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Abstract

In this work, we introduce a novel methodology for studying the low-temperature phase
of frustrated spin glass models using convolutional neural networks (CNNs). Our approach
addresses the regression of thermodynamic properties, specifically the average energy ⟨E⟩,
as a function of temperature T for spin glasses on a square lattice. By modelling the spin
glass as a weighted graph, where exchange interaction values Jk are represented by the
edges and mapped to lattice coordinates, we explore the functional relationship between
⟨E⟩ and the spatial distribution of J . We evaluate CNNs for their performance across
various spin glass sizes and distributions of exchange integrals, demonstrating the poten-
tial of CNNs in capturing complex spin interactions and advancing the understanding of
frustrated systems.

1 Introduction

Spin glasses (SG) are paradigmatic complex systems, for which disorder plays a central role.
The study of spin glasses is intrinsically interdisciplinary because, despite the term’s original
use to characterize specific magnetic materials that display unusual phase behaviour, related
models and concepts have since found use in a wide range of domains [1].

Two important characteristics that distinguish spin glasses from other lattice models are dis-
order brought on by the freezing of spins at low temperatures and frustration, where competing
magnetic interactions prohibit all interactions in the system from being satisfied simultaneously
[12]. Thus, energy minimization and ground state identification in spin glass models are clas-
sified as NP-complete problems [20] because of their substantial theoretical and computational
difficulties. Therefore, the development of efficient algorithms for calculating low-energy states
and calculating their thermodynamic properties is a major task in the theory of frustrated
magnetism.
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Analytical solutions for Ising spin lattice models are limited [5], and no exact polynomial-
time method exists for finding the ground state. Spin glass thermodynamics are typically
studied with Monte Carlo methods [19, 29, 2, 4, 26], though their efficiency is hampered by long
relaxation times, complex energy landscapes, ground state degeneracy, and critical slowdown.
While the system requires numerous states to reach equilibrium, advances in computing power
and Monte Carlo techniques have eased the growing complexity of spin glass calculations [18,
24, 21, 30, 22].

Machine learning offers an innovative solution to these issues by analyzing through massive
volumes of data, finding hidden patterns, and predicting novel phenomena. Neural networks can
effectively capture relevant features about conventional ordered and non-conventional phases,
including Anderson’s localized phases or lattice Ising gauge theory [9]. Researchers can apply
Machine Learning to explore previously undiscovered areas and alter our understanding of the
natural world by using the power of data-driven algorithms. Machine learning algorithms have
the remarkable capacity to find intricate patterns in large amounts of data, which is of significant
practical value to statistical physics [28, 7, 8, 6, 14, 17, 13, 25].

In this paper we propose to solve a relatively general problem: using machine learning
methods to solve the problem of regression of the basic thermodynamic characteristic ⟨E⟩
(average energy), but it might be any other system characteristics, as a function of temperature
T for spin glasses on a square lattice. To achieve this, we view the spin glass as a weighted
graph, where the exchange interaction values are represented by the edges’ values and the
graph’s architecture is matched to the lattice. Therefore, we are searching for a functional
dependence between the primary average thermodynamic property of the system ⟨E⟩ and the
spatial distribution of the exchange integrals on the square lattice of the spin glass Jk =
fJ(xk, yk) using a convolutional neural network (CNN). Here, xk and yk represent the bond
coordinates for bond k, Jk is the bond value, and fJ is the function of the spatial distribution
of spin glass bond values. To solve this problem, we used several CNN architectures described
below to determine the optimal architecture for solving the above problem.

2 Spin glass model

This paper examines SG in the frame of two-dimensional Edwards - Anderson (EA) model [16]
with periodic boundary conditions (PBC) on an Ising square lattice N = L × L (refer to Fig.
1 from [3]), where N is a total number of spins and L is a linear size of the system. Each spin
in these models is an Ising spin that implies that it can be in two states Si = ±1. On a square
2D lattice with periodic boundary conditions, every spin has four nearest neighbours, whose
interactions are determined by the exchange integral Jk = ±1. For two spins the interaction
energy is defined by:

Eij = −JijSiSj , (1)

where Si, Sj are the interacting neighbouring spins in the lattice, Jij is the exchange integral
between Si and Sj . Hence, the Hamiltonian of the whole system will be determined by:

H = −
∑
<i,j>

JijSiSj , (2)

where summation is only on nearest neighbours.
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Figure 1: Example of the spin glass model on a square lattice 6× 6 of Ising spins with
periodical boundaries condition. Si = ±1 – spins of the lattice, Jk = ±1 – exchange integral.

3 Data

For a lattice of size N = L×L, there are 22N possible configurations of the exchange integrals.
These configurations have a range from a fully antiferromagnetic case to a fully ferromagnetic
case. For the former, all exchange interactions are Jk = −1,∀k leading to

∑2N
k=1 Jk = −2N .

For the latter, all interactions are Jk = 1,∀k and
∑2N

k=1 Jk = 2N . To capture this relation, a
neural network can be trained to recognize patterns in the arrangement of exchange interaction
values on the lattice and their impact on macroscopic parameters. In particular, the spin glass
configuration defined by the set {J1, J2, J3, . . . , J2N} and temperature T should be provided to
the network, that then can be trained to predict the average energy ⟨E⟩. The same approach
can be extended. For the extension, other thermodynamic quantities can be predicted. That
includes the probability density of states, residual entropy, heat capacity, susceptibility and
others.

To train the CNN, it was necessary to prepare datasets for training, validation, and testing
of the models. First, two sizes of 6 × 6 and 10 × 10 spin glass models with different random
distributions of the exchange integral J were calculated. For each considered spin glass config-
uration, 60 temperatures were calculated, ranging from 0.1 to 6 with a step size of 0.1. For the
CNN architecture, we partitioned J into two channels: Jhor - representing horizontal bonds of
the system and Jver - representing vertical bonds. This approach uses the spatial information
of the exchange integral distribution,

Two datasets were prepared using two different methods:

1. Exact method. We used an exact method to obtain the SG partition function, which uses
high-performance parallel computing based on the transfer matrix method [15]. Although
the algorithm has exponential time, it is still able to perform calculations on a relatively
big lattice. From the partition function, it is possible to calculate the main average
thermodynamic characteristics of the system. The method also allows us to find both
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the ground state energy and the spin configurations of the state [23]. After specifying
the size of the system, the boundary conditions and the values of all exchange integrals,
we can calculate the number of all configurations (degeneration degree) g(Eq,Mr) with
all possible values of energy Eq and magnetisation Mr, where q runs through all possible
values of the system energy and r are all possible values of the system magnetisation. For
that, the partition function of the system can be written in the form:

Z =
∑
i

exp (−Ei/kBT ), (3)

where i runs through all possible configurations of the system and Ei is the energy of
the corresponding configuration. We can also rewrite the partition function in a different
form:

Z =
∑
j

g(ej) exp (−ej/kBT ), (4)

where j runs through all possible energy values (levels) of the system, ej is the corre-
sponding energy level, and g(ej) is the degeneracy of the corresponding energy level ej -
the number of configurations with the corresponding energy.

Any average thermodynamic quantity ⟨K⟩ can be calculated through a partition function
[27]:

⟨K⟩ = 1

Z

∑
i

Ki exp (−Ei/kBT ) =

∑
i Ki exp (−Ei/kBT )∑
i exp (−Ei/kBT )

. (5)

Then the average energy can be calculated as:

⟨E⟩ =
∑

i Ei exp (−Ei/kBT )∑
i exp (−Ei/kBT )

=

∑
j ejg(ej) exp (−ej/kBT )∑
j g(ej) exp (−ej/kBT )

. (6)

In this method, we calculated 6, 860 configurations for N = 10× 10 (the dataset dimen-
sionality is 411, 600 since each spin glass model was calculated at 60 different temperature
values) and 2, 010 configurations for N = 6× 6 (dataset dimensionality is 120, 600).

2. Parallel tempering Monte Carlo method. Also, we used Monte Carlo modelling.
There were 104 equilibration MC steps, and then the energy and magnetization of the
system were calculated and averaged over the next 105 MC steps. To overcome the
effects of critical slowing down and avoid getting trapped in local minima, the system was
simulated in parallel at 60 different temperatures. System configurations were exchanged
every 103 MC steps, with the exchange probability dependent on the energy difference
between configurations, shown in Equation (7). This exchange process is designed to
allow high-temperature configurations, which explore the energy landscape more freely, to
replace low-temperature configurations that may have become trapped in local minima.
The algorithm proceeds by selecting pairs of neighbouring temperatures, starting from
the highest, and attempting to swap configurations based on the Metropolis-Hastings
acceptance criterion. This approach enhances convergence by enabling configurations at
high temperatures to ’rescue’ replicas stuck in local minima, facilitating a more thorough
exploration of the state space across all temperatures.
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p(X −→ X ′) =

{
1 if ∆ ≤ 0

exp(∆) if ∆ > 0
, (7)

where ∆ = (1/T ′ − 1/T )(E′ −E), E and E′ are the energies corresponding to X and X ′

configurations respectively.

For the spin glass model with spin number N = 6 × 6, the dataset consisted of 3, 000
configurations (with dimension 180,000 since each spin glass configuration was calculated
at 60 different temperature values). For the model with N = 10 × 10 number of spins,
the dataset consisted of 8, 000 configurations (with dimension 480,000).

4 CNN architecture

Convolutional Neural Networks (CNNs) have emerged as a powerful and versatile tool in the
field of machine learning, particularly for tasks involving spatial data. Their architecture is de-
signed to learn spatial hierarchies of features automatically during the training process, adapting
to the data through the use of convolutional layers, which enables them to effectively capture
complex patterns and structures. One of the primary advantages of CNNs is their ability to
recognize and exploit local dependencies in data through the use of convolutional filters (or
kernels), which scan the input to identify patterns. This reduces the need for manual feature
extraction and allows for more efficient training.

In the context of predicting the average energy levels in spin glass models, CNNs are partic-
ularly well-suited due to their capability to learn from the intricate patterns present in the bond
configurations. By employing separate CNN channels for vertical and horizontal interactions,
our approach leverages the inherent structure of spin glass systems, where bond interactions
exhibit distinct spatial orientations. This dual-channel architecture not only enhances the
model’s ability to capture orientation-specific features but also improves the overall accuracy of
predictions by allowing the network to process and integrate information from both dimensions
effectively. In selecting the CNN architecture, we experimented with different configurations,
including models with different numbers of fully connected (FC) layers. Since our goal in this
paper is to present CNN architecture that has empirically demonstrated superior predictive
performance, we focus below on describing the final architectures that performed best among
the tested architectures.

The architecture of our first proposed CNN model, as illustrated in Figure 2, is designed
to process the bond configurations through a series of convolutional and pooling layers. The
model starts with two convolutional layers that extract basic features from the input bond
configurations, followed by max pooling layers to reduce the spatial dimensions while retaining
essential features. A dropout layer is introduced to mitigate overfitting, enhancing the model’s
generalizability. Subsequent convolutional layers further refine the feature extraction process,
with additional pooling layers reducing the dimensionality. The global average pooling layer
aggregates the extracted features into a single vector, which is then concatenated with an
additional input representing the temperature. This concatenated vector is passed through
fully connected layers to perform regression tasks, predicting the average energy levels. The
integration of bond configuration and temperature inputs enables the model to effectively learn
and predict the energy dynamics of the spin glass system.

CNN1 detailed architecture (Fig. 2): Conv2D : (32, 3 × 3) → Conv2D : (64, 3 × 3) →
MaxPool : (2 × 2) → Dropout : (0.2) → Conv2D : (128, 3 × 3) → Conv2D : (256, 3 × 3) →
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Figure 2: CNN1 architecture.

MaxPool : (2 × 2) → GAP → Concatenate : (Temp input) → Dense : (128) → Dense : (64)
→ Dense : (1).

The second CNN model, detailed in Figure 3, incorporates a combination of convolutional,
upsampling, and fully connected layers to capture and process the complex patterns within
spin configurations. A key feature of this architecture is the inclusion of upsampling layers,
which utilize Conv2DTranspose operations to reconstruct the spatial dimensions of the feature
maps. This approach allows the model to produce high-resolution output by reversing the
effects of max pooling and capturing finer details from the input data. The model then flattens
the output from the convolutional layers using global average pooling, which aggregates the
features into a compact representation. This representation is concatenated with an additional
scalar input representing the temperature. The concatenated vector is passed through several
fully connected layers.

CNN2 detailed architecture (Fig. 3): Conv2D : (32, 3 × 3) → Conv2D : (64, 3 × 3) →
MaxPool : (2 × 2) → Dropout : (0.2) → Conv2D : (64, 3 × 3) → Conv2D : (128, 3 × 3) →
Conv2DTranspose : (128, 3× 3) → Conv2DTranspose : (64, 3× 3)→ UpSampling : (2× 2) →
Conv2DTranspose : (64, 3 × 3) → Conv2DTranspose : (32, 3 × 3) → GAP → Dense : (128)
→ Dense : (64) → Dense : (32).

4.1 Gradient scalling

In addition, to optimize neural networks, we used the gradient scaling approach - Landscape
Modification (LM) method [11, 10] for the proposed NN architectures and compared them with
the results of the default version.

The LM method improves optimization by transforming the objective function g(x) into a
modified form ĝ(x) controlled by parameters a, and a threshold c. This transformation helps
gradient-based optimizers like Adam better avoid local minima and saddle points, leading to
faster convergence to global or high-quality local optima. For differentiable functions g, the
gradient of ĝ computes as [10]:
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Figure 3: CNN2 architecture.

∇ĝ(x) =
∇g(x)

af((g(x)− c)+) + 1
. (8)

In the special case of choosing f = 0 or a = 0, we see that ∇ĝ = ∇g and hence the original
landscape is used.

In this context, f is a transformation function that can smooth the optimization landscape
based on the values of g(x). Empirical studies show that using a linear function f was the
optimal choice in our case, which also supports the hypothesis about the choice of function
f put forward in [10]. In turn, the scaling parameter a ∈ R+ controls the magnitude of the
landscape modification. A range of values such as 1, 0.1, 0.01, ... was evaluated to find the
optimal balance. The threshold parameter c ≥ infz g(z) adjusts the landscape to improve the
exploration properties and convergence of the algorithms, and ideally, it should be set as close
to the global minimum g(x) as possible. The three parameters f, a and c are to be chosen
suitably. The function f : R+ → R+ is assumed to be chosen such that it satisfies f(0) = 0. A
commonly used choice of f is given by f(x) = x.

In the context of the problem under consideration, we perform the next scaling pro-
cedure: the gradient ∇gt is scaled using a function f of the running loss rlt and the
parameter ct on a step t:

∇ĝt =
∇gt

af((rlt − ct)+) + 1
, (9)

where ct was set close to the minimum value of the loss function of the default NN model.
In this way, the optimized architectures CNN1LM and CNN2LM are transformed from

CNN1 and CNN2 as follows:

• CNN1LM: Conv2D : (32, 3 × 3) → Conv2D : (64, 3 × 3) → MaxPool : (2 × 2) →
Dropout : (0.2) → Conv2D : (128, 3× 3) → Conv2D : (256, 3× 3) → MaxPool : (2× 2)
→ GAP → Concatenate : (Temp input) → Dense : (128) → Dense : (64) → Dense : (1)
→ Landscape Modification for ∇ĝt;

• CNN2LM: Conv2D : (32, 3×3) → Conv2D : (64, 3×3) → MaxPool : (2×2) → Dropout :
(0.2) → Conv2D : (64, 3×3) → Conv2D : (128, 3×3) → Conv2DTranspose : (128, 3×3)
→ Conv2DTranspose : (64, 3 × 3)→ UpSampling : (2 × 2) → Conv2DTranspose :
(64, 3× 3) → Conv2DTranspose : (32, 3× 3) → GAP → Dense : (128) → Dense : (64)
→ Dense : (32) → Landscape Modification for ∇ĝt.
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Figure 4: Evolution of the training loss function (MSE) against the epoch number: a) CNN1,
b) CNN1LM. These graphs are plotted for the learning process on datasets of the system with

size N = 10× 10.

5 Results and discussion

In this study, we utilized data proportions of 0.8 : 0.15 : 0.05 for training, validation, and
testing, respectively. This choice reflects our focus on maximizing the amount of data available
for training while still reserving a meaningful subset for validation and testing. We used one
data set each for 6× 6 and 10× 10 systems. These datasets were obtained by combining Monte
Carlo and Complete enumeration results for systems of the same size in a 1:1 ratio. The models
were trained first on a dataset for 6 × 6 dimensions and then further trained on a dataset for
10× 10. The number of epochs for each training step was 10 and the batch size was 256.

We tested two neural network architectures on described datasets: CNN1 represents the
first architecture without the LM approach, as illustrated in Fig. 2. CNN1LM uses the same
architecture but incorporates LM. CNN2 represents a more complex architecture, as shown in
Fig. 3 as well as CNN2LM, but with LM. Results show that CNN1 performed well for 10× 10,
while CNN1LM with the addition of LM improved performance for both SG sizes. CNN2
and CNN2LM outperformed the first models, demonstrating the importance of the enhanced
architecture, see Table 1. In this study, we tested two hyperparameter selection strategies for
LM: with respect to 6×6 and 10×10 systems, which may explain the differences in the obtained
results. This outcome could be attributed to suboptimal choices of the hyperparameters f , a,
or c, as identifying the ideal values can be challenging, particularly since the optimal settings
may vary depending on the system size. In this case, the adaptive tuning strategy for c may
be a better option, we plan to test this in further research.

RMSE
CNN1 CNN1LM CNN2 CNN2LM

6× 6 0.01182 0.00338 0.00249 0.00437
10× 10 0.00178 0.00309 0.00187 0.00172

Table 1: The root mean squared error (RMSE) metric for
the predicted ⟨E⟩(T ) using the proposed CNN architectures.
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The root mean square errors (RMSE) of the mean energy were calculated with the different
CNNs from the initial values obtained with the replica exchange Monte Carlo and complete
enumeration. The RMSE was calculated for 6 × 6 and 10 × 10 over the entire test dataset
and averaged over both temperature and different test configurations of the exchange integral
J distribution. The resulting RMSE values depending on CNN architecture and system size
are presented in Table 1. The table shows that the CNN models with Landscape Modification
showed slightly more accurate results than the regular version. The graphs of the loss function
value L as a function of the number of training epochs are shown in Fig. 4 for CNN1 and
CNN1LM. Loss metric reflects model performance improvements over epochs.

Figure 5 shows test examples of mean energy calculation using a complete enumeration and
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Figure 5: Comparison of mean energy-temperature dependencies for random configurations
obtained using the exact method and neural networks (CNN2 and CNN2LM) for different
system sizes: a) 6× 6, CNN2; b) 6× 6, CNN2LM; c) 10× 10, CNN2; d) 10× 10, CNN2LM.

159



Convolutional Neural Networks Application for Spin Glasses Kapitan, Andriushchenko, Nefedev and Kapitan

T

R
M

SE
 <

E>
 

2 4 531 60

0.01

0.03

0.05

0.07

CNN2, 6x6

(a)

T
2 4 531 60

R
M

SE
 <

E>
 

0.002

0.006

0.010

CNN2, 10x10

(b)

Figure 6: RMSE dependencies on temperature for CNN2 a) 6× 6, b) 10× 10.

CNNs of different architectures (CNN2 and CNN2LM). These figures show well the very high
accuracy of the proposed approach at T > 1 for all considered CNN architectures. In the region
T < 1, the difference between the architectures already starts to be seen. One can observe that
CNN2 and CNN2LM show results closer to the original values, which is due to differences in
architecture and training optimisations. The RMSE dependences on temperature for CNN2 are
shown in Fig. 6. These figures clearly show that the CNN accuracy decreases with decreasing
temperature. This behaviour is explained by the dramatically increasing influence of the ground
states of the spin glass on the thermodynamic characteristics as the temperature approaches 0.

6 Conclusion

In this paper, we considered the regression problem of predicting the average energy ⟨E⟩ as a
function of temperature T for spin glasses on a square lattice using machine learning methods.
Representing the spin glass as a weighted graph with exchange interactions as edges, we explored
the relationship between the spatial distribution of connections and ⟨E⟩ using CNNs. We
tested several CNN architectures and found that increasing the complexity and depth of the
NN architecture and implementing the LM approach improves performance in some cases. We
assume that increasing the training dataset as well as optimising the architecture of CNN can
further increase the accuracy of this method.
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