Coproducts of Distributive Lattice based Algebras

Leonardo Manuel Cabrer^{1*} and Hilary Priestley²

¹ Università degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni
² University of Oxford

The analysis of coproducts in varieties of algebras has generally been variety-specific, relying on tools tailored to particular classes of algebras. A recurring theme, however, is the use of a categorical duality. Among the dualities and topological representations in the literature, natural dualities are particularly well behaved with respect to coproduct. Since (multisorted) natural dualities are based on hom-functors, they send coproducts into cartesian products.

We carry out a systematic study of coproducts for finitely generated quasivarieties \mathcal{A} that admit a (term) reduct in the variety \mathcal{D} of bounded distributive lattices. In this setting we present necessary and sufficient conditions on \mathcal{A} for the forgetful functor $U_{\mathcal{A}}$ from \mathcal{A} to \mathcal{D} to preserve coproducts. When this is not the case, we demostrat how to obtain the lattice reduct of a coproduct of algebras in \mathcal{A} from the lattice reducts of the algebras involved.

Our results are based on an in depth analysis of the connection between Priestley duality and multisorted piggyback dualities. Given an algebra $A \in \mathcal{A}$ we present procedure to recover the Priestley dual of $U_{\mathcal{A}}(A)$ from the natural dual of A. We then use this translation and the good behaviour of natural dualities with coproducts to recover distributive lattice reduct of a coproduct of algebras in \mathcal{A} .

As a byproduct, our work reveals that the type of natural duality that the class \mathcal{A} can possess is connected with properties of coproducts in \mathcal{A} and the way in which $U_{\mathcal{A}}$ behaves with respect to them.

^{*}Marie Curie Intra-European Fellowship – FP7