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Abstract

Cache-timing attacks are serious security threats that exploit cache memories to steal
secret information. We believe that the identification of a sequence of function calls from
cache-timing data measurements is not a trivial step when building an attack. We present
a recurrent neural network model able to automatically retrieve a sequence of operations
from cache-timings. Inspired from natural language processing, our model is able to learn
on partially labelled data. We use the model to unfold an end-to-end automated attack
on OpenSSL ECDSA on the secp256k1 curve. Our attack allows to extract the 256 bits of
the secret key by automatic analysis of about 2400 traces without any human processing.

Keywords: side-channel analysis, cache-timing attacks, machine learning, natural language
processing (NLP), connectionist temporal classification (CTC), recurrent neural network (RNN).

1 Introduction

1.1 Context and Related Work

In traditional cryptanalysis, some assumptions are made: the attacker is only expected to inter-
act with the system through its regular interfaces. However, with the increasing development of
embedded cryptography, new possibilities of attack appear. They exploit physical information
leaking from the device such as timing information or electromagnetic emanations. This new
generation of attacks, called side-channel attacks, has largely held the research world’s attention
since the first publication in 1996 about timing attacks [19].

Possibilities of attacks are numerous, given the wide variety of signals that can be disclosed
by a device during a sensitive computation: power consumption [18, 23|, magnetic field [11],
temperature [6] or even sound [2]. The reader is referred to [15] for an extensive introduction
about side-channel attacks.

This paper focuses on one specific class of side-channel attacks: cache-timing attacks. Those
attacks are based on timing information leaked from CPU cache memory. Indeed, when the
target algorithm is using sensitive information, it loads secret data into the cache memory.
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An attacker who can make use of a spy program to indirectly check the content of the cache
memory can infer which data has been manipulated by the target algorithm.

Cache-timing attacks were first introduced by Tsunoo et al. in [32] to break DES. Later,
cache-timing information was used to break AES [4], as well as RSA in a popular implementation
of a cache-timing attack: Flush+Reload [35]. In the present paper, we will use an improvement
of the latter attack: the Flush+Flush attack [14] which is more stealthy and yields more accurate
results.

More specifically, we study in this paper a cache-timing attack on the OpenSSL imple-
mentation of ECDSA, an Elliptic Curve algorithm for digital signature. OpenSSL [1] is an
open source toolkit for the implementation of cryptographic protocols. The library of func-
tions, implemented using C, is often used for the implementation of Secure Sockets Layer and
Transport Layer Security protocols and has also been used to implement OpenPGP and other
cryptographic standards.

Breaking various ECDSA implementations has been an active topic in the previous years.
The vulnerable part is the Elliptic Curve Scalar Multiplication (ECSM), which is computed
through different algorithms, depending on the implementing library and on the used elliptic
curve.

One of these algorithms is the Montgomery Ladder, which was attacked by Yarom and Berger
[34] in a field of characteristic two. Another one is the w-ary non adjacent form (wNAF'), which
is used for the secp256k1 curve in OpenSSL. It has been shown to leak a few bits per signature
in [3]. The authors then used a lattice reduction [24, 25] to fully recover the private key after
about 200 ECDSA signatures. This attack was later improved to reduce the number of necessary
signatures to 25 [33]. Even more recently, the authors of [10] explained a method to recover
the key with as little as 7 signatures for a success rate of 92%. However, the computation time
exceeds three hours. Finally, another algorithm is the fixed-window implementation, which is
used for the NIST P-256 curve in OpenSSL. It has been broken in [12]. This attack targeted
actually the modular inversion implementation and not the double-and-add sequence.

The focus of this paper will be the wNAF implementation of scalar multiplication over the
secp256k1 curve, just like in [3]. Indeed, this implementation contains a conditional branching
depending on a secret variable and leading to a cache timing vulnerability. We concede that
the secp256k1 curve is a very particular case, and that the attack would not be effective in a
more general situation (as it will be explained in Section 7 the target code was patched in recent
versions of OpenSSL). However, the main takeaway of this paper should not be the performance
of the attack in itself, but rather the principles of automation via machine learning in order to
expedite the attack.

All the above mentioned attacks use the Flush+Reload leakage extraction technique in
order to retrieve a sequence of operations. It can be a double-and-add sequence [3]| or a right-
shift / subtraction sequence [12]. In state-of-the-art papers on cache-timing attacks, the side-
channel acquisition of the said sequence of operations is usually expedited [3]. In [10] the main
assumption is that Flush+Reload traces contain no errors. The main contribution of those
articles is to present innovative mathematical techniques to recover the private key from perfect
sequences. However, lattice reduction techniques tolerate very few errors in their inputs. By
experience, reproducing in real-life the attacks of those papers can be difficult, mainly because
of two problems. First, computer and processor models are diverse, so a trace that would be
perfectly readable in an ideal configuration might be very noisy with another setup. Second,
a huge number of traces must sometimes be inspected in order to be translated into enough
sequences to yield the private key. The evaluator is expected to spend a lot of time looking at
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signals to turn them into patterns, and as always with human processing, errors can come up.

Contrary to previous research, we would like in this paper to address particularly the prob-
lem of pattern recognition in side-channel signals. In 2009, the authors of [7] recognized the
importance of automated analysis for processing large volumes of cache-timing data over many
executions of a given algorithm. They suggested to use Hidden Markov Models (HMMs) [2§]
to infer a sequence of operations and applied their idea to a modified wNAF algorithm in
OpenSSL. Even though we praise this pioneer work in the field of automated attacks, we think
that it is less robust than our method which is based on neural networks (see Section 4 for
details). Indeed, HMMs were designed to model a process, and diverting it to a pattern recog-
nition tool is less straightforward. Furthermore, neural networks require less assumptions and
customization, because they more or less act as a black-box.

Machine learning for pattern recognition is obviously a hot topic in the research commu-
nity, with applications in image [20] and sound [30] processing. Regarding applications to
cache-timing attacks, the authors of [36] used Support Vector Machines, a machine learning
algorithm, to classify vectors of cache access timings into a sequence of operations of a modular
exponentiation. More recently, another pattern recognition technique, hierarchical clustering,
has been used in [22] to identify pre-computed multipliers in cache activity traces.

1.2 Contributions and Paper Organization

Contributions. The main contribution of this paper is to suggest a neural network based
machine learning model to retrieve sequences of operations from a large set of cache-timing
data.

To test the accuracy of our model, we replayed the side-channel attack of [3]. By giving
more details regarding the analysis of generated traces, we cast light on some dark points of the
attack mentioned in the previous subsection. As a result, we present an end-to-end automated
attack on an OpenSSL implementation of ECDSA, comprising the following steps:

e Step 1: A slightly improved cache-timing trace generation through the Flush+Flush at-
tack, which is more robust and stealthy. (Section 3)

e Step 2: A pattern recognition algorithm to derive double-and-add sequences from traces,
after an initial training phase. (Section 4)

e Step 3: An attack based on a lattice reduction to retrieve the private key from the
identified signature sequences. (Section 5)

Let us insist on the fact that no human intervention is needed from the moment the traces
are given to the trained program until the recovery of the private key. This has the double
advantage of sparing evaluator’s efforts and reducing the number of human-origin errors.

Another advantage of our method is that it streamlines the three above steps, which are
usually distinct in traditional attacks. When a trace is generated it is immediately given to the
recognition model and the lattice is then fed with the output sequence to progressively build
up information on the private key. As a result, traces and sequences do not need to be stored
on disk, reducing the memory footprint of the attack and improving stealthiness. Besides, the
full process can be implemented as a daemon operating silently in the background.

Outline. The next section (Section 2) is a quick reminder about ECDSA and scalar multipli-
cation algorithms. The three following sections (Sections 3, 4 and 5) are about the roll-out of

the attack (one section for each step). Section 6 presents the setup, the workflow and the results
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of the attack. The last section (Section 7) is dedicated to mitigations and future applications
for machine learning.

2 Background

2.1 ECDSA Signature Algorithm

Elliptic Curve Digital Signature Algorithm (ECDSA) is the transposition to elliptic curve cryp-
tography of the NIST-standard Digital Signature Algorithm (DSA) [26]. The digital signature
provides message authentication, integrity and non-repudiation (the sender cannot falsely claim
that they have not signed the message).

The algorithm is part of asymmetric cryptography; the sender uses a private key to gener-
ate the signature, and the receiver uses a public key together with the message to verify the
signature.

All users agree on the use of an elliptic curve E defined over a finite field F,, (in the case of
secp256k1, p is a large 256-bit prime number defined in [29]). A point G € E of large prime
order n is also chosen and called generator of the curve.

The key pair consists of a private key o ! randomly selected in the interval {1,...,n — 1};
and a public key point @ := a - G. We use - to denote elliptic curve scalar multiplication.

Using the previous notations, a message m can be signed through the following steps:

1. Using an approved hash algorithm, compute e = Hash(m).
2. Let h be the L, leftmost bits of e, where L,, is the bit length of the group order n.

Select a cryptographically secure random integer k from the interval {1,...,n — 1}.

-~ W

Compute the point (z,y) =k -G € E.

5. Take r = x mod n; if r = 0 then return to step 2.

6. Compute s = k~!(h + ra) mod n; if s = 0 then return to step 2.
7. The signature is the pair (r, s).

We will not give details over the verification algorithm, which is not useful for the rest of the
paper. The reader is referred to [3] for verification. Let us point out the fact that knowledge
of the integer k, which is commonly referred to as the ephemeral scalar, or nonce, leads to
knowledge of the private key o when combined with the message and signature pair:

a=(sk—h)r ' modn

It is this equation which we shall exploit in our attack.

2.2 Scalar multiplication with wNAF

Our attack targets step 4 of ECDSA algorithm presented in the previous subsection. In
OpenSSL and for the secp256k1 curve, this elliptic curve scalar multiplication is computed
with wNAF algorithm (see [16] for details). In this algorithm, the double-and-add sequence

ITo remain consistent with the notations of [3], we chose to write o for the private key instead of d, which
is the standard notation.
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is dependent on the nonce. Taking the notations of Algorithm 2 in [3], there is a conditional
branching on the secret d; which leads to a point addition, depending on the value of d;. It is
this particular operation which is targeted in the attack. More precisely, the number of doubling
operations after the last addition of the sequence reveals a few bits of k& that can be used to
find . That is why we will focus on recovering accurately the double-and-add sequence during
a wNAF scalar multiplication.

3 Cache-timing Traces Generation

In this section we shall explain how to use the Flush+Flush method to acquire cache-timing
data during a wNAF scalar multiplication.

3.1 Overview on processor memories

Instructions and data are usually stored in a main memory. To reduce the average time to
access this data, recent CPUs feature an additional memory which is faster and stores copies of
frequently used data. This cache memory is more expensive in energy, thus is smaller than the
main memory. Most modern processors have multiple levels of cache memories. Some levels
are split and some are shared between the different cores of the processor.

3.2 Flush-+Flush

In this paper, we use the Flush-+Flush method of Gruss et al [14]. This attack relies on the
execution time of the c1flush instruction. clflush takes a memory address as parameter and
evicts its content from the cache memory.

If the cache contains a copy of the content of this memory address, the c1flush instruction
will take longer than if it was not in the cache.

Indeed, for inclusive memories, c1flush will evict the lower levels of the cache memory in
case of a cache hit and thus take a longer execution time. Detailed reasons for this delay can
be found in the paper of Gruss et al.

This delay opens an attack scenario for a spy program, measuring repetitively the time
taken by clflush on a memory address I of a target program instruction during the execution
of that target. If at some point, the time taken by cl1flush(I) is longer than expected, it
means that the target instruction at memory address I has been copied in the cache during the
time between the previous c1flush and the current c1flush. Consequently, it means that the
target most probably executed the instruction at address I during this time interval.

In our attack, we want to reconstruct the double-and-add sequence during a signature. To
do so, we select M cache addresses for instructions of the doubling function and M addresses
for instructions the addition function (the choice of M and of the addresses is the object of
the next subsection). We denote [Dl DM] (respectively [Al AM] ) the addresses
of selected instructions of the double (respectively add) function.

We flush all the selected addresses one by one, and repeat the operation until the target is
finished with the signature. For an instruction address I we denote ¢! the measured time of
the i-th iteration of c1flush(I). The generated trace can then be seen as a 2M x T matrix x,
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where T is the number of iterations of flushing all the selected addresses:

Dy Dy D1 A
t] .t e tp
D D D
- t] R B
T th i
1 i T
Anr Anr Ay
Lt1 U B

For a given 1, if the tlpj are significantly higher than usual, one can deduce that a double has
been performed by the target between the (i — 1)-th and the i-th iteration, and idem for the
tiAj. In our work, instead of helping to visually deduce double-and-add sequence, the matrix
will serve as input of a pattern recognition model, as detailed in Section 4.

As explained in [3], the spy and the victim can run on different cores, because the targeted
memory is a level of cache which is shared among the cores of a same physical processor. As a
result, the attack does not have the same limitations as other cache-based attacks ([27]).

3.3 Choice of the number of addresses and profiling

The number of addresses to use for probing is not trivial. If the attacker uses a very small value
for M (e.g. 1), the cache hits may be difficult to detect in noisy measurements. Therefore it is
best to choose several instruction addresses for one target function. On the other hand, because
we measure the flushing timings of 20 addresses successively, the time to get measurements
from all the addresses of one of the two functions will be longer if M is large, and the attacker
could fail to detect the use of the other function. Additionally, if M is small, the patterns for
each function call will be distant from each other. This makes the measurement easier to read
as all patterns are distinct from each other.

For the sake of convenience, the number of addresses for the addition function is taken equal
to that in the doubling function, but there is no compelling reason for this arbitrary choice.

As for the addresses values, the debugging symbols are used to map the names of the targeted
functions to the correct memory lines. Starting from the first address for each function, we select
M addresses with steps of 64 bytes, corresponding to the size of a cache line for our machine.
Indeed, because the c1flush instruction does not evict a single memory cell but rather a whole
cache line, probing memory addresses that will be copied in the same cache line would be
ineffective.

For example, if M = 3 and that the doubling function starts at address 0x7000££10 and
the addition function starts at address 0x7001a000, the probed memory addresses would be
(0x7000££10, 0x7000££50, 0x7000££90, 0x7001a000, 0x70012040, 0x70012080).

The choice of the best M value is crucial for the success of the attack. For M = 1 and
M > 8 our attack was unsuccessful. We conducted 10 attacks for 2 < M < 7 and computed
the mean and standard deviation of the number of traces required to retrieve the key. Figure
1 pictures a summary of these statistics. It is obvious that M = 2 or 3 yield the best results.
We chose M = 3 since it has a lower standard deviation, making our attack more stable.

6
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Figure 1: Statistics over the number of traces required to find the key for different M values.
The gray cross marker represents the mean of traces and vertical bars represent an interval of
length twice the standard deviation. Statistical moments were computed over 10 experiences.

4 Pattern recognition with Machine Learning

4.1 Motivation for Machine Learning

Using Machine Learning (ML) algorithms to identify operations patterns within the cache
timing traces shows several advantages:

e Using a supervised approach can leverage on comprehensive cache-timing characterization
obtained from a clone of the target processor.

e It is a practical and generic way to implement pattern recognition.

e Some algorithms are able to inherently learn the noise associated with an architecture
class, making possible to build cross-architecture models.

e Most Machine Learning models provide confidence indicators associated with their pre-
dictions, allowing to discard potential false positives and avoid detection errors.

For these reasons, we investigate the use of a Machine Learning methodology to extract the
double-and-add sequence from cache measurements.

4.2 Methodology

Our global approach is the following: in order to train a pattern recognition model, we generate
thousands of cache traces on a processor similar to the one we want to attack. Specifically, we
record the cache activity of the doubling and addition functions during the precise execution of
the scalar multiplication, in order to observe patterns denoting the utilisation of these functions.

In order to detect more easily the cache hits, the inputs of the model are the columns of the
measurement matrices  where each row is a memory address and each column is a period of
time during the scalar multiplication.

Additionally, we monitor and record the processor effective function calls, which yields the
exact sequence of operations z matching the scalar multiplication. These sequences of operations
are used as the ground truth allowing to label our different cache measurements. These labels

7
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enable a supervised approach. A sequence z = (21 ...7) is composed of successive operations
calls, namely A for addition and D for doubling (z; € {A, D}).

Let a single matrix x, and the associated sequence of operations z, the set of couples (z, 2)
constitutes our dataset for supervised learning. A sample of this database is shown on Figure 2.
On this example, one can clearly identify the patterns and can easily reconstruct the sequence.
The clarity of the trace depends of multiple factors like the number of processes running con-
currently on the target machine. Those may add noise and make the recognition more difficult.
An example of a noisy trace is shown on Figure 3. In our experiments, the model is able to
correctly recognize the sequence of operations for that example, whereas it may be challenging
for a human being to visualize the patterns.

. 225
4 i 4
2 . 1 y m— i i el 20 8
0 ] i | | u | | 1 1 175 oy
1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800 1810

z=(...,D,A, D,D)

Figure 2: Last 150 points of a cache matrix x with M = 3 and the associated sequence of
operations z. The M lower rows match the doubling function addresses and the M upper rows
match the addition function addresses. High values located in these areas indicate a cache hit
and show the use of the functions by OpenSSL.
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Figure 3: Last 150 points of a trace with higher noise than the one depicted in Figure 2 and
the associated sequence of operations z.

The pairs (z, z) are the inputs to train the model, which can be deployed in real time to
process unseen measurements. Given an input z, the model’s task is to reconstruct a sequence
7z’ ideally identical to 2. This task is commonly known as sequence prediction.

To reconstruct this sequence, the model shall predict, for each column of x, whether an
addition (‘A’ label), a doubling (‘D’ label), or none (‘0’ label) amongst the two operations is
being executed by the target. Let us denote by o a sequence composed of ‘A’; ‘D’ and ‘0’ labels.
o is called an alignment, or a path, and is an element of {4, D,0}*.

We finally retrieve the final sequence 2’ by applying a post-processing function on o. This
post-processing is composed of two steps:

e We merge all adjacent identical labels in the predicted sequence. This is consistent because
we choose a small M, and therefore we are not expecting to find contiguous patterns.

e Finally, we remove the blank labels to keep only the doubling and addition labels and
obtain the final prediction.
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For example:
[A,0,D,D,0,D] = [A,0,D,0,D] = [A, D, D]

For a given sequence z, an alignment o is called a valid path for z if the above post-processing
function outputs z when applied to . The set of all valid paths of length T for z is denoted
AT(Z)

4.3 Supervised task - Misaligned labels

During the training phase, the sequence z is used in association with each trace x, making our
problematic a supervised sequence generation task.

However, these sequences miss the ‘blank’ labels denoting the spaces between patterns be-
cause this information cannot be obtained by monitoring function calls. From a Machine
Learning perspective, the ground truth is not synchronized with the input data.

In other words, we know the order of the executed operations but we do not know at which
precise point of time they occur nor the number of ‘0’ labels between each of them. This number
of ‘blank’ is not predictable. Target sequences are said to be misaligned with the training data.
Consequently, each sequence z has a length [ smaller than the length of the trace x, and it is
therefore not possible to directly train a ML classifier (such as a random forest) with z and z
as inputs.

From there on, different alignments are possible to match a matrix z with its associated
sequence z. This problematic is common in speech recognition and different approaches exist
to solve it. It is sometimes called sequence generation with unsegmented labels.

In a naive approach, we first tried to segment the matrices x in order to make them match
the sequences z. To resolve the misalignment problematic, we assigned the columns of the
training data with the correct operations. The realignment was done using statistical method
allowing to generate a fully labeled intermediate dataset, suitable for fully supervised learning.
We then trained several classes of ML algorithms and used them to reconstruct the double-
and-add sequence. However, this realignment methodology is not generic and not suitable for
noisy measurements. The preliminary results from the obtained models were encouraging but
we wanted to make a better use of the training data.

We therefore propose a method to process the couples (z, z) without any segmentation or
realignment pre-processing.

4.4 Connectionist temporal classification

In order to remove the need for realignment, we investigate a solution based on recurrent
neural networks combined with a particular objective function, inspired from natural language
processing.

Recurrent neural networks (RNN) [9] are state models designed to learn the temporal char-
acteristic of their inputs: unlike usual networks, the input data is projected into a state vector
linked to itself. The values of this context vector at a time ¢ therefore depends on the inputs at
time step 7 but also on the values of the context vector at step i — 1. These models are therefore
able to catch the temporal dependencies between each point of a time series.

Cache measurements can be viewed as stacked time series and temporal models are par-
ticularly suited to process them. Our motivation to use recurrent neural networks is to take
advantage of their modelization capacities and their genericity: they require no prior knowledge
of the input data.
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To train a RNN, an objective function needs to be defined. This function should evaluate
the ability of the model to resolve the task it was designed for. It should also be derivable in
order to allow the RNN to learn from a training dataset.

However the usual objective functions to train neural networks must be applied for each time
point of the input data, requiring ground truth for each point. As discussed in the previous
section, our labels are unsegmented sequences and therefore information is missing to directly
train a RNN.

To solve this problem, we choose to use a different objective function, the Connectionist
Temporal Classification (CTC) function proposed by Graves et al. in [13].

This function has originally been designed to solve problems of sequence generation with
unsegmented labels for speech recognition. It is typically used to train RNNs with pairs of word
sequences and audio records from humans reading the sequences. In that case, the segments of
the audio records where each word is pronounced is unknown and the CTC function overcomes
this lack of information. The same constraint apply to the pairs (x, z). Therefore, the CTC
function can be used in the context of cache timing measurements and recorded sequences of
operations.

Given an observation z of length T' (it varies between traces) and a sequence z, the CTC
function computes the probability of z conditionally to x as the sum of the probabilities of all
the valid paths o of length T for z:

p(zle) = Y plol),

ocE€AT(2)

The probability of a path o is given by the product of its labels probabilities for each time
step:

plofz) = Hpt(at\x),
t=1

where p;(o¢|x) is the probability computed by the RNN for the label oy € {A, D,0} at time
step t.

From there on, the CTC function can be derivated and its log-likelihood can thus be min-
imized with the gradient back propagation algorithm to optimize the weights of the neural
network. The model will then learn to predict the most probable path leading to z given its
input x, overcoming the lack of information concerning the true labels position in the mea-
surement. Using CTC removes the need of any preprocessing to align the sequences with the
observations.

The final prediction of the model is given by the alignment with the highest probability
predicted by the model.

o* = argmax p(o|z),
ocel
with £ the space of possible alignments.

Given a sequence z, computing the probabilities of every alignment ¢ € £ can be expensive,
especially when the number of labels increases. The CTC function uses a dynamic programming
algorithm to make these operations faster. For more details on the CTC function mechanisms,
the reader is referred to [13].

The CTC function can be used with any type of classifiers able to produce an output
distribution over {A, D,0} for each column of z. For our attack, we combine the CTC with
a simple RNN and use Stochastic Gradient Descent with Momentum [31] to train the neural
network.

10
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As explained in section 2, the number of doubling operations after the last addition in the
sequence reveals secret bits of k. Therefore, we evaluate the quality of the model by computing
the proportion of pairs (z,z) of a test dataset where the model is able recover this number. In
the rest of the paper, we will refer to this evaluation metric as accuracy.

4.5 Confidence indicators

Because this attack is an end-to-end attack, it is composed of different bricks. If each brick
seems to be functional enough individually, the complete chaining can emphasize error rates
which eventually causes the attack to fail.

Moreover, the lattice reduction algorithm involved in the last step of the attack is intolerant
to false positives: the attack would not bear any misclassified samples by the ML model.

It is therefore important for the attacker to have the option to discard weak predictions and
avoid using false positives as inputs of the equation system involved in the lattice-based key
retrieval. Most ML models provide probabilities or distances associated with their predictions,
and we need to consider these indicators in order to filter the classifiers outputs, based on a
confidence threshold.

To ensure the efficiency of the attack, it is mandatory to calibrate models so that their
predictions will respect the following constraints:

e No false positive should be predicted with high confidence.

e There must be enough true positives with high confidence to gather enough information
to retrieve the key.

In other words, for the attack to be feasible, the model must not only have a good accuracy
but also be able to distinguish clearly between strong and weak predictions. We therefore
proceed to a phase of confidence calibration on a validation dataset.

Confidence for False Positives (all points) Confidence for True Positives (all peints)
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Figure 4: Histograms of confidence values using all the points to compute the prediction (row 1,

normal mode), versus using only the last 150 points (row 2, N = 150), on a validation dataset.
In normal mode, the accuracy is 0.9684 and when N = 150, it is 0.9553.
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In order to estimate the confidence indicator of a prediction of the CTC-based model, the
CTC function is used to compute the probability p(z’|z) of the output sequence z’. However,
when the length of a sequence increases, this indicator has a tendency to vanish (i.e., converge
towards 0). So, instead of computing a prediction 2’ with the complete measurement x, only
a sub-part of the trace is considered, namely the last N columns of x. The model takes =y
the matrix composed of the N last columns of x as input and predicts 2z}, with the associated
confidence p(zly|zN).

Considering only the N last points of the measurements lowers slightly the global accuracy
(decrease by 2 or 3%), but provides a reliable confidence indicator, as shown on Figure 4 for
N = 150. Clearly, using the 150 last points splits the distribution of confidence indicators
between false positives and true positives. After that, setting a fixed threshold p,,;, allows to
reduce the number of false positives with high confidence to 0 on the validation dataset.

4.6 Limitations of Machine Learning

Sequence prediction with Machine Learning is one specific step within the global attack. More-
over, this step is not at the end of the chain. Therefore, the quality of a trained model does
not necessarily reflect the efficiency of the attack because the metric used to train this model
can not attest the efficiency of the attack.

If we train two different types of models and find out that there is e.g. 5% difference in their
accuracy on the testing dataset, we are expecting the one with the higher score to perform a
better attack. This is a biased hypothesis because other factors need to be considered: most
notably the reliability of the confidence indicators computed by the model.

For this reason, the metrics usually chosen for ML model evaluation are not fit to reflect the
quality of the attack. Given two models with different accuracy scores, it is may well happen
that the one with a significant lower accuracy performs a better attack.

5 Retrieving the Private Key with Lattice Reduction

The final step of the attack consists on a lattice reduction, using Lenstra-Lenstra-Lovasz (LLL)
[21] to compute the private key « from the extracted bits of the different ephemeral scalars.

We now have a set of d signatures and (hashed) messages (r;, s;, h;) for i = 1...d as well as
their double-and-add sequences generated with the model presented in the previous section.

The final parts of the sequences reveal bits of the ephemeral scalar. More precisely, one
property of wNAF is that if the sequence of the i-th signature is ending with an addition
followed by I; — 1 doubles (...AD%~1 [, > 1) then the binary form of the ephemeral scalar k;
ends with exactly I; — 1 zeros (...10%~1). Signatures with a number of known bits [; > £ only are
considered. The choice of ¢ affects the success rate of the lattice reduction and will be discussed
in the next section.

As presented in [3], the key is retrieved by first constructing the following matrix from the
d signatures:

olitly 0 0 ... 00
0 2latly 0 ... 00

B = :
0 0 0 olatly 0 0
olitlg, Qlatly, 1 0
2l Qlatly, 0 n

12
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where [; is the number of known least significant bits as explained above, and n is the curve

order and:
_h

u; = ——=% mod n
ol

) 04'
t; = " modn ; :
(Si.QZi)

Finally, the private key « can be extracted by applying the lattice reduction on B.

6 Setup and Results

We tested the attack on an Intel Core i7-4790 processor running Ubuntu 18.04.2 LTS. The
attack was conducted on version 1.1.0f of OpenSSL.

The number of targeted addresses for the Flush+Flush cache-timing extraction was chosen
at 2M = 6, since according to the results presented in Section 3, it is the number that allows a
successful attack in a small number of traces with the least variance. We selected the addresses
inside each target function ec_GFp_simple_dbl and ec_GFp_simple_add, according to the
method described in Section 3.

Given the learning ability of the CTC-based model, a relatively small number of traces is
enough to achieve a high test accuracy. However, a larger dataset is required for calibration.
We generate 1,000 traces as a training dataset, 1,000 for testing the model, and finally, 10,000
are kept as a validation dataset for calibrating the model confidence indicators. It allowed us
to choose N = 150 and a threshold p,,;, = 0.95, as these parameters allow to discriminate
efficiently between true positives and false positives.

The trained model achieve high accuracy, between 0.95 and 0.97 after calibration, depending
on their initialization and on the randomness of the stochastic gradient descent.

Once the model is trained, the attack is performed on the fly: ECDSA signatures are
successively triggered with random nonces. The measurements are processed by the neural
network directly after being generated, and the extracted bits are used to build the lattice
matrix in parallel. Once the bits of d signatures have been accumulated, the reduction is
computed. This workflow is described on Algorithm 1.

Algorithm 1: Attack workflow.

Parameters: d the number of signatures needed for reduction, N the number of points
to use for predictions, p,,;, the minimum confidence, ¢ the minimum
value for [;.

Result: Private key a.

1 Initialize empty B with d, = 0 columns;
2 while d, < d do

3 Sign a message. Generate (r, s, h) and the associated measurement x;
4 Use the ML model to extract zj, with confidence p(2}y|zn);
5 if p(zly|zN) > Pmin then
6 Get [; from zy;
7 if [; > ¢ then
8 ‘ Add a column to B using r, s, h, and [;;
9 end
10 end
11 end

12 Compute the lattice reduction;
13 return o;

13



End-to-end automated cache-timing attack S. Carré, V. Dyseryn, A. Facon, S. Guilley and Th. Perianin

Our experimental phase showed that the best value was d = 200 for the number of acceptable
signatures and £ = 4 for the minimal number of known bits for an acceptable signature. Those
parameters ensured a success rate of more than 99 % in predicting the private key in a reasonable
timeframe (less than 5 seconds).

Because bits of the nonce k are randomly distributed, it means that there is a probability
1/2¢71 that a signature is acceptable (the ephemeral scalar must end with at least £ — 1 zeros).
Thus the expected total number of traces needed to recover the private key is 1, 600. In practice,
we need 1.5 times more traces, because around 33% of traces are discarded by the model due
to a lack of confidence in some predictions. The total number of traces required is thus
d x 271 x 1.5 = 2400 (circa).

Of course this is a greater number of signatures than in [3], but we achieve a better success
rate in retrieving the private key. This is mainly because we are able to process a larger number
of signatures thanks to the automation of the sequence identification.

7 Conclusion and Perspectives

7.1 Mitigation

Several methods for mitigating the attack were suggested in [3]. We will not cover them, espe-
cially because at the time this paper is written, the w-NAF implementation is not used anymore,
regardless of the curve. Indeed in the latest version (1.1.1c) of OpenSSL, this algorithm is used
for multi-ECSM only (an operation that consists in computing [k1]P; + [k2] P> where kq, ko are
scalars and Pp, P, curve points). Multi-ECSM is only used for the verification part of ECDSA
signature, therefore is non sensitive. For the generation part of ECDSA signature, a fixed-
window algorithm is now used, making the double-and-add sequence independent from any
secret.

We decided to realize the attack on a legacy version of OpenSSL for didactic purpose, because
our objective is not to disclose a new attack but rather a new generic model for cache-timing
traces processing. We also wanted to remain consistent with the original paper of [3].

7.2 Future applications for Machine Learning

In this work, we presented a neural network model for pattern recognition in cache-timing traces.
We then applied the model to an elliptic curve scalar multiplication algorithm. We believe that
the same technique can be generalized to other algorithms, thus improving the quality of a
number of other attacks. Synergies could easily be found with state-of-the-art cryptanalysis,
such as [10], which requires a small number of traces with no errors. Our model would be
useful in the production of such traces in real conditions. We were also able to successfully
reproduce the attack of Bernstein et al. [5] on an RSA sliding window modular exponentiation
implemented in Libgcrypt. Our model was useful to generate the square-and-multiply sequence.

Our model of sequence prediction with incomplete information could be applied to other side-
channel attacks, not only those capturing cache-timing data. In power analysis, for example,
patterns of electrical consumption must be classified. In Template Attacks [8], a lot of traces
must be recorded to select points of interest in the data. Our model could be used to speed up
the identification of relevant points to build the template.

Additionally, our model can be customized as the CTC function can be combined with
different types of classifiers. In particular, it is possible to use LSTMs [17], to model more
complex temporality dependencies.
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On a more general level, machine learning can be used for other purposes than sequence

prediction. In the attack, we selected empirically the total number of probed addresses during
the traces generation. Statistical optimization could be used to find the optimal number of
addresses for a specific attack.
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