conditions. An extension of the LMI-optimization
problem for more than 3 trucks has been revealed to be difficult, after discussions with the
authors of [7]. For this reason, we decided to consider just the H2 part of problem 3 and verify
the other conditions with reachability technique. We use LQR-design [9] to solve this control
problem and consequently compute a feedback matrix K for the whole platoon. We illustrate
our strategy with a platoon of 5, 10 and 15 trucks. We take a time constant of the drivetrain
equal to Ti “ 0.5s for all platoon members. Let γ “ 1{Ti, the platoon dynamics is described
by the following equation

9x “ A.x ` B2.u ` B1.aL. (5)

given in detail by (9).
The control task consists in computing a feedback matrix K such u “ K.x by minimizing the
following cost function

Jpuq “

ż 8

0

“

xTQx ` uTRu
‰

dt (6)

where Q ě 0 and R ą 0 are adequately chosen matrices. The LQR-controller then takes the
following form

u “ ´R´1BT
2 Px (7)

The matrix P is a positive semidefinite solution of the Riccati equation

PA ` ATP ´ Q ` PBR´1BTP “ 0. (8)
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(9)

A reasonably simple choice for the weighting matrices Q and R involved in the minimization
of the LQR-criteria (6) has led to the results of Figures 3, 4 and 5.
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Figure 3: The responses of a controlled platoon of 5 trucks to a leader velocity in form of a
1m{s step.

We note that although only the problem of a fast decline of the errors with a minimum control
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Figure 4: The responses of a controlled platoon of 10 trucks to a leader velocity in form of a
1m{s step.
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Figure 5: The responses of a controlled platoon of 15 trucks to a leader velocity in form of a
1m{s step.
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effort has been tackled by solving just the H2 part of problem (3), an adequate choice of control
parameters could limit the overshoots in the velocity and acceleration with an acceptable system
time response. To guarantee for these performance criteria under all possible disturbances, we
perform a reachability analysis in a next step.

3 Reachability using Support functions

We use reachability technique to first check if the response of system remains in acceptable
ranges under a disturbance aL varying in r´9, 1sms´2. We will second verify if the string
stability condition usually described by the attenuation of gaps along the platoon is kept.
However, our main goal is to determine lower bounds for dref,i assuring collision-free driving.
We opt for this study for a reachability technique based on support functions.

3.1 Support functions

A support function is an algebraic representation of geometric sets.
Let S Ă R

n and l P R
n, the support function of S is the function

ρS : R
n ÝÑ R Y t˘8u

l ÞÝÑ ρSplq :“ supxPS xl, xy
(10)

where xl, xy is the dot product.
The following properties of the support function simplify their manipulation.

Let S, S1, S2 Ă R
n be nonempty sets, l P R

n, A P R
nˆm and λ ě 0,

1. ρλS p.q “ λρS p.q

2. ρS pλlq “ λρS plq

3. ρAS plq “ ρS
`

AT l
˘

4. ρS1‘S2
p.q “ ρS1

p.q ` ρS2
p.q.

These properties will be used in the next section to derive support function based recursive
scheme for computing consecutive reachable sets.

3.2 Reachability Algorithm

Because of the fact that the controlled platoon dynamics take the form given by equation (4),
we recall the recursion scheme given in [6] for the computation of reachable sets. This scheme is
derived from the differential equation 9x “ Ax`Bu with A and B constant matrices describing
linear continuous systems. For a time step r and a time horizon T , the reachable set Ωk at
time t “ k.r can be theoretically obtained by calling the set equation Ωk “ ΦΩk´1 ‘ Vr where
Φ “ erA and Vr is the input contribution for which an approximation will be proposed in the
next paragraph. The input u is supposed to be in the convex set U Ă R

n. We use then support
function properties to derive the following algebraic equations

ρΩk
plq “ ρΦΩk´1

plq ` ρVr
plq

“ ρΩk´1
pΦT lq ` ρVr

plq
(11)
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It follows therefore

ρΩk
plq “ ρΩk´1

pΦT lq ` ρVr
plq

“
“

ρΩk´2
pΦT ΦT lq ` ρVr

`

ΦT l
˘‰

` ρVr
plq

“ ρΩk´2
pΦT 2

lq ` ρVr
pΦT lq ` ρVr

plq

“ ρΩk´3
pΦT 3

lq ` ρVr

´

ΦT 2
l
¯

` ρVr
pΦT lq ` ρVr

plq

...

“ ρΩ0
pΦT k

lq `
řk´1

j“0
ρVr

´

ΦT j
l
¯

.

(12)

If we adopt the notations dk “ ΦT k
l and sk “

řk´1

j“0
ρVr

´

ΦT j
l
¯

, the above equations can be

implemented using Algorithm 1.

Algorithm 1 Computation of ρΩ0
plq, . . . , ρΩM

plq

Input: Φ, ρΩ0
, ρVr

, l, M “ T {r
Output: ρ0 “ ρΩ0

plq, . . . , ρM “ ρΩM
plq

1: d0 :“ l

2: s0 :“ 0
3: ρ0 “ ρΩ0

4: for k “ 1 to M do

5: dk :“ ΦT dk´1

6: sk :“ sk´1 ` ρVr
pdk´1q

7: ρk :“ ρ0 pdkq ` sk
8: end for

9: return tρ0, . . . , ρMu

However, this algorithm requires for the initialization step the over-approximations for the
input contribution ρVr

and the initial set ρΩ0
. For the input contribution, we opt for the

approximation

ρVr
plq “ rρU pBT lq ` ρEU

plq, with

EU “ l

´

|A|´2
`

er|A| ´ In ´ r |A|
˘

¯

d pABUq ,
(13)

proposed in [4] where In is the identity matrix and |A| is the component-wise absolute value
operation of the matrix A. The operators l and d correspond respectively to the interval hull
and the symmetric interval hull of sets.

We also use the method suggested in [4] to compute an approximation for the initial set.
This is given as follows:

ρΩ0
plq “ maxλPr0,1sρΩ0,λ

plq , where
ρΩ0,λ

plq “ p1 ´ λq ρX0
plq ` λρerAX0

plq ` λrρBU plq
`λ2ρEU

plq ` ρpλE`

X0
Xp1´λqE´

X0
q plq

“ p1 ´ λq ρX0
plq ` λρX0

`

perAqT l
˘

` λrρU
`

BT l
˘

`λ2ρEU
plq ` ρpλE`

X0
Xp1´λqE´

X0
q plq , and

E
`
X0

“ d

´

|A|
´2

`

er|A| ´ In ´ r |A|
˘

d
`

A2X0

˘

¯

E
´
X0

“ d

´

|A|´2
`

er|A| ´ In ´ r |A|
˘

d
`

A2erAX0

˘

¯

(14)
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For the computation of the part with the intersection, we use the following property of support
functions. Let S, S1, S2 Ă R

n be nonempty sets, l P R
n then

ρS1XS2
plq ď min pρS1

plq , ρS2
plqq . (15)

To get the polyhedron approximating the reachable sets, we call Algorithm 1 for each direction
element of a predefined template of directions D “ tl1, . . . , lmu.

4 Results

As an example, we compute the reachable sets of a platoon of 5 trucks controlled using the LQR-
control strategy described above. The state vector is equal to x “ pe1, 9e2, a1, . . . , e5, 9e5, a5q P R

15

and the input equal to aL is in r´9, 1sms´2. For the verification, we choose a time horizon
T “ 30s, a time step r “ 0.01s and octagonal directions. The choice of the time horizon is
based on the results of the simulations of Figure 3. We note that the system reaches a stable
state after 15s. This time increases with the number of trucks as shown in Figures 4 and 5.
We push this time limit to 30s to ensure the maximum reachable set. The obtained results are
shown in Figure 6.

i 1 2 3 4 5

dref,i 35m 16m 10m 7m 3m

Table 1: Minimum allowed safe distances.

The boundaries of the reachable sets in Figure 6 give the ranges of each state variables. For
the velocity and the acceleration, we consider only the positive part. We note first of all that
the maximum values of the velocity and the acceleration for each trucks, which correspond to
maximum overshoots, remain under acceptable thresholds. The minimum values of different
errors ei, i “ 1, . . . , 5, however, correspond to the minimum allowed safe distances between
successive trucks.

These values are listed in Table 1. We observe furthermore that the gaps attenuate along
the platoon. The computed controller fulfills thereby all expected requirements.

5 Conclusion

The paper suggests an approach to reduce the problem of control design of networked systems
to some requirements leading to an efficient scalable formulation of the control problem and
to check after computing the appropriate controller if other ignored requirements are met. We
propose a reachability analysis based on support functions to get an overview of the dynamical
behavior of the state variables under disturbances. As case study, a scalable platoon is used.
For a platoon of 5 trucks, we compute an LQR-based controller taking into account just a fast
attenuation of errors with a minimum control effort. Requirements like limiting overshoots
of velocity and acceleration under disturbances as well as string stability are checked using
reachability. If we notice that the obtained results do not meet the control requirements, the
controller will be consequently recomputed by choosing different weighting matrices Q and R.
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Figure 6: The reachable sets of the platoon of 5 trucks.
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