
Kalpa Publications in Computing
Volume 3, 2017, Pages 41–47

RV-CuBES 2017. An International Workshop on
Competitions, Usability, Benchmarks, Evaluation,

and Standardisation for Runtime Verification Tools

A Suite of Monitoring Tools for Erlang ∗

Ian Cassar12†, Adrian Francalanza1, Duncan Paul Attard12, Luca Aceto32, and
Anna Ingólfsdóttir2

1 University of Malta, Department of Computer Science, Malta
{ian.cassar.10,adrian.francalanza,duncan.attard.01}@um.edu.mt

2 Reykjav́ık University, School of Computer Science, Iceland
{ianc,duncanpa17,luca,annai}@ru.is

3 Gran Sasso Science Institute, L’Aquila, Italy

Abstract

Ensuring formal correctness for actor-based, concurrent systems is a difficult task, pri-
marily because exhaustive, static analysis verification techniques such as model checking
quickly run into state-explosion problems. Runtime monitoring techniques such as Run-
time Verification and Adaptation circumvent this limitation by verifying the correctness of
a program by dynamically analysing its executions. This paper gives an overview of a suite
of monitoring tools available for verifying and adapting actor-based Erlang programs.

1 Introduction

Runtime Monitoring is a lightweight dynamic verification technique in which the correctness of
a program is assessed by only analysing a single execution, normally the currently executing
one. In most monitoring settings [6, 17, 8, 18] the correctness property is generally specified as
a formula in a logic with precise formal semantics, from which a monitor is then automatically
synthesised. This monitor is essentially the executable software which analyses the runtime
execution of a program in relation to the given property. Runtime monitoring constitutes the
basis of several other techniques including Runtime Verification, Adaptation and Enforcement.

In Runtime verification (RV) [24, 17] monitors adopt a passive role [6, 4] and are exclusively
concerned with receiving system events, analysing them, and detecting (flagging) violations (or
satisfactions) of their respective correctness properties; this is illustrated in Figure 1a. Hence,
RV monitors refrain from directly modifying the system’s behaviour in any way.

By contrast, monitors in Runtime Adaptation (RA) [9, 22, 8, 21] break this passivity by
executing adaptation actions after analysing a particular sequence of system events. As shown
in Figure 1b, rather than flagging violations, RA monitors can execute adaptation actions upon
detecting an event sequence that denotes incorrect behaviour. The adaptation actions executed

∗The work presented in this paper was partly supported by the project “TheoFoMon: Theoretical Foundations
for Monitorability” (grant number: 163406-051) of the Icelandic Research Fund.
†The research work disclosed in this publication is partially funded by the ENDEAVOUR Scholarships

Scheme. “The scholarship may be part-financed by the European Union — European Social Fund”

G. Reger and K. Havelund (eds.), RV-CuBES 2017 (Kalpa Publications in Computing, vol. 3), pp. 41–47



A Suite of Monitoring Tools for Erlang I. Cassar et. al

Monitor System
events

flag

(a) Runtime Verification.

Monitor Systemevents

actions

(b) Runtime Adaptation.

Monitor System
events

modified events

(c) Runtime Enforcement.

Figure 1: Distinguishing between Runtime Verification, Adaptation and Enforcement

by the RA monitor do not necessarily correct or revert the detected misbehaviour [27, 22];
instead they attempt to mitigate its effect by changing certain aspects of the system as it
executes, with the aim of preventing either future occurrences of the same error, or of other
errors that may potentially occur as a side-effect of the detected violation. RA may also be used
to optimise [1, 22] the system’s behaviour based on the information collected by the monitor,
e.g., switching off redundant processes when under a small load, or increasing processes and
load balancing when under a heavy load.

In Runtime Enforcement (RE) [16, 25, 26] the system behaviour is kept in line with the
correctness requirement by anticipating incorrect behaviour and countering it before it actually
happens. In RE the monitor is typically designed to act as a proxy which wraps around the
system and analyses its external interactions (see the dotted-line in Figure 1c). The monitor
is thus able to either drop incorrect events generated by the system, or add system events by
executing actions on behalf of the system [25, 26]. This contrasts with runtime adaptation,
where monitors may allow violations to occur but then execute remedial actions to mitigate the
effects of the violation.

Erlang [3, 13] is a functional programming language that implements the actor model [2].
Actors are concurrent entities that execute independently and interact with each other through
asynchronous message passing. Each actor in a system can be addressed via its unique identifier.
Verifying formal correctness for actor-based, concurrent systems is a difficult task, primarily
because exhaustive, static analysis verification techniques such as model checking quickly run
into state-explosion problems, typically due to the multiple thread interleavings of the system
being analysed, and to the open nature of reactive programs that input values dynamically −
runtime monitoring is therefore an ideal alternative.

Even though several monitoring tools [14, 23, 15, 20] exists for renowned languages such as
Java, the only tools developed specifically for Erlang are detectEr [4, 7] and adaptEr [9, 8]. In
this paper we therefore give an overview of these two runtime monitor tools.

42



A Suite of Monitoring Tools for Erlang I. Cassar et. al

Incrementor Decrementor

Common Interface

j k

i

(1) {inc,3,cli}(3) {res,4} (3) err

(2) {inc,3,cli}

External View

(2) {inc,3,cli}

Figure 2: A server actor implementation offering integer increment and decrement services

2 Runtime Verification with detectEr

detectEr [4, 5] is a runtime verification tool that converts properties, expressed using a fragment
of Hennessey Milner Logic with recursion (µHML) [18], into detection monitors capable of
producing verdicts stating whether an Erlang program satisfies or violates a given property.
The detectEr RV tool [4, 5] implements the theory explored in [19, 18] which formally defines
the runtime behaviour of concurrent RV monitors in terms of an LTS semantics. The authors
also identified a maximally expressive monitorable subset of µHML, coined as mHML. This
subset allows one to define either safety, or co-safety properties.

Example 2.1. Consider a simple Erlang system consisting of 3 actors as depicted in Figure 2.
This server system consists of a front-end Common Interface actor with identifier i receiving
client requests, a back-end Incrementor actor with identifier j, handling integer increment
requests, and a back-end Decrementor actor k, handing decrement requests. A client sends
service requests of the form {tag,arg,ret} to actor i, where tag selects the type of service,
arg carries the service arguments and ret specifies the return address for the result (typically
the client actor ID). The interface actor forwards the request to one of its back-end servers
(depending on the tag) whereas the back-end servers process the requests, sending results (or
error messages) to ret. The tool detectEr allows us to specify mHML properties such as (1),
explained below:

max Y.[i?{inc,x,y}](([j>y!{res,x+1}]Y) & ([ >y!err]ff)) (1)

It is a recursive property (obtained using the maximal fixpoint max Y. . . . ) requiring that, from
an external viewpoint, every increment request received by actor i, action i?{inc,x,y}, is
followed by an answer from actor j to the address y carrying x + 1, action j>y!{res,x+1}
(recursing through variable Y). Note how the address/ID of the recipient of the output action y
is learnt dynamically as a freeze variable from the preceding input action. However, increment
requests followed by an error message sent from any actor back to y, action >y!err, represent
a violation (expressed as a falsity, ff). detectEr can synthesise a concurrent monitor (consisting
of a system of actors) corresponding to (1) and instrument it with an Erlang system [4]. �

The original implementation for detectEr implemented this theory by synthesising completely-
asynchronous (CA) [11] monitors that were capable of observing Erlang systems by using
the asynchronous tracing mechanism [3] provided by the Erlang Virtual Machine. Although
completely-asynchronous monitoring is generally very efficient, it tends to suffer from late de-
tection, i.e., a misbehaving actor may be able to execute other actions before the asynchronous
monitor detects the misbehaviour. Timely detections are crucial especially when monitoring
for safety-critical properties which may require immediate system reparation when violated;
achieving this required introducing synchrony in an efficient manner.

43



A Suite of Monitoring Tools for Erlang I. Cassar et. al

Further work on the tool, therefore, included extensions that allow the specifier to select
between different monitor instrumentation techniques, namely, completely-asynchronous moni-
toring (CA), synchronous instrumentation monitoring (SMSI), asynchronous monitoring with
checkpoints (AMC) and synchronous detection monitoring (AMSD) (as defined in [11]) − this
extended version is known as DetectEr 2.0 [7]. To implement this variety of monitoring modal-
ities, the tracing mechanism was replaced by code instrumentation that was achieved through
an aspect-oriented programming framework for Erlang called eAOP [10]. eAOP1 allowed for
instrumenting the system with a custom tracing protocol that, apart from reporting events to
the monitor as asynchronous messages, it is also able to force certain system components to
block waiting for the monitor’s feedback, thereby achieving synchrony.

CA in DetectEr 2.0 is implemented by completely omitting the requirement for concurrent
system components to wait for the monitor’s feedback. By contrast, SMSI is achieved by forcing
each system component to block after every reported event. AMC and AMSD (referred to as
hybrid in DetectEr 2.0) are achieved through an extension to the specification language that
introduces synchronous necessities and synchronous verdicts. Synchronous necessities are used
to force the instrumented component to wait for feedback whenever the event described in the
necessity is reported to the monitor. AMC is thus achieved via synchronous necessities that
serve as checkpoints that allow the lagging monitor to catch up and synchronise with the system.
Synchronous verdicts are used for achieving AMSD, since they only force system components
to synchronously report events that may lead to a violation.

In the following example we give an overview of how one can make slight alterations to the
property given in Example 2.1 in order to apply different monitor instrumentation techniques.

Example 2.2. Unless specified otherwise, detectEr converts properties such as (1) into a
completely-asynchronous monitor. By adding the directive --{sync} at the beginning of the
RV script, the property is converted into a synchronous monitor which applies SMSI.

maxY.[|[|[|i?{inc,x,y}|]|]|](([j>y!{res,x+1}]Y) & ([ >y!err]ff)) (2)

maxY.[i?{inc,x,y}](([j>y!{res,x+1}]Y) & ([ >y!err]sffsffsff)) (3)

Minor modifications to (1) are required to achieve AMC and AMSD. By synthesising prop-
erty (2) we obtain a monitor implementing AMC by specifying [|[|[|i?{inc,x,y}|]|]|] instead of
[i?{inc,x,y}], where [|[|[| − |]|]|] denotes a checkpoint in which the monitor’s execution syn-
chronises with that of the monitored system. With (3) we obtain an AMSD monitor since we
specify the synchronous violation verdict sff instead of ff. This ensures that the monitor
synchronises with the system upon the occurrence of a violating event, thereby guaranteeing
the timely detection of the violation. �

3 Runtime Adaptation with adaptEr

The synchronisation protocol introduced in DetectEr 2.0 was further extended to allow for
adaptation actions to be effectively applied to specific Erlang actors in a timely manner. Unlike
detection monitors in detectEr, adaptation monitors do not just detect and flag violations, but
are also capable of reacting to the detection by applying adaptation actions. Adaptation actions
are rectifying actions (such as restarting or terminating misbehaving actors) in order to mitigate
the effects incurred by a detected violation. This extension led to the creation of a Runtime
Adaptation tool called adaptEr [8, 9].

1The eAOP framework is open-source and accessible from https://github.com/casian/eaop.

44

https://github.com/casian/eaop


A Suite of Monitoring Tools for Erlang I. Cassar et. al

Example 3.1. The RA tool adaptEr extends properties such as (1) with adaptation actions to
be taken by the monitor once a violation is detected, as shown in property (4).

max Y.[i?{inc,x,y}]>(
([j>y!{res,x+1}]rel(i).Y) &
([z>y!err]> restart(i).flush(z).rel(i,z).Y)

)

(4)

In this property, the specifier presumes that the error (which may arise after a number of
correct interactions) is caused by the interface actor i (as shown in Figure 2, where an inc
request is erroneously forwarded to the decrementor actor k) — one may, for instance, have
prior knowledge that actor i is a newly-installed, untested component. The monitor thus imme-
diately blocks the execution of actor i (using the blocking derivative [−]>) and depending on
whether the incrementor j produces a correctly incremented result (i.e., [j>y!{res,x+1}]),
the monitor releases the actor (using rel(i).), otherwise it restarts actor i using adaptation
restart(i)..

Whenever an error occurs (i.e., [z>y!err]>), the monitor also blocks any actor z that
produces the error and then empties its mailbox —which may contain more erroneously for-
warded messages—through adaptation flush(z). (the actor to be purged is determined at
runtime, where z is bound to identifier k from the previous action [z>y!err]>). Importantly,
note that in the above execution (where k is the actor sending the error message), actor j’s
execution is not affected by any adaptation action taken. After adapting the monitored sys-
tem according to the detected erroneous behaviour using restart(i). and flush(z)., the
monitor also releases the blocked actors allowing the adapted actors to proceed their execution.
Blocking an actor before adapting it is crucial to ensure timely mitigation. This guarantees
that errors do not propagate and thus prevents other consequent errors from occurring.

4 Conclusion

In this paper we have discussed detectEr2, a runtime verification tool designed for detecting the
violation or satisfaction of monitorable µHML properties while monitoring an Erlang program
using a variety of monitoring instrumentation techniques. We also gave an overview of how this
tool has been evolved into a runtime adaptation tool called adaptEr3 which synthesises monitors
capable of applying mitigating actions in order to rectify a detected misbehaviour.

Ongoing and Future Work. We are currently in the process of adding support for syn-
thesising distributed monitors with detectEr, that are capable of migrating from one node to
another depending on the load on the current node. We are also working on introducing the
adaptation functionality provided by adaptEr in the setting of session types; further details
can be found in [12]. Moreover, we are developing enforcEr, a novel runtime enforcement tool
capable of suppressing and inserting Erlang messages that are exchanged amongst a number of
actors.

References

[1] An architectural blueprint for autonomic computing. Technical report, IBM, 2005.

2Both detectEr and DetectEr 2.0 are open source and downloadable from https://bitbucket.org/
duncanatt/detecter-lite and https://bitbucket.org/casian/detecter2.0 resp.

3The tool adaptEr is also open source and available from https://bitbucket.org/casian/adapter.

45

https://bitbucket.org/duncanatt/detecter-lite
https://bitbucket.org/duncanatt/detecter-lite
https://bitbucket.org/casian/detecter2.0
https://bitbucket.org/casian/adapter


A Suite of Monitoring Tools for Erlang I. Cassar et. al

[2] Gul A. Agha, Prasannaa Thati, and Reza Ziaei. Actors: A model for reasoning about open
distributed systems. In H. Bowman and J. Derrick, editors, Formal Methods for Distributed
Processing - An Object Oriented Approach, chapter 8, pages 155–176. Cambridge University Press,
New York, NY, USA, 2001.

[3] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf,
2007.

[4] Duncan Paul Attard, Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingolfsdottir. A
runtime monitoring tool for actor-based systems. Behavioural Types: from Theory to Tools., 2017.

[5] Duncan Paul Attard and Adrian Francalanza. A Monitoring Tool for a Branching-Time Logic,
pages 473–481. Springer International Publishing, Cham, 2016.

[6] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for ltl and tltl.
ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, September 2011.

[7] Ian Cassar and Adrian Francalanza. On synchronous and asynchronous monitor instrumentation
for actor-based systems. arXiv:1502.03514, 2015.

[8] Ian Cassar and Adrian Francalanza. Runtime adaptation for actor systems. In RV, pages 38–54.
Springer, 2015.

[9] Ian Cassar and Adrian Francalanza. On implementing a monitor-oriented programming framework
for actor systems. In IFM, pages 176–192. Springer, 2016.

[10] Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. eAOP: An Aspect Oriented
Programming Framework for Erlang. In Erlang, ACM SIGPLAN, 2017.

[11] Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. A survey of runtime moni-
toring instrumentation techniques. In PrePost2017, pages 15–28, 2017.

[12] Ian Cassar, Adrian Francalanza, Claudio Antares Mezzina, and Emilio Tuosto. Reliability and
fault-tolerance by choreographic design. In PrePost2017, pages 69–80, 2017.

[13] Francesco Cesarini and Simon Thompson. ERLANG Programming. O’Reilly Media, Inc., 1st
edition, 2009.

[14] Feng Chen and Grigore Roşu. Java-MOP: A Monitoring Oriented Programming Environment for
Java, pages 546–550. 2005.

[15] Mads Dam, Bart Jacobs, Andreas Lundblad, and Frank Piessens. Security monitor inlining for
multithreaded java. In ECOOP, pages 546–569. Springer, 2009.

[16] Ylis Falcone, Laurent Mounier, Jean-Claude Fernandez, and Jean-Luc Richier. Runtime enforce-
ment monitors: composition, synthesis, and enforcement abilities. Formal Methods in System
Design, 38(3):223, June 2011.

[17] Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar, Dario Della
Monica, and Anna Ingólfsdóttir. A foundation for runtime monitoring. In RV, pages 8–29, 2017.

[18] Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. On Verifying Hennessy-Milner Logic
with Recursion at Runtime. In RV, pages 71–86, 2015.

[19] Adrian Francalanza and Aldrin Seychell. Synthesising correct concurrent runtime monitors. FMSD,
46(3):226–261, 2015.

[20] Klaus Havelund and Grigore Roşu. An Overview of the RV tool Java PathExplorer. FMSD,
24(2):189–215, 2004.

[21] Gabriela Jacques-Silva, Buğra Gedik, Rohit Wagle, Kun-Lung Wu, and Vibhore Kumar. Building
user-defined runtime adaptation routines for stream processing applications. Proc. VLDB Endow.,
5(12):1826–1837, August 2012.

[22] Stephen Kell. A survey of practical software adaptation techniques. J.UCS, 14(13):2110–2157,
2008.

[23] MoonZoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and Oleg Sokolsky. Java-MaC:
A run-time assurance approach for Java programs. FMSD, 24(2):129–155, 2004.

[24] Martin Leucker and Christian Schallhart. A brief account of runtime verification. The Journal of

46



A Suite of Monitoring Tools for Erlang I. Cassar et. al

Logic and Algebraic Programming, 78(5):293–303, 2009.

[25] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: enforcement mechanisms for run-time
security policies. IJIS, 4(1):2–16, 2005.

[26] Jay Ligatti and Srikar Reddy. A Theory of Runtime Enforcement, with Results, pages 87–100.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[27] Fan Long, Vijay Ganesh, Michael Carbin, Stelios Sidiroglou, and Martin Rinard. Automatic input
rectification. In ICSE, pages 80–90, Piscataway, NJ, USA, 2012. IEEE Press.

47


	Introduction
	Runtime Verification with detectEr
	Runtime Adaptation with adaptEr
	Conclusion

