
An Incremental Algorithm to Optimally Maintain
Aggregate Views

Abhijeet Mohapatra and Michael Genesereth

Stanford University
{abhijeet, genesereth}@stanford.edu

Abstract

We propose an algorithm called CReaM to incrementally maintain materialized aggregate views with user-
defined aggregates in response to changes to the database tables from which the views are derived. We show that
when the physical design of the underlying database is optimized, the time taken by CReaM to update an aggregate
view is optimal.

1 Introduction
In data management systems, views are derived relations that are computed over database tables (which
are also known as extensional database relations or edbs). Views are materialized in a database to
support efficient querying of the data. A materialized view becomes out-of-date when the underlying
edb relations from which the view is derived are changed. In such cases, the materialized view is either
recomputed from the edb relations or the changes in the edb relations are incrementally propagated to
the view to ensure the correctness of the answers to queries against the view. Prior work presented
in [2, 13, 18] shows that incrementally maintaining a materialized view can be significantly faster than
recomputing the view from the edb relations especially if the size of the view is large compared to the
size of the changes.

A survey of the view maintenance techniques is presented in [7]. However, only a small fraction
of the prior work on incremental view maintenance [6, 8, 9, 13, 15, 18, 19] addresses the maintenance
of views that contain aggregates such as sum and count. The techniques proposed in [6, 8, 13, 15]
incrementally maintain views that have only one aggregation operator. Furthermore, the incremental
maintenance algorithms presented in [6,8,9,13,15,18,19] support only a fixed set of built-in aggregate
operators (min, max, sum, and count). In contrast, we present an algorithm to incrementally maintain
views with multiple aggregates each of which could be user-defined.

The paper is organized as follows. In Section 2, we discuss the specification of aggregates in our
language. In Section 3, we present differential rules to correctly characterize the changes in edb relations
to aggregate views. In Section 4, we present an incremental algorithm called CReaM that leverages the
differential rules to optimally maintain materialized aggregate views. In Section 5, we compare our
work to prior work on incremental maintenance of aggregate views.

Before we discuss our proposed solution, we illustrate the problem of incrementally maintaining
aggregate views using a running example.

Running Example: Suppose that there are tournaments in the Star Wars universe on different planetary
systems. The tournament results are recorded in an edb relation, say tournament(V,D,L). A tuple
(V,D,L) ∈ tournament iff V has defeated D on the planet L. For instance, if Yoda has defeated
Emperor Palpatine at Dagobah then the tuple (yoda, palpatine, dagobah) is in the extension of the edb
relation tournament. We use the extension of tournament that is presented in Table 1 in examples
throughout the paper.

We define and materialize a view, say victories(V,W) to record the number of victoriesW achieved
by a character V on a planet. For instance, Yoda has two victories in Dagobah and one victory in

88 K. Mcmillan, A. Middeldorp, G. Sutcliffe, A. Voronkov (eds.), LPAR-19 (EPiC Series, vol. 26), pp. 88–96

An Incremental Algorithm to Optimally Maintain Aggregate Views Mohapatra and Genesereth

tournament
Victor Defeated Location
yoda vader dagobah
yoda palpatine dagobah
vader yoda tatooine
yoda palpatine tatooine

victories
Victor Wins
yoda 2
vader 1
yoda 1

Table 1: Extension of the edb relation tournament and the view victories in the Star Wars Universe

Tatooine. Therefore the tuples (yoda, 2) and (yoda, 1) ∈ victories. The extension of victories that
corresponds to the extension of the edb relation tournament is presented in Table 1.

Suppose that a new tournament match is played in Tatooine and that Darth Vader defeats Emperor
Palpatine in this match. The new tournament match at Tatooine causes an insert to the tournament
relation. In response to the insert to the tournament relation, the tuple (vader, 1) ∈ victories must be
updated to (vader, 2) to ensure the correctness of the answers to queries against the view. Now, suppose
that the previous tournament match between Yoda and Palpatine at Tatooine is invalidated. In this case,
the tuple (yoda, palpatine, tatooine) is deleted from the tournament relation. In response to this deletion,
the tuple (yoda, 1) must be deleted from the materialized view victories.

2 Preliminaries
As our underlying language, we use the extension of Datalog that is proposed in [12]. We introduce
tuples and sets as first-class citizens in our language. A tuple is an ordered sequence of Datalog constants
or sets. A set is either empty or contains Datalog constants or tuples. For example, the tuple (yoda, vader,
dagobah) and the sets {}, {(yoda, vader, dagobah)} and {(yoda, {1, 2})} are legal in our language. We
use the setof operator in our language to represent sets as follows.

Definition 1. Suppose φ(X̄, Ȳ) is a conjunction of subgoals. The setof subgoal setof(Ȳ , φ(X̄, Ȳ), S)
represents the set S = {Ȳ | φ(X̄, Ȳ)} for every binding of values in X̄ .

We illustrate the construction of sets in our language using the following example.

Example 1. Consider the running example that we presented in Section 1. Suppose that we would like
to compute the set of characters who were defeated by Yoda at Dagobah. In our language, we compute
the desired set using the following query.

q1(S) :- setof(D, tournament(yoda, D, dagobah), S)

In query q1, the set S = {D | tournament(yoda, D, dagobah)}. The evaluation of the query q1 on the
extension of tournament that is presented in Table 1 results in the answer tuple q1({vader, palpatine}).

We use the ‘|||’ operator to represent the decompositions of a set. The decomposition of a set S into
an element X ∈ S and the subset S1 = S \ {X} is represented as {X |||S1}. For example, {3 ||| {1, 2}}
represents the decomposition of the set of numbers {1, 2, 3} into 3 and the subset {1, 2}. We define
the predicate member in our language to check the membership of an element in a set. The member
predicate has the signature member(X,S), where X is a Datalog constant or a tuple and S is a set. If
X ∈ S then member(X,S) is true, otherwise it is false. The member predicate can be defined in our
language using the decomposition operator ‘|||’ operator as follows.

member(X, {X |||Y })
member(Z, {X |||Y }) :- member(Z, Y)

89

An Incremental Algorithm to Optimally Maintain Aggregate Views Mohapatra and Genesereth

In addition, we use ∪ and \ operators in our language to represent set-union and set-difference respec-
tively. We note that we can define ∪ and \ operators in our language using the member predicate and
the decomposition operator ‘|||’ although we do not define them as such in this paper.

Aggregation over sets: In our language, we define aggregates as predicates over sets. We define an
aggregate either (a) in a stand-alone manner using the member predicate, the decomposition operator
‘|||’, and arithmetic operators or (b) as a view over other aggregates. For instance, we can compute the
cardinality of a set in our language by inductively defining an aggregate, say count(X,C), as follows.

count({}, 0)

count({X |||Y }, C) :- count(Y,C1), C = C1 + 1

3 Maintenance of Aggregate Views
In the previous section, we discussed the specification of aggregates as predicates over sets in our lan-
guage. Consider the running example that we presented in Section 1. Suppose that we would like to
query the number of victories V achieved by a character W on a planet. We represent this query in our
language as follows.

q(W,V) :- setof(D, tournament(W,D,L), S), count(S, V)

For every binding of the variables W and L in the query q, V = cardinality of {D | tournament(W,
D,L)}. In the Star Wars universe, this is equivalent to computing the number of victories V achieved
by a character W on a planet. Since the answers to queries are computed under set semantics, the
distinct numbers of victories are generated by the query q. To efficiently compute the answer to the
query q, we can leverage the materialized view victories from our running example (in Section 1). The
view victories(W,V) is defined as follows.

victories(W,V) :- setof(D, tournament(W,D,L), S), count(S, V)

When changes are made to the edb relation tournament, we must maintain the materialized view victo-
ries to ensure the correctness of answers to the query q.

Maintenance of views that contain sets: Consider a view v in our language which is defined over the
formula φ(X̄, Ȳ , Z̄) using the aggregation predicate agg as follows.

v(X̄, A) :- setof(Ȳ , φ(X̄, Ȳ , Z̄), W), agg(W,A)

Since aggregates are defined as predicates over sets in our language, we can rewrite the definition of the
view v using the following two rules, one of which contains a setof subgoal while the other does not.

v(X̄, A) :- u(X̄,W), agg(W,A)

u(X̄,W) :- setof(Ȳ , φ(X̄, Ȳ , Z̄), W)

We note that if the definition of v contains k setof subgoals instead of one, we can rewrite the
definition of v using k + 1 rules where only k of the rules contain setof subgoals. Since prior view
maintenance techniques [7] already maintain views that do not contain sets, we focus only on the main-
tenance of views that contain setof subgoals. As a first step, we leverage differential relational calculus
to incrementally propagate the changes in the edb relations to the views through differential rules. Then,
in Section 4, we propose an algorithm called CReaM that applies these differential rules to optimally

90

An Incremental Algorithm to Optimally Maintain Aggregate Views Mohapatra and Genesereth

maintain materialized aggregate views.

Differential rules: In differential relational calculus, a database is represented as a set of edb relations
and views r1, r2, . . . , rk with arities d1, d2, . . . , dk. Each relation ri is a set of di-tuples [5]. The changes
to a relation ri in the database consist of insertions of new tuples and deletions of existing tuples. The
new state of a relation ri after applying a change is represented as r′i. An update to an existing tuple can
be modeled as a deletion followed by an insertion. The insertion of new tuples into a relation ri and the
deletion of existing tuples from ri are represented as the differential relations r+i and r−i respectively.
Prior work in [14] presents a set of differential rules to compute the differentials (v+ or v−) of a non-
aggregate view v. We extend the framework that is presented in [14] to compute the differentials of
aggregate views.

There are two possible ways in which a view v can be defined in our language using the setof
operator over the formula φ(X̄, Ȳ , Z̄).

1. The view v is defined as v(X̄, Z̄,W) :- setof(Ȳ , φ(X̄, Ȳ , Z̄), W). In this case, all of the variables
of φ that are bound outside the setof subgoal are passed to the view v.

2. The view v is defined as v(X̄,W) :- setof(Ȳ , φ(X̄, Ȳ , Z̄), W). In this case, not all of the variables
of φ that are bound outside the setof subgoal are passed to the view v.

We present differential rules to compute the differentials of the view v in each of the above cases.

Case 1: Suppose that a view v is defined over a conjunction of subgoals φ(X̄, Ȳ) as follows.

v(X̄,W) :- setof(Ȳ , φ(X̄, Ȳ), W)

Suppose that we define a view u over v(X̄,W) as u(X̄) :- v(X̄,W). In this case, we compute the
differentials v+(X̄,W) and v−(X̄,W) as follows.

v+(X̄,W) :- setof(Ȳ , φ+(X̄, Ȳ), W), ¬u(X̄) (∆1)

v+(X̄,W ∪W ′) :- setof(Ȳ , φ+(X̄, Ȳ), W), v(X̄,W ′) (∆2)

v+(X̄,W ′ \W) :- setof(Ȳ , φ−(X̄, Ȳ), W), v(X̄,W ′) (∆3)

v−(X̄,W) :- setof(Ȳ , φ−(X̄, Ȳ), W), v(X̄,W) (∆4)

v−(X̄,W) :- setof(Ȳ , φ+(X̄, Ȳ),), v(X̄,W) (∆5)

v−(X̄,W) :- setof(Ȳ , φ−(X̄, Ȳ),), v(X̄,W) (∆6)

In the above differential rules, ‘ ’ represents don’t care variables.

Case 2: Now, suppose that a view v is defined over a conjunction of subgoals φ(X̄, Ȳ , Z̄) as follows.

v(X̄,W) :- setof(Ȳ , φ(X̄, Ȳ , Z̄), W)

In addition, suppose that we define a view u over v(X̄,W) as u(X̄) :- v(X̄,W). In the definition of v,
the set W is computed as {Ȳ | φ(X̄, Ȳ , Z̄)} for every binding of X̄ and Z̄. Since Z̄ is not passed to
the view v, a view tuple, say v(x,w), potentially has multiple derivations. In this case, we compute the

91

An Incremental Algorithm to Optimally Maintain Aggregate Views Mohapatra and Genesereth

differentials v+(X̄,W) and v−(X̄,W) as follows.

v+(X̄,W) :- setof(Ȳ , φ+(X̄, Ȳ , Z̄), W), ¬u(X̄) (Γ1)

v+(X̄,W ∪W ′) :- setof(Ȳ , φ+(X̄, Ȳ , Z̄), W), setof(Ȳ ′, φ(X̄, Ȳ ′, Z̄), W ′),

¬v(X̄,W ∪W ′)
(Γ2)

v+(X̄,W ′ \W) :- setof(Ȳ , φ−(X̄, Ȳ , Z̄), W), setof(Ȳ ′, φ(X̄, Ȳ ′, Z̄), W ′),

¬v(X,W ′ \W)
(Γ3)

v−(X̄,W) :- setof(Ȳ , φ−(X̄, Ȳ , Z̄), W), v(X̄,W),

¬setof(Ȳ ′, φ′(X̄, Ȳ ′, Z̄), W)
(Γ4)

v−(X̄,W) :- setof(Ȳ , φ+(X̄, Ȳ , Z̄),), setof(Ȳ ′, φ(X̄, Ȳ ′, Z̄), W),

¬setof(Ȳ ′′, φ′(X̄, Ȳ ′′, Z̄), W)
(Γ5)

v−(X̄,W) :- setof(Ȳ , φ−(X̄, Ȳ , Z̄),), setof(Ȳ ′, φ(X̄, Ȳ ′, Z̄), W),

¬setof(Ȳ ′′, φ′(X̄, Ȳ ′′, Z̄), W)
(Γ6)

We note that we have omitted the correctness proofs of the proposed differential rules in this paper.
However, the proofs can be found in the extended version of this paper [11].

4 Efficient Incremental Maintenance
In the previous section, we extended the differential rules that are presented in [14] to incrementally
compute the differentials of views containing setof subgoals. In this section, we leverage the differential
rules (from Section 3) to optimally maintain views containing setof subgoals. As a first step, we present
an example where differential rules are leveraged to incrementally maintain aggregate views.

Example 2. Consider a materialized view dominates which is defined over the tournament relation from
our running example (in Section 1) as follows.

dominates(V,W) :- setof(D, tournament(V,D,L),W)

The extension of the view dominates that corresponds to the extension of tournament (in Table 1) is
presented as follows.

dominates
Victor Defeated
yoda {palpatine, vader}
vader {yoda}
yoda {palpatine}

Suppose that Yoda defeats Darth Vader at Tatooine in a new tournament match. This match results
in the insertion of the tuple (yoda, vader, tatooine) into the tournament relation i.e. (yoda, vader,
tatooine) ∈ tournament+. Since the non-aggregated variable L in tournament is not passed to the
view dominates, we leverage the differential rules Γ1– Γ6 to incrementally compute the differentials
of the view dominates. By applying the differential rules Γ2 and Γ5 on the differential tournament+

and the relations tournament and dominates, we derive the differentials dominates−(yoda, {palpatine})
and dominates+(yoda, {palpatine, vader}). The computed differentials correspond to updating the tuple
(yoda, {palpatine}) ∈ dominates to the tuple (yoda, {palpatine, vader}).

92

An Incremental Algorithm to Optimally Maintain Aggregate Views Mohapatra and Genesereth

We note that in Example 2, we access tournament’s extension in addition to the differential
tournament+ to maintain the view dominates using differential rules. A tuple (V,W) ∈ dominates
could potentially have multiple derivations in tournament because V could defeat the same set of char-
acters W at multiple planetary systems. Hence, additional accesses to the extensions of edb relations
are required to maintain materialized views using differential rules.

Alternatively, we could maintain the count of the different derivations of tuples to optimize the
maintenance of aggregate views. Prior technques [6, 8, 9, 13, 15] leverage this idea to optimize the
maintenance of aggregate views where tuples in the view have multiple derivations in the edb relations.
Suppose that in Example 2, we maintain the count of the different derivations of a tuple in a manner
similar to the counting algorithm that is presented in [8].

dominates
Victor Defeated Number of Derivations
yoda {palpatine, vader} 1
vader {yoda} 1
yoda {palpatine} 1

Now suppose that we delete a tuple, say (yoda, vader, dagobah) from tournament’s extension. In
response to this deletion, we decrease the count of the tuple (yoda, {palpatine, vader}) ∈ dominates
from 1 to 0 (thereby deleting it from the view) and increase the count of the tuple (yoda, {palpatine})
from 1 to 2. The updated extension of the view dominates is presented below.

dominates
Victor Defeated Number of Derivations
vader {yoda} 1
yoda {palpatine} 2

When the tuple (yoda, vader, dagobah) is deleted from tournament’s extension, we do not have to
access tournament’s extension to incrementally maintain the materialized view dominates. However,
consider a scenario where we delete the tuple (yoda, palpatine, dagobah) instead of the tuple (yoda,
vader, palpatine) from tournament’s extension. In this scenario, unless we access tournament’s exten-
sion, we cannot correctly update the materialized view dominates because we do not have sufficient
information to determine whether the existing tuple (yoda, {palpatine}) ∈ dominates is to be deleted or
the tuple (yoda, {palpatine, vader}) ∈ dominates is to be updated.

Incremental Maintenance using CReaM1: Consider the materialized view dominates that we pre-
sented in Example 2. Suppose that we rewrite the definition of dominates using an auxiliary view va as
follows.

dominates(V,W) :- va(V,L,W)

va(V,L,W) :- setof(D, tournament(V,D,L),W)

In addition, suppose that we materialize the auxiliary view va and maintain the counts of the deriva-
tions of a tuple in the view dominates. The extension of the auxiliary view va is presented as follows.

1The algorithm has been named CReaM because it Counts the tuple derivations in a view, Rewrites the view using auxiliary
views and Maintains the auxiliary views.

93

An Incremental Algorithm to Optimally Maintain Aggregate Views Mohapatra and Genesereth

va
Victor Location Defeated
yoda dagobah {palpatine, vader}
vader tatooine {yoda}
yoda tatooine {palpatine}

Now, suppose that we delete the tuple (yoda, palpatine, dagobah) from the extension of tournament.
Since all of the non-aggregated variables of tournament are passed to the auxiliary view va, we can
incrementally maintain va using the differential rules ∆1– ∆6 (from Section 3). We note that ∆1– ∆6

only access the extension of a view and the differentials of the edb relations over which the view is
defined. Thus, we are able to compute the differentials v−a (yoda, dagobah, {palpatine, vader}) and
v+a (yoda, dagobah, {vader}) without accessing the extension of tournament.

Since the modified definition of the view dominates does not contain setof subgoals, we use the
counting algorithm [8] to incrementally maintain the count of the tuple derivations in the view dominates
in a subsequent step.

We now propose an algorithm called CReaM to incrementally maintain views that contain setof
subgoals. The CReaM algorithm is presented in Figure 1.

Figure 1: Algorithm to optimally maintain views containing setof subgoals
CReaM Algorithm

Input: 1. Materialized view v(X̄, W) defined as:
v(X̄, W) :- setof(Ȳ ,φ(X̄, Ȳ , Z̄), W),

2. Differentials φ+(X̄, Ȳ , Z̄) and φ−(X̄, Ȳ , Z̄)
Step 1: Rewrite the view v using an auxiliary view va which contains all of the

non-aggregated variables
v(X̄, W) :- va(X̄, Z̄, W)

va(X̄, Z̄, W) :- setof(Ȳ ,φ(X̄, Ȳ , Z̄), W)
Step 2: Materialize the auxiliary view va

Step 3: Maintain the count of the tuple derivations in the view v
Step 4: Apply the differential rules ∆1- ∆6 over φ+(X̄, Ȳ , Z̄) and φ−(X̄, Ȳ , Z̄)

to compute v+
a (X̄, Z̄, W) and v−

a (X̄, Z̄, W)
Use v+

a (X̄, Z̄, W) and v−
a (X̄, Z̄, W) to incrementally update the counts of v’s tuples

using [9]

In the definition of an auxiliary view, all of the variables that are bound outside the
setof subgoal are passed to the head. The view definition of v can now be rewritten
as v :- va1

, va2
, . . . vak

. Since the modified view definition of v does not contain setof
subgoals, we can correctly maintain it by applying the counting algorithm [9] to the
instance of v and the differential updates to the auxiliary views. In addition, we can
leverage the rules ∆1- ∆6 to correctly compute the differential updates to the auxiliary
views by Theorem 1.

Of course, we could leverage only the rules ∆1- ∆6 and Γ1- Γ6 to maintain non-
recursive views with setof subgoals. However the rules Γ1- Γ6 check for alternative
derivations of a view tuple using the updated instances of base predicates. In contrast,
the counting algorithm [9] maintains the number of derivations of a view tuple incre-
mentally. Hence by leveraging the counting algorithm we can maintain a view faster
than if we apply only the rules ∆1- ∆6 and Γ1- Γ6.

4.2 Performance

4.3 Self-Maintenane of Aggregate Views

5 Related Work

6 Conclusion

References

1. Blakeley, J.A., Coburn, N., Larson, P.A.: Updating derived relations: detecting irrelevant and
autonomously computable updates. ACM TODS. (1989)

2. Blakeley, J.A., Larson, P.A., Tompa, F.W.: Efficiently updating materialized views. SIGMOD
(1986)

3. Buneman, O.P., Clemons, E.K.: Efficiently monitoring relational databases. ACM TODS
(1979)

We note that CReaM incrementally maintains a view whose definition contains a single setof sub-
goal. However, when the supplied view definition contains multiple setof subgoals and aggregate pred-
icates, we can incrementally maintain the view using CReaM as follows. Suppose that a materialized
view v contains k setof subgoals {si} andm aggregate predicates {ai}. First, we rewrite the definition of
v using k auxiliary predicates, say {ti} where each ti is defined as ti :- si. Next, we maintain the counts
of the tuple derivations in v and incrementally compute the differentials of ti by applying CReaM to the
extensions of the auxiliary predicates {ti} and the differentials of the edb relations. Since the modified
definition of v does not contain setof subgoals, we use the counting algorithm that is presented in [8] to
incrementally maintain the materialized view v.

In the following theorem, we prove the correctness of the CReaM algorithm.

Theorem 1. CReaM correctly maintains a materialized view containing setof subgoals.

Proof. Consider a view v in our language which is defined using k setof subgoals s1, s2, . . . , sk as
v :- s1, s2, . . . , sk. Suppose that we introduce k auxiliary views va1

, va2
, . . . , vak

where each vai
is

defined as vai :- si. In the definition of the auxiliary view vai , all of the variables that are bound outside

94

An Incremental Algorithm to Optimally Maintain Aggregate Views Mohapatra and Genesereth

the setof subgoal si are passed to the view. By replacing the setof subgoals using the auxiliary views, we
can rewrite the definition of the view v as v :- va1

, va2
, . . . , vak

. Since the modified definition of the view
v does not contain setof subgoals, we can correctly maintain it by applying the counting algorithm [8].
In addition, we can use the result in [11] to prove that the differential rules ∆1– ∆6 correctly compute
the differentials of the auxiliary views {vai

}.

Next, we show that when the supplied materialized view and the auxiliary views that are materialized
by CReaM are indexed, the time taken by CReaM to incrementally maintain a view is optimal.

Theorem 2. CReaM optimally maintains a materialized view containing a setof subgoal in response to
changes in edb relations when the physical design of the underlying database is optimized.

Proof. Suppose that a materialized view v is supplied as an input to CReaM. In addition, suppose that
v consists of n tuples. To maintain v, CReaM rewrites the definition of v using an auxiliary view (say
va) and computes the differentials of va using ∆1– ∆6. When v and va are indexed, the time required
to compute the differentials is O(log n). The detailed analysis of the time complexity of CReaM is
presented in [11]. Therefore, to prove the optimality of CReaM, it suffices to show that Ω(log n) time
is required to incrementally maintain a materialized view that contains n tuples.

To prove the lower bound, we reduce the problem of incrementally maintaining the partial sums of
an array of n numbers to the problem of incrementally maintaining an extension of a view with n tuples.
Prior work in [3, 4, 16] have independently proven that the maintenance of the partial sums of an array
of n numbers requires Ω(log n) time. Consider an array of n numbers {ai}. The partial sums problem
maintains the sum

∑k
i=1 ai for every k (1 ≤ k ≤ n) subject to updates of the form ai = ai + x, where

x is a number.
We reduce the instance of the partial sums problem over the array {ai} to an instance of the view

maintenance problem as follows. Consider an instance of the view maintenance problem where we have
two edb relations r(A,B) and s(B,C). The extension of r(A,B) consists of the set of n×(n−1) tuples,
{(i, j) | 1 ≤ j ≤ i ≤ n}. The extension of s(A,B) consists of the set of n tuples, {(i, ai) | 1 ≤ i ≤ n}.
Suppose that we materialize n views v1, v2, . . . , vn over r(A,B) and s(B,C) where each vi is defined
as vi(S) :- setof((B,C), r(i, B) & s(B,C),W), sum(W,S, 2). In the definition of vi, the aggregate
sum(W,S, 2) computes the sum of the 2nd component of the tuples ∈ W . When an array value ai
is updated to ai + x, we update the tuple (i, ai) ∈ s(B,C) to the tuple(i, ai + x). Since we can
compute the partial sum

∑k
i=1 ai by finding the value s which is in the extension of vk, the problem

of maintaining the partial sums of the array {ai} reduces to the problem of incrementally maintaining
the views v1, v2, . . . , vk. Therefore, Ω(log n) time is required to incrementally maintain a materialized
view that contains n tuples.

5 Related Work
The problem of incrementally maintaining views has been extensively studied in the database commu-
nity. A survey of the view maintenance techniques is presented in [7]. The view maintenance algorithms
proposed in [1,6,8–10,14,17,18] leverage differential relational algebra to incrementally maintain views
in response to changes to the underlying edb relations. For instance [14] incrementally computes the
differentials (or changes) of views by applying a set of differential rules over the extensions of edb re-
lations and their differentials. However, only a small fraction of the prior work on incremental view
maintenance [6, 8, 9, 13, 15, 18, 19] addresses the maintenance of aggregate views. The techniques pro-
posed in [6,8,13,15] incrementally maintain views having only one aggregation operator. Furthermore,
the incremental maintenance algorithms presented in [6, 8, 9, 13, 15, 18, 19] can support only a fixed set
of built-in aggregate operators (such as min, max, sum, and count).

95

An Incremental Algorithm to Optimally Maintain Aggregate Views Mohapatra and Genesereth

Our work differs from prior work on incrementally maintaining aggregate views in two ways. First,
we propose a view maintenance algorithm called CReaM that optimally maintains aggregate views.
Second, we can extend the CReaM algorithm to maintain views that contain user-defined aggregates.
To maintain views with user-defined aggregates, we rewrite the supplied view definitions using auxiliary
views that contain setof subgoals and apply the CReaM algorithm to maintain the auxiliary views. Then,
we apply prior maintenance algorithms [7] to maintain views whose definitions do not contain sets.

6 Conclusion
We propose an algorithm called CReaM that incrementally maintains materialized aggregate views in
response to changes to edb relations by materializing auxiliary views and applying differential rules.
When the physical design of the underlying database is optimized, CReaM optimally maintains the
supplied aggregate views.

References
[1] Jose A. Blakeley, Per-Ake Larson, and Frank W. Tompa. Efficiently updating materialized views. In SIGMOD,

1986.
[2] Latha S. Colby, Akira Kawaguchi, Daniel F. Lieuwen, Inderpal S. Mumick, and Kenneth A. Ross. Supporting

multiple view maintenance policies. In SIGMOD, 1997.
[3] Michael L. Fredman. A lower bound on the complexity of orthogonal range queries. J. ACM, 1981.
[4] Michael L. Fredman. The complexity of maintaining an array and computing its partial sums. J. ACM, 1982.
[5] Herve Gallaire, Jack Minker, and Jean-Marie Nicolas. Logic and databases: A deductive approach. ACM

Computing Surveys, 1984.
[6] Timothy Griffin and Leonid Libkin. Incremental maintenance of views with duplicates. In SIGMOD, 1995.
[7] Ashish Gupta and Inderpal S. Mumick. Materialized Views:Techniques, Implementations, and Applications.

MIT Press, 1999.
[8] Ashish Gupta, Inderpal S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally. In SIGMOD,

1993.
[9] Himanshu Gupta and Inderpal S. Mumick. Incremental maintenance of aggregate and outerjoin expressions.

Information Systems, 2006.
[10] Volker Kuchenhoff. On the efficient computation of the difference between consecutive database states.

DOOD, 1991.
[11] Abhijeet Mohapatra and Michael Genesereth. Incremental maintenance of aggregate views. Technical Report

LG-2013-01, Stanford University, 2013. http://logic.stanford.edu/reports/LG-2013-01.
pdf.

[12] Abhijeet Mohapatra and Michael Genesereth. Reformulating aggregate queries using views. In SARA, 2013.
[13] Inderpal S. Mumick, Dallan Quass, and Barinderpal S. Mumick. Maintenance of data cubes and summary

tables in a warehouse. In SIGMOD, 1997.
[14] Levent V. Orman. Differential relational calculus for integrity maintenance. ACM TKDE, 1998.
[15] Themistoklis Palpanas, Richard Sidle, Roberta Cochrane, and Hamid Pirahesh. Incremental maintenance for

non-distributive aggregate functions. In VLDB, 2002.
[16] Mihai Păatraşcu and Erik D. Demaine. Tight bounds for the partial-sums problem. In SODA, 2004.
[17] Xiaolei Qian and Gio Wiederhold. Incremental recomputation of active relational expressions. ACM TKDE,

1991.
[18] Dallan Quass. Maintenance expressions for views with aggregation. In Views, 1996.
[19] Dallan Quass. Materialized views in data warehouses. PhD thesis, Stanford University, 1998.

96

http://logic.stanford.edu/reports/LG-2013-01.pdf
http://logic.stanford.edu/reports/LG-2013-01.pdf

	Introduction
	Preliminaries
	Maintenance of Aggregate Views
	Efficient Incremental Maintenance
	Related Work
	Conclusion

