
Kalpa Publications in Computing

Volume 14, 2023, Pages 127–129

Proceedings of V XoveTIC Conference. XoveTIC 2022

Deep learning-based detection of domain-specific retinal

landmarks for color fundus image registration∗
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Abstract

Retinal imaging is widely used to diagnose and monitor eye-specific pathologies as well
as some systemic diseases. Registering retinal images is crucial to compare the relevant
structures within the eye. In this work, we propose a deep learning-based method to register
color fundus images using domain-specific landmarks. We employ a deep neural network
to detect bifurcations and crossovers of the retinal arterio-venous vessel tree. Then, these
keypoints are directly matched using RANSAC. Our method was tested using the public
FIRE dataset obtaining a registration score of 0.657, which is comparable to the best state
of the art methods although our proposal is comparably much faster. Furthermore, our
method improves the results of the state of the art deep learning methods.

1 Introduction

Image registration consists in aligning a pair of images whose content is partly coincident but
were captured under different conditions. In retinal imaging, registration allows to compare key
structures and monitor disease progression. Moreover, it is a key component of computer-aided
diagnosis systems, which cannot rely on the labor-intensive manual registration. Currently, the
best automatic methods for retinal image registration are still classical approaches [1, 2]. Deep
learning methods provide desirable advantages over classical pipelines like end-to-end training.
However, they still cannot compete with classical methods in terms of results. In this work,
we present a deep learning-based registration method [3]. It uses a neural network to locate
domain-specific keypoints (blood vessel crossovers and bifurcations) which are then matched
using RANSAC (Random Sample Consensus) to create a transformation that aligns the images.
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2 Materials and Methods

The presented method is divided in two separate steps, keypoint detection and keypoint match-
ing. The goal of the keypoint detection is to accurately locate the crossovers and bifurcations of
the blood vessel tree. To do so we employ an U-Net. The marked class imbalance between the
background and the keypoints makes unsuitable the direct prediction of the keypoint location
from the binary ground truth. Instead, we follow the approach in [5], which trains the network
employing heatmaps created from the binary ground truth. The heatmaps have peak values
located in the same position as the binary keypoints, with said values decreasing progressively
in the surrounding pixels. These heatmaps are created convolving the binary ground truth.
For this convolution, we test two separate kernels, a Gaussian kernel and a Radial Hyperbolic
Tangent kernel (Radial Tanh) [5]. The network is trained using the Mean Squared Error be-
tween the predicted and the ground truth heatmap as the loss function. In order to distinguish
between the two types of keypoints, the network creates two separate heatmaps. However, using
just two output channels heavily penalizes misidentifying a landmark in the wrong category.
Therefore, we add a third channel, containing both types of keypoints, which encourages the
detection of any landmark regardless of their type [5]. From these predicted heatmaps, the
specific location of each keypoint can be recovered using a local maxima filter. Additionally, we
use an intensity threshold to prevent background noise being mistakenly detected as keypoints.
After the keypoint detection, the points are directly matched via RANSAC to infer a trans-
formation capable of aligning the images. Due to the low number of highly-specific detected
keypoints, we do not need to compute and match descriptors. In addition, our approach only
matches each of the points with those of the same type, decreasing the execution time.

Currently, there is no retinal image dataset with both keypoints and registration ground
truth. Therefore, we train and test our keypoint detector using the DRIVE dataset which has a
crossovers and bifurcations ground truth. Additionally, we test the whole registration pipeline
using the FIRE dataset which has registration ground truth. FIRE is itself divided in three
categories, S with high overlapping, P with low overlapping and A, with high overlapping and
pathology progression. Both datasets are very different in terms of resolutions. Therefore, we
need to scale the keypoints from the DRIVE dataset resolution, in which they are detected, to
the FIRE resolution to properly evaluate the registration methodology. We test two separate
methods, the simpler approach consists on upscaling the point locations (point scaling). The
second alternative consists in upscaling the predicted heatmap and then calculate the local
maxima to find the keypoint locations in the FIRE resolution (heatmap scaling).

We evaluate our work using the registration score, a standard metric proposed in conjunction
with the FIRE dataset. Moreover, to enable comparison with other works [4], we also evaluate
our work using Root Mean Square Error (RMSE) between the registration control points of the
FIRE dataset at a lower resolution (256× 256 pixels).

3 Results and Conclusions

The proposed keypoint detector network obtained 81.22% of precision and 70.80% of recall in
the test set of DRIVE using the Gaussian kernel. Similarly, the Tanh kernel obtained 79.63%
of precision and 71.58% of recall in the same set. The results for the experiments regarding the
registration performance of the scaling methods are shown in Table 1. All the approaches are
accurate and produce very similar results to one another.

We compare our proposals with the best classical state of the art works in Table 1. Our
results are comparable to those of the best methods in categories A and S while in category P
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Name Registration Score (AUC) Execution Time
S P A FIRE (in seconds)

VOTUS [2] 0.934 0.672 0.681 0.812 106*
REMPE [1] 0.958 0.542 0.660 0.773 198†
Point scaling Gauss (Ours) 0.900 0.298 0.662 0.655 0.65
Point scaling Tanh (Ours) 0.904 0.296 0.666 0.656 0.65
Heatmap scaling Gauss (Ours) 0.908 0.293 0.660 0.657 0.65
Heatmap scaling Tanh (Ours) 0.905 0.288 0.658 0.654 0.65

Table 1: Results for the best state of the art methods and our proposals. Best results highlighted
in bold. * Indicates execution time extracted from [2] and † from [1].

Figure 1: Registered images from FIRE dataset, from left to right: Category A, S and P [3]

the results are worse than the state of the art. Our method is the fastest by orders of magnitude,
as evidenced by the execution times shown in Table 1. These times are only indicative, as they
were not obtained with the same hardware, but they illustrate the clear difference in execution
times. Finally, we also compared our approach to the only other deep learning method [4].
We improve its results as our method successfully registers images from the category P and
improves the combined RMSE for categories A and S, obtaining 0.299 while [4] obtains 0.915.

Overall, we can conclude that our approach is satisfactory. It produces similar results to
the top classical approaches in the state of the art, while being much faster. Furthermore, our
proposal also improves the results of the other deep learning-based approach.
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