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Abstract

Non-classical logics (such as modal logics, description logics, conditional logics, multi-valued logics,
hybrid logics, etc.) have many applications in artificial intelligence. In this tutorial, we will demon-
strate a generic approach to automate propositional and quantified variants of non-classical logics using
theorem proving systems for classical higher-order logic. Our particular focus will be on quantified mul-
timodal logics. We will present and discuss a semantical embedding of quantified multimodal logics into
classical higher-order logic, which enables the encoding and automated analysis of non-trivial modal
logic problems in the Isabelle/HOL proof assistant. Additionally, TPTP compliant automated theo-
rem proving systems can be called from within Isabelle’s Sledgehammer tool for automating reasoning
tasks. In the tutorial, we will apply this approach to exemplarily solve a prominent puzzle from the Al
literature: the well-known wise men.

1 Introduction

Computer-assisted reasoning in non-classical logics is of increasing interest in artificial intelli-
gence (AI), computer science, mathematics and philosophy. Several powerful automated and
interactive theorem proving systems have been developed over the past decades. However, with
a few exceptions, most of the available systems focus on classical logics only. In particular for
quantified non-classical logics there are only very few systems available to date.

This situation is in contrast to the relevance of quantified non-classical logics for a wide range
of AT application areas such as knowledge representation, multi-agent systems, reasoning with
uncertainty, counterfactual reasoning, social choice, etc. Prominent logics for these application
areas include, for example, modal logics and hybrid logics [19]), description logics [5]), many-
valued logics [23]) and conditional logics [21, 28]. However, the development of calculi and
reasoning systems for these and other non-classical logics is mainly focusing on propositional
resp. decidable fragments. Another aspect is that non-classical logics often come with various
parameters that need be adjusted for particular application domains (e.g. different combinations
of axioms in modal logics, or different conditions such as varying domains vs. constant domains).
However, the required flexibility for such parametric logics is not easy to achieve in practical
implementations.

Orthogonal to the development of specialized provers, a semantical embedding approach
(cf. [9, 12, 14, 29]) allows for a quick adaptation of existing higher-order reasoning systems to a

C.Benzmiiller, G.Sutcliffe and R.Rojas (eds.), GCAI 2016 (EPiC Series in Computing, vol. 41), pp. 1-10



A Generic Approach to Automate Expressive Non-Classical Logics Benzmiiller, Steen, Wisniewski

broad variety of expressive, non-classical logics. Recent related work has focused on automation
of quantified conditional logics [6], quantified hybrid logics [31], free logics [14] and many-valued
logics [29]. There is empirical evidence that such embeddings can be employed together with
reasoning systems for higher-order logic to successfully verify or refute non-trivial arguments
in e.g. metaphysics and that they even can contribute new knowledge [18, 16, 8, 15].

In this tutorial we will focus on the application of the embedding approach to modal log-
ics [12, 17]. More precisely, we will present and discuss some prominent example problems that
can be modeled using modal logics. In this paper, we will use the wise men puzzle as a rep-
resentative example for the approach. The experiments are conducted using the Isabelle/HOL
proof assistant [27] and can be run on any computer.

2 Classical Higher-Order Logic

The target logic for the presented embedding as well as the logical foundation of the higher-order
reasoning systems considered here is (classical) higher-order logic (HOL) [22, 11, 3].! HOL is
a typed logic which is built on top of the simply typed A-calculus. The set of simple types T
contains all types that are freely generated using the binary function type constructor — and a
set of base types, including o and ¢ for the type of Booleans and individuals, respectively. The
terms of HOL are given by (r,v € T):

s,itu=cr | Xr | (A X7os0) L, | (Srouts),

where ¢, € X is a constant symbol of type 7 from the signature ¥ := (J ¥, and X, € V
is a variable from a set V of countably infinitely many variables for each type. Terms of the
form (AX;.s,)__,, and (s;, t;), are called abstractions and applications, respectively. By
convention, applications are left-associative whereas the function type constructor — is right-
associative. We hence avoid unnecessary parentheses if possible. The type of a term is explicitly
stated as subscript but may be dropped for legibility reasons if obvious from the context. Terms
s, of type o are called formulas.

In general, we require ¥ to contain a complete logical signature. To that end, we choose ¥ to
consist of at least the primitive logical connectives for disjunction, negation, and, for each type,
equality and universal quantification.? Hence, we have {Vo_0—s0;, T0—s0s ::—>T—>07VE—T~>O)A)0} -
3 for all 7 € T. The remaining logical connectives can be defined as usual, e.g. conjunction by
Nososo i= ASo. M. (718 V ).

The semantics for HOL is meanwhile well-understood and can be found in the litera-
ture [25, 1, 2, 10] to which we refer for brevity. Validity of a formula s, is denoted =10 s,.

For HOL, sophisticated automated and interactive theorem provers are available [7]. Prominent

examples for the first kind of systems are Leo-II [13], Satallax [20] and TPS [4], and, for the
latter kind, Isabelle/HOL [27].

3 Quantified Multimodal Logic

Quantified Multimodal Logic can be seen as an extension of classical higher-order logic as
introduced in §2. To that end, the syntax of HOL is augmented with the modal operator O,_,,

IThe brief introduction to HOL is mainly borrowed from [30] which, in turn, adapts the simplified notation
of [26] for HOL.
2We will use infix notation for the usual binary logical connectives, i.e. write (s V t) instead of (V s) ¢
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Name Axiom scheme Frame condition
K1 O(p =) = (Op = 0Ov) -
T Op = ¢ reflexive
B p— 00y symmetric
D Op — Oy serial
4 Op — O0¢p transitive
5 S — OOy euclidean

Table 1: Axiom schemes for modal logics

(its dual, the ©p_,, operator, can be defined by & := As,. =(O=s)). To distinguish between
HOL and specialized logics in the remainder of this paper, we will give connectives and types
in modal logics in boldface and the classical HOL connectives and types normal font.

Both modal operators can have varying interpretations (intended meaning) depending on
the specific modal logic and application domain considered. The standard reading of O (resp.
<O) is “necessarily” (resp. “possibly”). With this interpretation of the modal operators, the
formula

O(3z . big = A O(Vy . smaller yz))

expresses that "necessarily there exists an x, that is big and possibly all y are smaller than x”.

There exists a wide range of modal logics such as temporal logics, epistemic logics, deontic
logics and conditional logics. All of these have a different interpretation of O and <, which is
mirrored by the modal operator’s different axiomatizations. However, all modal logics share
the common axiom K

O(p = 1) = (Op — OyY)

and the necessitation principle (if ¢ is valid, then so is Ogp).

Table 1 presents the most prominent of those axioms for specialized modal logics. As an
example, consider the above mentioned deontic logic — a logic about obligations and permits
— which includes the axiom scheme D, reading as ”if it is obligatory that ¢ holds, then ¢ is
permitted”. In more involved modal logics it may be necessary to introduce more than one O-
operator. For example, a common temporal logic, named Tense Logic, introduces two operators
0f and OP (normally written as G and H, respectively). The first one O/ reads as goes on,
while the second one OP reads as has been. In general, we can describe a multimodal logic by
introducing a family of O%-operators, for i € I, over an arbitrary index set I.

An appropriate semantics is obtained by adapting Henkin semantics for HOL to a Kripke
semantics for these quantified multimodal logics (QMML). In this semantic a set of possible
worlds is defined. Each formula is evaluated corresponding to a world. The modal operators
change the reference of the currently evaluating world. Details on the semantics of QMML can
be found elsewhere [12]. The validity of a QMML formula s, is denoted E9MME 5, 3.

Agent Knowledge Epistemic logic, the logic about knowledge, can be interpreted as a form
of multimodal logic [24]. The O-operators here represent “knowing” and are indexed with an
agent’s identifier from an index set I, referring to the particular agent whose knowledge is
addressed. For example the sentence ”a knows”, for an agent name a € I, can be stated as O°.

3Dealing with a set of axioms A we are assuming global variant of the consequence relation A EQMML g,
In global consequence the axioms are assumed to hold everywhere (in every world). A more detailed explanation
can be found in [32]
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While dealing with common knowledge scenarios, we often define an additional entity of-
ten called “fool” to state that every individual knows a fact (every fool knows). A common
knowledge operator C is often characterized by an infinite recursion

Clp) =0 p A C(p)).

A fact is common knowledge, if every body knows it, and everybody knows, that it is
common knowledge. A more eligible version — dealing with a stronger version of the fool — can
be stated with the following axioms.

(Df0014p) — @
(DfOOl(p)—)DfOOI(DfOOILp)
(Df001<p) — 0% | for all agents a €

The first axiom deals with the fact that every fool only knows facts that are indeed true. The
second axiom captures the recursive definition of common knowledge by assuring the recursive
expansion. The last axiom captures the distribution of common knowledge, i.e. stating that
every agent in fact knows what is common knowledge.

Additionally epistemic logic introduces introspection for each agent: Adding O%p — O%0O%p
and -0O%p — O%-0%p as an axiom scheme ensures that every agent knows whether or not he
knows a fact. But for the purpose of the following puzzle we do not need either of these axioms.

3.1 The Wise Men Puzzle

A classical example dealing with knowledge between agents and implicit knowledge transfer is
the wise men puzzle (also known in a variation as muddy forhead puzzle). It reads as follows:

Once upon a time, a king wanted to find the wisest out of his three
wisest men. He arranged them in a circle and told them that he
would put a white or a black spot on their foreheads and that one of
the three spots would certainly be white. The three wise men could
see and hear each other but, of course, they could not see their faces
reflected anywhere. The king, then, asked to each of them to find
out the color of his own spot. After a while, the wisest correctly
answered that his spot was white. How could he know that?

In order to solve this problem in a formal logic setting, we have to give a logical representation
of the natural language text. As the text deals with knowledge, we choose the epistemic
multimodal logic as introduced above.

The first common information given to the wise men, is that one on them has a white spot,
and there are, in fact, three of them.

Ofol(white a V white b V white c)
Of°l(a£bAa# cAb#c)

The next information eligible to all wise men, is that two men can see the color of the third
man. However, a priori there is no information available about one’s own spot.

I:lfo"l(whitex — OY(whitex)) Jfor all ,y with x # y
Ofeol(wwhite » — OY(~whitez)) ,for all 2,y with z # y

Since we have only two possible colors for the spot, we model the color as a predicate white.
The other color — black — is referred to by the negation of white. Finally, we encode the silence

4
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of the first two wise men by stating that ”everybody knows, that a (respectively b) does not
know whether they have the white spot on the forehead”.

Ofeel(-0%(white a))
Ofol (-0° (white b))

The puzzle’s question can now be formulated as the proof problem that the last wise man can
indeed deduce the color of his dot to be white.

O¢(white ¢)

Using the above modal logic, the formalization of the puzzle is quite natural. The only extra
information given by the formalization, is the consideration that identifies the silence of two wise
men with them not knowing their dot’s color. However, we claim that this is straight-forward
and can be justified from the puzzle’s description.

4 Automation of QMML

Automation of QMML is done using an indirection via HOL: The goal is hence to find equivalent
formulations of QMML sentences in HOL. To that end, we first encode essential parts of the
semantics of QMML within HOL, i.e. all logical ingredients such as connectives as well as
the relevant meta-logical notions such as validity (in QMML, i.e. MM Subsequently,
we formulate the original QMML problem using the above encoded notions and a translation
scheme for constant symbols — which consists mostly of appropriate type-lifting. The procedure
itself is described in more detail below (cf. §4.1). Finally, we can use ordinary theorem proving
systems for HOL such as Isabelle/HOL for formulating the QMML problems by inputting the
embedded variant of the original problem.

As a concrete example, the application of this process is depicted on the above presented
wise-men puzzle using Isabelle/HOL in §4.2.

4.1 Semantical Embedding

For the particular instance of HOL used as target logic for the embedding, we assume the set
of basic types to be {o,t, u}, where o denotes the type of Booleans as before. Without loss of
generality, ¢ is now identified with a (non-empty) set of worlds and the additional base type u
with a (non-empty) domain of individuals.*

QMML formulas are now identified with certain HOL terms (predicates) of type ¢ — o.
They can be applied to terms of type ¢, which are assumed to denote possible worlds. The
intuition here is that we evaluate the truth of a formula explicitly in a particular world. The
definition of O and © are then defined as appropriate® quantifications over the possible worlds.
The type ¢ — o is abbreviated as o ("type-lifted Booleans”) in the remainder. Recall that
the bold-face font denotes QMML terms and types, in order to distinguish them from those

4 The particular choice of whether p or ¢ is identified with individuals, respectively worlds, is irrelevant and
could be reversed. The selection here is motivated by the idea to stay as close as possible with the choices made
in previous work.?

5 In contrast to previous work where bold-face font was used for HOL, we use bold-face font for the embedded
logic. This is motivated by the fact that the embedding in Isabelle/HOL also uses bold-face symbols for modal
connectives.

6 According to the Kripke-semantics interpretation of Os, the embedding’s denotation is achieved by checking
whether ([s],-0 v.) holds for each accessible world v,, where [s] is the encoding of s into HOL.
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of HOL. First, for each accessibility relation r € I of QMML, we introduce a constant symbol
Ti—i—o t0 the HOL signature. Then, for each type 7 of QMML we define the embedding (or
type-lifting) [7] of T by

I
[0

_
Il

1
o
[T —=v]=[1] = [v]

We extend the definition of [.] to QMML terms by
[er] = crr
[Xr] =X

[AXr.8,] = A[X:]. [s0]

|—3‘r—>u t‘r1 = [s‘r—w] ’—tr—|

Hence, all the constant symbols and the variables are lifted to (non-bold) equivalents in HOL.
Of course, the logical connectives of QMML lifted to HOL are here of particular interest, they
are defined by:

-

rse = ASy AW,. =(S W)

Voosoose = ASy ATy AW,. (S W) V (T W)

Moo = AProe AW, VX, P X W
07 = AS, AW, VWV, ~(r W V)V SV

Finally, we encode the notion of QMML validity by defining an appropriate abbreviation
|.], grounding terms of type o to type o:

[So| :=VW;.s W
Theorem 1 (Soundness, Completeness). For all QMML formulas s, it holds that
=OMME s, if and only if =" |[s,]]
A proof is presented in earlier work [12].
The above presented embedding is not restricted to base modal logic K. In order to use
stronger logics, we can easily add the frame conditions corresponding to the respective axiom
scheme (cf. Table 1) as additional axioms. As an example, when modal logic KB is considered,

we simply add the HOL axiom for symmetry, i.e. VW, VV,.=(r W V)V r V W, to the set of
axioms. This is a major advantage over systems that have a hard-wired underlying logic.

Examples. The encoding is a straight-forward replacement of all modal logic symbols for
their definiendum. The introductory example

O5-503X,, . big, ,, X A Op3oVY), .smaller, ,, ,, YV X
is hence mapped to the HOL proof problem

[[Oos03 X, . big, ., X N OooVY), .smaller, ;oY X1]
= AU, ¥W,. (URW — 3X,,. (big,_,, X W ATV, . (W RV — VY, .smaller,,_,, ., ¥ X V)))]
— VU, NW,. (URW — 3X,,. (big,_,, X W ATV, . (W RV = VY, .smaller, ,, ., Y X V)))

6
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The structure of the formula is still the same, but we can see that the original formulas become
predicates on worlds which are explicitly applied.

Concerning our wise men puzzle, e.g. the axiom

b

fool
o o—o

0% (whiteq_,oa — O

whitea o a)
is analogously encoded as (let & = ¢ — ¢ — o for brevity)
YW, . VYV, . foola WV — (whiteq—yo aV — VYU, . by VU — whiteq—o aU).

As we can see, the type ¢ — ¢ — o of the embedded modal operator’s subscripts (the identifier of
the agents) corresponds to the type of the accessibility relations, allowing to identify these two
counterparts within the HOL encoding. It is important to note that expansions of the encoding
can suitably be hidden from the user in modern proof assistant systems such as Isabelle/HOL.
This will be illustrated below.

4.2 Automation using Isabelle/HOL

The practical employment of the above described semantical embedding for QMML in Is-
abelle/HOL is straight-forward and can be done in a separate theory file. This way, for a
concrete application scenario, we can simply import the embedding without dealing with any
technical details. The complete embedding of QMML is quite short (approx. 30 lines of code
with line breaks) and is displayed in Fig. 1 (a).

The formalization of the wise men puzzle from §3.1 in Isabelle/HOL, as seen in Fig. 1 (b),
imports the afore described QMML theory file (not shown in the figure) and states the respec-
tive axioms and proof problem. Note that the formalization within Isabelle/HOL differs only
marginally from the original formulation. This is also due to the syntactically convenient defini-
tions of the embedded modal operators which can simply be written down using Isabelle’s GUI
and abbreviation system. The internal tactics of Isabelle/HOL can easily prove the depicted
conjecture within few milliseconds. The proof search can additionally by guided by Sledge-
hammer calls which transmit the proof problems to automated theorem provers. We therefore
claim that the usability of our approach, especially when combined with a sophisticated tool
like Isabelle/HOL, is indeed quite good.

5 Summary

In our tutorial we will show that the embedding of non-classical logics in HOL gives us an easy
and fast way to implement specialized theorem provers. We have sketched this approach for
quantified multimodal logics as a prominent example. However, this technique can be applied
for a broad range of further non-classical logics, including conditional logics, description logics,
hybrid logics, many-valued logics and many more.

Moreover, environments like Isabelle/HOL allow the user to input the non-classical formal-
izations quite comfortably. In the tutorial session we will give a more in-depth introduction
into the development of a new embedding, understanding of given embeddings, and working
with Isabelle/HOL to formalize own theories.

In the future, we are interested in further application areas to employ this kind of approach
and handling of non-classical logics with pre-existing proving tools. In parallel we will embed
further non-classical logics as well to establish a growing support for a great variety of relevant
logics.
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"the type for possible worlds"
"the type for individuals"

typedecl 1 --
typedecl p --
type_synonym o = "(i = bool)"
abbreviation mneg :: "o=c"
where " —p(w)"

abbreviation mnegpred :: "(pu=o)=(p=a)" ("
where ""¢ = A Aw. @ (x) (w)"
abbreviation mand :: "o=o=rc"
where "pAY = dw. p(w)Ap(w)"
abbreviation mor :: "o=o=o"
where "V = Aw. p(w)va(w)"
abbreviation mimpl :: "o=o=c"

("=_"[52]53)
p = Awi.
_"[52153)
(infixr"A"51)
(infixr"v"50)

(infixr"—"49)

where "p—i = Aw. p(w) —(w)"

abbreviation mequiv "o=ao=c" (infixr"="48)
where "p=y = Aw. p(w)—t(w)"

abbreviation mall :: "('a=c)=c" ("V")

where "V& = dw.Wx. ©(x)(w)"

abbreviation mallB:: "('a=ro)=¢" (binder"¥"[8]9)
where "¥Wx. p(x) = V"

abbreviation mexi :: "('a=c)=c" ("3")

where "30 = Aw.3dx. B(x)(w)"
abbreviation mexiB:: "('a=ag)=c"
where "3Jx. p(x) = "

(binder"3"[8]19)

abbreviation mbox :: "(i = 1 = bool) = ¢ = ¢" ("O_ _")
where "Or ¢ = (Aw. ¥Yv. rwv — ¢ v)"

abbreviation mdia :: "(i = 1 = bool) = o = " ("O_ ")
where "¢r o = (Aw. V. rw v A p v)"

abbreviation valid ::
where "|p| = Yw. p w"

(a) Complete Embedding of QMML

"o = bool" ("|_|"[718)

Benzmiiller, Steen, Wisniewski

consts a::"a" br:"a" c::i'a" fooli:'a"

consts ws::"a = o

context

assumes
ABa: "a#b Ab#cCchAna#c" and
ABb: "fool # a A fool # b A fool # ¢" and
Al: "|(Ofool (ws aVwsb Vwsc))|" and
A2_ab: "[Ofool ((ws a) — Ob (ws a))|" and
A2_ac: "[Ofool ((ws a) — Oc (ws a))|" and
A2_ba: "|Ofcol ({ws b) — DOa (ws b))|" and
AZ_bc: "|Ofool ((ws b) — Oc (ws b))|" and
A2 ca: "[Ofool ((ws ¢) — Oa (ws c))|" and
A2 cb: "[Ofool ((ws c¢) — Ob (ws c))|" and
A3_ab: "|Dfool (—(ws &) — Ob -(ws a))]" and
A3_ac: "[Ofcol (—{ws a) — Oc —(ws a))|" and
A3 ba: “[Ofool (=(ws b) — Oa -(ws b))]|" and
A3 bc: "|Ofcol (—(ws b) — Oc =(ws b})]|" and
A3_ca: "|DOfool (—(ws c) — Da =-(ws c})]" and
A3_cb: "|Dfool (—(ws c) — Ob =(ws c})]" and
Ad: "|(Ofool ») — ¢|" and
AS: "|(Ofcol ) — Ofool Ofcol ¢|" and
A6_1: "|(Ofool ) — Oa p|" and
AB 2: "|(Ofool ¢) — Ob ¢|" and
A6_3: "|(Ofool ) — Oc ¢]" and

AS: "|[(Ofool (=(Da (ws a))))]" and
A10: "[(Ofcol —(Ob (ws b)))|"

begin

theorem
C: "|[(Oc (ws c))|"
by (metis Al Al® A3_ba A3_ca A3_cb A4 A9)
end

(b) Wise Men Puzzle

Figure 1: Application of the semantical embedding in Isabelle/HOL
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