
EPiC Series in Computing
Volume 73, 2020, Pages 423–448

LPAR23. LPAR-23: 23rd International
Conference on Logic for Programming,
Artificial Intelligence and Reasoning

RAT Elimination

Adrián Rebola-Pardo and Georg Weissenbacher

TU Wien

Abstract

Inprocessing techniques have become one of the most promising advancements in SAT
solving over the last decade. Some inprocessing techniques modify a propositional formula
in non model-perserving ways. These operations are very problematic when Craig inter-
polants must be extracted: existing methods take resolution proofs as an input, but these
inferences require stronger proof systems; state-of-the-art solvers generate DRAT proofs.
We present the first method to transform DRAT proofs into resolution-like proofs by elim-
inating satisfiability-preserving RAT inferences. This solves the problem of extracting
interpolants from DRAT proofs.

1 Introduction

Satisfiability solvers [8] are the cornerstone of most symbolic model checking algorithms [38].
Over the last two decades, huge scalability leaps of SAT solvers enabled the verification of ever
more complex hardware designs. The impressive evolution of solving techniques has yet to stop:
recent advances such as preprocessing [17, 29], inprocessing [25, 6], and symmetry breaking [1]
enable SAT solvers to tackle problems of hitherto unimaginable size [24].

Some model checking algorithms such as bounded model checking [7] immediately bene-
fit from these advancements without requiring adaptation. In the case of interpolation-based
model checking [30], a widely-used approach that uses Craig interpolants [13] to compute in-
ductive invariants, the above-mentioned techniques are not readily applicable. Interpolants
are extracted from resolution proofs generated by SAT solvers. Operations such as symmetry
breaking, however, cannot be expressed in terms of resolution but require stronger proof sys-
tems. Hence, many contemporary SAT solvers emit DRAT proofs [23], which owe their name
to the resolution asymmetric tautology (RAT) inference [21] and are equivalent in power to
extended resolution proofs [26].

DRAT proofs pose a challenge for interpolation. Existing interpolation systems require
derived clauses to be implied by the original formula [16, 27], as is the case for resolution
proofs. DRAT proofs violate this assumption by infering RAT clauses, which do not preserve the
models of (i.e. do not follow from) the premise formula [31, 34], rendering known interpolation
systems useless. Moreover, interpolants can be extracted from resolution proofs in polynomial
time [32]. Extended resolution (and DRAT) proofs can however be exponentially smaller than
resolution proofs [36]; feasible interpolation results for them are unavailable, quite possibly even
unattainable [28, 10].

E. Albert and L. Kovacs (eds.), LPAR23 (EPiC Series in Computing, vol. 73), pp. 423–448



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

As a consequence, interpolation-based model checkers currently need to forego the use of
the latest SAT techniques. To address this, we propose an approach based on isolating and
eliminating RATs from DRAT proofs by means of proof transformation (at the cost of a po-
tential increase in size, which, as discussed above, is likely unavoidable). The resulting proofs
are Reverse Unit Propagation (RUP) proofs [19], a highly compact representation of resolution
proofs, for which interpolation algorithms are readily available [35, 20].

Section 2 covers resolution, RUP, and DRAT proofs. Section 3 explains the idea of clause
isolation, our weapon of choice for RAT elimination. Section 4 explains how clause isolation
can be achieved by exploiting distributivity of a generalized version of resolution, and Section 5
adapts and enhances distributivity for RUPs. Finally, Section 6 deploys RUP distributivity to
eliminate RATs from DRAT proofs. Section 7 discusses related work and concludes the paper.

2 Preliminaries

We consider a countably infinite set of propositional variables. A literal is either a variable or
its negation; we denote the complement of a literal l by l. A clause is a finite, complement-
free disjunction of literals; we denote clauses by juxtaposition, i.e. we write xyz for the clause
x ∨ y ∨ z. For this paper the condition that clauses do not contain complementary literals is
very relevant. We refer to finite sets of literals without this requirement as generalized clauses;
when we want to emphasize that a generalized clause is complement-free, we will refer to
proper clauses, and we call generalized clauses containing complementary literals tautologies.
We denote the unsatisfiable empty clause by 2. A conjunctive normal form (CNF) formula is
a conjunction of clauses.

The conflict literals of two generalized clauses C and D are C ‖D =
{
l ∈ C | l ∈ D

}
. We

say that C subsumes D whenever C ⊆ D. Given a literal l, we call the resolvent of C and D
upon l the generalized clause C \ {l} ∪D \

{
l
}

, which we denote by C ⊗l D. Let us highlight
that, rather than a variable, we write a literal as the pivot for the resolvent; this makes the
order of resolvents important, e.g. C ⊗lD = D⊗l C. We do not impose the usual requirement

that l ∈ C and l ∈ D; this greatly simplifies the exposition, and preserves the usual intuition
about resolution, as shown by the following result:

Proposition 1. Let C and D be generalized clauses and l be a literal. Then, {C,D} � C⊗lD.
Furthermore, if C and D are proper clauses and C ‖ D = {l} holds, the resolvent C ⊗l D is
proper.

A resolution inference C ⊗l D = E is called a merge resolution [2] whenever D \
{
l
}
⊆ C.

Whenever C and D are proper clauses, then in this case we have C ⊗l D = C \ {l}.
Proposition 1 allows us to define the resolution and subsumption inference rules, shown in

Figures 1a and 1b. As above, we do not require any condition on premises of the resolution infer-
ence. We call a derivation using these rules a generalized resolution-subsumption derivation, and
the clauses from the refuted formula are its proof premises; in a (proper) resolution-subsumption
derivation, only proper clauses are involved, and C ‖D = {l} holds for each resolution C ⊗lD.
A derivation of 2 from premises in F is a refutation of F .

RUP proofs In practice, resolution-subsumption derivations are insufficient for the needs of
the SAT solving community: generating them at solving time is complicated, and the need
to record every inference implies an unacceptable increase in proof size [18]. To alleviate this
problem, Reverse Unit Propagation (RUP) proofs were developed [19]. Instead of resolution

424



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

(a) Subsumption inference

C

C ∨D
v

(b) Resolution inference upon l

C D

C ⊗l D
l

(c) Subsumption-resolution chain

E0

A0 E1

A1 E2

. . .
An−1 En

An

v

k1

k2

kn

Figure 1: Clausal inferences

and subsumption inferences, RUP proofs only allow one homonymous inference rule defined
in [19] in terms of unit propagation. Here we introduce RUP clauses from a proof-theoretical
perspective; both definitions are equivalent [31].

A generalized subsumption-resolution chain is a derivation of the form shown in Figure 1c,
where a subsumption inference E0 v A0 is optionally followed by any number of iterative
resolution inferences Ai−1 ⊗ki

Ei = Ai. Generalized subsumption-merge chains additionally
require that these resolutions are merges. We simply refer to subsumption-resolution chains and
subsumption-merge chains for the cases where the Ei and Ai are all proper, and Ai−1‖Ei = {ki}
holds; sometimes we will call these chains proper to avoid ambiguity. In the case of a (proper)
subsumption-merge chain, the intermediate clauses Ai are determined by the chain premises
Ei and the derived clause An, so sometimes we will write the chain in a more compact way as
An : E0 ⊗k1 E1 ⊗k2 . . .⊗kn En.

A clause C is a RUP in a CNF formula F whenever C can be derived from F by a
subsumption-merge chain (called subsumption self-subsuming resolution chains in [31]). RUP
proofs are simply lists of RUP clauses; the corresponding subsumption-merge chains are im-
plicitly found by proof-checking procedures in an efficient way [22].

Lemma 1. Consider a generalized subsumption-merge chain as in Figure 1c. Then, for all
0 ≤ i < j ≤ n, we have Aj ⊆ Ai, and furthermore Ai \Aj ⊆ {ki+1, . . . , kj}.

Proof. It suffices to show that for all 0 < i ≤ n we have either Ai = Ai−1 or Ai = Ai−1 \ {ki}.
We know that Ai = Ai−1 ⊗ki Ei = Ai−1 \ {ki} ∪ Ei \

{
ki
}

. Because this resolvent is a merge,

Ei−1 \
{
ki
}
⊆ Ai−1 holds. This shows the claim, by considering that one case or the other

holds depending on whether ki ∈ Ei or not.

Lemma 2. Given a subsumption-merge chain as in Figure 1c, we have the following:

1. For all 0 < i < j ≤ n, the underlying variables to literals ki and kj are distinct, i.e.
ki 6= kj 6= ki.

2. For all 0 ≤ i < j ≤ n, the literal kj occurs in Ai.

3. For all 0 < i < j ≤ n, neither of the literals ki nor ki occurs in Ej or Aj.

Proof. These all follow from the observation that, for all 0 ≤ i < j ≤ n we have Ai = Aj \
{ki+1, . . . , kj}. To show this, it suffices to prove Ai = Ai−1 \ {ki} for all 0 < i ≤ n. Since

425



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

we have a proper subsumption-merge chain, we know that Ai−1 ‖ Ei = {ki}, so in particular
Ei = Ei \ {ki}. Then, because the resolvent Ai−1 ⊗ki

Ei is a merge, we have

Ai = Ai−1 ⊗ki Ei = Ai−1 \ {ki} ∪ Ei \
{
ki
}

= Ai−1 \ {ki} ∪ Ei \
{
ki, ki

}
= Ai−1 \ {ki}

We now proceed to show the claims.

1. Because Aj−1 ‖ Ej = {kj}, we have kj ∈ Aj−1 = Ai−1 \ {ki, . . . , kj−1}, which precludes
ki = kj . Furthermore, if kj = ki held true, we would have ki ∈ Aj−1 ⊆ Ai−1 and
ki ∈ Ai−1, which would contradict Ai being proper.

2. Since Aj−1 ‖ Ej = {kj}, we have kj ∈ Aj−1 ⊆ Ai.

3. We know that Aj = Ai−1 \ {ki, . . . , kj}, so this implies ki /∈ Aj . Furthermore, since
ki ∈ Ai−1, we have ki /∈ Ai−1 ⊇ Aj . Now, because the resolvent Ai−1 ⊗ki

Ei is a merge,
we know that Ej \

{
kj
}
⊆ Aj−1. If either ki or ki occurred in Ej , then since ki 6= kj 6= ki,

we would conclude that this literal occurs in Aj as well, but this would contradict what
we have shown before.

DRAT proofs An extension of RUP proofs, called Delete Resolution Asymmetric Tautology
(DRAT) [23], was introduced due to shortcomings of RUP proofs when dealing with inprocessing
techniques in SAT solving [25]. In addition to RUP inferences, DRAT proofs allow to forget
clauses through a deletion inference, as well as resolution asymmetric tautology (RAT) [21]
inferences. A clause C is a RAT in a CNF formula F if there is a literal l ∈ C such that the
resolvent C⊗lD is a RUP clause in F for each D ∈ F ; in this case we call C a RAT clause in F
upon l. Observe that, in practice, it is sufficient to check that C⊗lD is a RUP in F for clauses
D containing the literal l; otherwise the resolvent is subsumed by D ∈ F (c.f. Example 1).

In general, RAT inferences are not model-preserving, but rather satisfiability-preserving.
Although a good understanding of how semantics are preserved through RAT introduction
has been developed [31, 34], there is no known method to generate Craig interpolants from
satisfiability-preserving proofs, since the invariants maintained by existing methods rely strongly
on model-preserving inferences [35, 27].

Strictly speaking, DRAT proofs do not contain themselves the derivation chains. Instead,
proof checkers [39, 33] generate LRAT proofs which contain them [14]. Furthermore, solvers
that directly generate LRAT proofs recently became available, such as Varisat1. We assume
in our work that DRAT proofs are provided with the corresponding chains.

Example 1. Let us consider the unsatisfiable CNF formula containing the following clauses:

xyz

xyw

xyz

xyw

xyz

xyw

xyz

xyw

zuv

uvw

zuv

uvw

zuv

uvw

zuv

uvw

A DRAT refutation for this formula is given by the following clauses and their corresponding
subsumption-merge chains:

1https://github.com/jix/varisat

426

https://github.com/jix/varisat


RAT Elimination A. Rebola-Pardo, G. Weissenbacher

xu (RAT upon x)
• xu⊗x xyz = yzu : xyw ⊗w uvw ⊗x xyz ⊗v zuv
• xu⊗x xyz = yzu : xyw ⊗w uvw ⊗x xyz ⊗v zuv
• xu⊗x xyw = yuw : zuv ⊗z xyz ⊗x xyw ⊗v uvw
• xu⊗x xyw = yuw : zuv ⊗z xyz ⊗x xyw ⊗v uvw

xy : uvw ⊗v zuv ⊗u xu⊗w xyw ⊗z xyz

zuw : uvw ⊗v zuv

x : zuw ⊗w xyw ⊗u xu⊗z xyz ⊗y xy

y : uvw ⊗v zuv ⊗u zuw ⊗w xyw ⊗z xyz ⊗x xy

u : zuv ⊗v uvw ⊗w xyw ⊗z xyz ⊗x x⊗y y

2 : zuv ⊗v uvw ⊗w xyw ⊗z xyz ⊗x x⊗y y ⊗u u

3 RAT elimination through clause isolation

Our goal is to transform a DRAT refutation of a CNF formula F into a RUP refutation of F .
To attain this, we will iteratively modify the fragment after the last RAT inference in the proof
so that the clause derived in that inference becomes unnecessary. This is done by a process
we call clause isolation, where we can restrict how a given clause is used in a proof. After
eliminating all RAT inferences and deletions from the input proof, we obtain a RUP refutation
of F .

Given a clause C, a literal l ∈ C and a refutation π of a CNF formula F ∪ {C}, isolating
a clause C in the proof π upon l refers to constructing a refutation of F ∪ {C ⊗l D | D ∈ F}.
In other words, our goal is to obtain a refutation of F ∪ {C} such that C is used in the proof
exclusively by immediately resolving it with a premise from F upon l. As we will see in Section 4,
we can always isolate a clause in a RUP refutation.

Let us assume that we know a procedure for clause isolation; we explain now how to lift it
into a RAT elimination procedure. Consider a DRAT refutation π of a CNF formula F , given
by instructions I1, . . . , In where In = 2. The Ii may be either clause introductions (RUP or
RAT inferences), or clause deletions. Let us assume that Ii is the last RAT inference in the
proof, and the CNF formula accumulated before Ii is Fi−1. The instruction Ii introduces a
clause C as a RAT in Fi upon a literal l, and so we can split the DRAT refutation π as π′Cσ,
where σ only contains RUP introductions and deletions, and is itself a refutation of Fi−1∪{C}.

Our method now proceeds in three stages. First, we remove deletions from σ; this is possible
because, unlike RAT inferences, RUP inferences are monotonic [31]. The result is still a RUP
refutation of Fi−1 ∪ {C}. We then apply a clause isolation procedure, which yields a RUP
refutation σ′ of the CNF formula Fi−1 ∪ {C ⊗l D | D ∈ Fi−1}. Finally, in order to bridge the
gap between Fi−1 and the formula above, we derive the missing resolvents C ⊗l D, which are
RUPs by the definition of RAT clauses.

This procedure, shown in Figure 2 eliminates a single RAT from the DRAT refutation. The
prefix π′ of the proof is preserved, so no new RATs are created. All RATs in a proof can be
iteratively eliminated with this method, and so a RUP refutation is obtained and an interpolant
can then be generated.

427



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

D D′ C

D D′ C ⊗l D C ⊗l D
′

DRAT derivation π′ DRUP refutation σ
last RAT

DRAT derivation π′ resolvents RUP refutation σ′

Figure 2: Elimination of a single RAT using a clause isolation procedure

4 Clause isolation using distributivity

The method explained in Section 3 for RAT elimination requires a procedure for clause isolation
over a RUP proof. These proofs can be regarded as generalized resolution-subsumption proofs;
we present a method that, by iteratively performing correctness-preserving proof transforma-
tions, generates a clause-isolated generalized resolution-subsumption proof.

In the following we fix a CNF formula F , and a clause C to be isolated upon a literal l in a
generalized subsumption-resolution refutation π of F ∪ {C}. Given a clause D derived from C
(possibly using clauses from F ), there is a descending path in the proof from C to D. If C is
not isolated in π upon l, then there must exist one such path of non-zero length (i.e. involving
at least one inference) in which the literal l is never eliminated. This motivates the notion of
impure clauses: we call all those clauses derived from C for which the literal l has not been
eliminated impure, for they are the reason why C is not isolated in π upon l. Formally, we
recursively classify clause occurrences in the proof as pure or impure as follows:

• A proof premise D is pure if and only if D 6= C.

• For subsumption inferences D v E, the clause E is pure if and only if D is pure.

• For resolution inferences D ⊗k D
′ = E with l 6= k 6= l, the clause E is pure if and only if

both D and D′ are.

• For resolution inferences D ⊗l D
′ = E, the clause E is pure if and only if D′ is pure.

• For resolution inferences D ⊗l D
′ = E, the clause E is pure if and only if D is pure.

From this definition it is easy to see that the only way we can derive a pure clause from an
impure one is by the resolution inferences from cases 4 and 4. A left-purifier is a resolution
inference D ⊗l D

′ = E such that D is impure; and a right-purifier is a resolution inference
D ⊗l D

′ = E such that D′ is impure; we refer to both of them as purifiers. For each purifier
X given by D ⊗k D

′ = E, we define its purification depth dp(X) as the sum of the number of
ancestors of D and D′; and then the purification measure of the refutation π is given by the
multiset of the non-zero purification depths of purifiers in π, which we denote by ms(π). When
considered under the multiset ordering, the purification measure of a refutation gauges how far
is C from being isolated upon l. In particular the following result is straightforward:

Proposition 2. The clause C is isolated in a generalized resolution-subsumption refutation of
F ∪ {C} upon l if and only if its purification measure is ∅.

Proof. We first show “only if”. If C is isolated upon l in the refutation, we can easily show by
induction that its only impure clauses are occurrences of C as a proof premise. Hence, its only

428



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

left-purifiers are inferences of the form C ⊗l D = E where C is a proof premise; and because
C is isolated in the refutation upon l, the clause D must also be a proof premise. We can thus
conclude that the purification depth of each left-purifier in the proof is 0; we can analogously
show the same for right-purifiers. Therefore, the purification measure of the refutation is ∅.

We now show “if”. Observe that if the purification measure of the proof upon l is ∅, then
all its purifiers have purification depth 0. In particular, every purifier is a resolution inference
whose two premises are proof axioms. Consider now an occurrence of C as a proof premise,
which needs to be impure. The clause C is not the empty clause, so another clause E is derived
from it by an inference in the proof, and E then needs to be pure. According to the definition
of pure and impure clauses, this can only happen via a left-purifier C ⊗l D = E or via a right-
purifier D ⊗l C = E. Because such purifiers have purification depth 0, the clause D must be a
proof premise too. Since this happens for each occurrence of C as a proof premise, C is isolated
in the refutation upon l.

Example 2. Consider the following refutation π of the formula F = {xz, xyz, y, xz, z}, and let
us take C = xyz and l = x.

xz xyz

xy y

x

xz

xzt

zt

xz xzt

xz

xyz y

zt

z z

2

z

y

x

t

z

v

y

v

x

Impure clauses in this refutation have been shaded. Observe that impure “threads” start with
C, and then continue down the refutation until the literal x is eliminated by a resolution. This
happens at purifiers, which are denoted by zigzag inferences; the purification measure of this
proof is then {5, 3}.

Proposition 2 means that the clause isolation problem can be solved by simply finding a
correctness-preserving proof transformation which reduces the purification measure of its input
w.r.t. the multiset ordering. Because the multiset ordering induced by a well-founded ordering
is itself well-ordered [3], it only takes finitely many iterative applications of this transformation
to isolate C upon l. Our method is based in the following result, which we refer to as distributive
laws:

Theorem 1. Let D, E′ and E′′ be generalized clauses, and k, l be literals. Then,

1. If E′ v E′′, then D ⊗l E
′ v D ⊗l E

′′.

2. D ⊗l (E′ ⊗k E
′′) = (D ⊗l E

′)⊗k (D ⊗l E
′′).

Proof. To show the first claim, let us assume that E′ ⊆ E′′. Then,

D ⊗l E
′ = D \ {l} ∪ E′ \

{
l
}
⊆ D \ {l} ∪ E′′ \

{
l
}

= D ⊗l E
′′

To show the second identity, we know that

D ⊗l (E′ ⊗k E
′′) = D \ {l} ∪ E′ \

{
l, k
}
∪ E′′ \

{
l, k
}

(D ⊗l E
′)⊗k (D ⊗l E

′′) = (D \ {l, k} ∪D \
{
l, k
}

) ∪ E′ \
{
l, k
}
∪ E′′ \

{
l, k
}

429



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

(a) Subsumption rule: a purifier uses the conclusion of a subsumption inference

D E′′
E′

D ⊗l E
′′

πD

πE′

l

v
D E′

D ⊗l E
′

D ⊗l E
′′

πD πE′

l

v 

(b) Resolution rule: a purifier uses the conclusion of a resolution inference

E′ E′′

E′ ⊗k E
′′D

D ⊗l (E′ ⊗k E
′′)

πD

πE′ πE′′

l

k
D E′ D E′′

D ⊗l E
′ D ⊗l E

′′

(D ⊗l E
′)⊗k (D ⊗l E

′′)

πD πDπE′ πE′′

l l

k 

Figure 3: Reducing the purification measure of a refutation through the distributive laws from
Theorem 1. Only the cases for inferences above the right-hand premise of purifiers upon l are
shown; symmetrical rules are analogous. Wavy inferences in the right-hand side may or may
not be purifiers themselves, depending on the location of C in the proof.

Now, observe that given a set A and two elements x 6= y, the identity A \ {x} ∪ A \ {y} = X
holds. The first claim then follows by observing that k 6= k.

These rules can be applied to hoist purifiers throughout the proof, as shown in Figure 3.
Doing so reduces the purification measure of the resulting purifiers, albeit it may duplicate a
part of the proof. Since left-purifiers (resp. right-purifiers) are always resolution inferences
upon l (resp. l), Theorem 1 allows moving the purifier “one step” upwards in the proof. The
purification measure is then decreased w.r.t. the multiset ordering, because the new purifiers
have fewer total ancestors, as shown by Theorem 2. Example 3 shows the iterative application
of Theorem 1 on remaining purifiers to attain clause isolation in a refutation.

Theorem 2. As long as C is not isolated upon l in a generalized resolution-subsumption refu-
tation π of F ∪ {C}, it contains a purifier to which the rules in Figure 3 (or its symmetric
versions) can be applied. In that case, applying the corresponding rule yields a correct gener-
alized subsumption-resolution refutation of F . Additionally, if the selected purifier is maximal
w.r.t. the subproof ordering (i.e. no inference below the purifier is a purifier itself), then the
resulting refutation has a strictly smaller purification measure.

Proof. Let us assume that C is not isolated in π upon l. Proposition 2 then shows the existence
of some purifier X with dp(X) > 0. If X is a left-purifier, then it is of the form D ⊗l D

′ = E,
and so either D or D′ is not a proof premise; let us assume w.l.o.g. that D is not a proof premise
(otherwise a symmetric version of the rules applies), so it must be derived by the application
of an inference rule. Rules from Figure 3 then apply depending on whether such inference is
a resolution or a subsumption. The same similarly holds in the case of a right-purifier for the
rules for a resolution upon l. Furthermore, in both cases the obtained refutation is guaranteed
to be correct by Theorem 1.

We now show that, if X is picked to be a maximal inference, then in each case the purification
measure is reduced. Again w.l.o.g. we assume that X is a left-purifier of the form D⊗lD

′ = E,

430



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

(a) Applying the subsumption
rule to the right premise in the
left-purifier x⊗x xzt = zt:

xz xyz

xy y

x xz

z

zt

z

y

x

v

(b) Applying the resolution rule
to the left premise in the left-
purifier x⊗x xz = z

xz xyz

xy xz

yz

y xz

yz

z

zt

z

x x

y

v

(c) Applying the resolution rule
to the right premise in the left-
purifier xy ⊗x xz = yz

xz xz

zz

xyz xz

yz

yz

y xz

yz

z

zt

x x

z x

y

v

Figure 4: Applying distributivity laws to the left-purifier in the proof from Example 2.

where D′ = E′ ⊗k E
′′ if the resolution rule applies, and E′ v D′ if the subsumption rule

applies; the other cases are symmetric. Let us analyze how each purifier in the input refutation
is transformed by the rules from Figure 3.

• Any purifier in the subproofs πE′ and πE′′ results in a single, identical purifier after
applying the rules, so both the amount of purifiers and their purification depths are
preserved. The same holds for any purifier in πD if the subsumption rule is applied.

• If the resolution rule is applied, then any purifier in πD is duplicated with the same
purification depth. Observe that, because the set of ancestors of such a purifier is a strict
subset of the ancestors of D′, its purification depth is strictly smaller than the purification
depth of X.

• Because of the maximality condition, no purifier in the refutation is a descendant of X.
Furthermore, any purifier which is not an ancestor nor a descendant of X is preserved in
the result with the same purification depth.

• The purifier X itself is replaced in the proof by at most two purifiers of strictly smaller
purification depth.

From the discussion above, it follows that the purification measure of the result can be obtained
by replacing an element from the purification measure of the input with a number of strictly
smaller depths; hence, the rules reduce the purification measure of the refutation w.r.t. the
multiset ordering.

Example 3. Let us showcase the application of distributivity for clause isolation on the proof
from Example 2. We apply the rules from Figure 3 step by step for the subproof deriving the
left-purifier x⊗x xzt = zt; the result is shown in Figure 4.

In this section we have presented a method that, by itself, already results in clause isolation.
As explained in Section 3, this enables a procedure for RAT elimination. Nevertheless, this
method is quite inefficient. In Sections 5 and 6, we analyze the reasons for such inefficiency,
and we present a method that exploits the fact that in practice clause isolation operates over
RUP proofs as opposed to subsumption-resolution proofs. The method in Section 5 aims at
avoiding generation of useless inferences, whereas Section 6 tackles the problem of reusing
inferences in a DAG-like proof.

431



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

5 Refining distributivity for RUPs

Since RUP proofs are in essence a sophisticated way to write subsumption-resolution proofs,
the clause isolation method from Section 4 already solves the problem of RAT elimination in
DRAT proofs. However, the complexity properties of that method are problematic: the proof
doubles its size for every resolution inference above a purifier. As discussed in Section 1, part
of this blow-up may be unavoidable. In the following sections, we find ways to alleviate this
issue. One such way, explained in this section, is to reuse as much from the original proof as
possible; it turns out this can be obtained as a side effect of generating proper refutations, i.e.
without tautologies. For presentation purposes, we will present several refinements to the idea
of attaining clause isolation through distributivity; at the end of this section, we condense all
these improvements in a relatively simple method. We can also exploit clause sharing, which
is an inherent feature of RUP proofs lost to the transformation into subsumption-resolution
proofs; this is tackled in Section 6.

Since RUP inferences are conflations of a subsumption and several merges, we can simply
apply the distributive laws from Theorem 1. The resulting proof is not in general a subsumption-
merge chain itself, because distributive laws do not guarantee that the resolvents are proper. For
example, xy⊗x (xy⊗y xy) can be distributed as (xy⊗x xy)⊗y (xy⊗y xy), but the intermediate
resolvent xy⊗y xy is not a proper clause. Furthermore, all premises of the subsumption-merge
chain are modified, and will spawn further applications of distributivity to find derivations of
the resolvents for every premise; the computational cost then becomes overwhelming. Both
these problems can be tackled by refining our distributive laws for RUP inferences. Let us first
illustrate our goal with an example, and then present our optimizations for RUP distributivity.

Example 4. Consider the subsumption-merge chain deriving a RUP clause xw from clauses
xy, yz, zuv, xtv, uv and vw shown in Figure 5a, and the clause D = xytu. We then have
D ‖ xw = {x}, so we can obtain a generalized subsumption-resolution derivation of the clause
D⊗x xw = ytuw by applying Theorem 1. This yields the generalized subsumption-merge chain
shown in Figure 5b.

If this is done as a part of a clause isolation procedure, up to six recursive applications
of distributivity are triggered, one for each chain premise E whose resolvent D ⊗x E is a
purifier in the resulting proof. Furthermore, this derivation is not a proper subsumption-merge
chain, since it contains tautologies. However, in this case we can obtain a much shorter and
convenient derivation for the same clause, shown in Figure 5e. This is a proper subsumption-
merge chain, and only produces one resolvent of the form D⊗x E instead of six; the clause vw
is unproblematic, since it was already a premise of the original subsumption-merge chain, and
so either it is a refutation premise or we already have a derivation for it.

Example 4 shows that subsumption-merge chains for purifiers can be obtained in some cases,
and that they can be smaller than the derivations produced by Theorem 1. We now describe
how to obtain such subsumption-merge chains systematically. Figure 6 describes the process
in abstract; a running example shows how the subsumption-merge chain from Example 4 is
obtained with our method.

Dropping redundant merges The input to our process is a subsumption-merge chain
An : E0 ⊗k1

. . . ⊗kn
En as in Figure 1c, together with a clause D such that the resolvent

D ⊗l An is proper. We start the process by applying Theorem 1, which yields the generalized
subsumption-resolution chain D ⊗l An : (D ⊗l E0) ⊗k1

. . . ⊗kn
(D ⊗l En) shown in Figure 6a.

Let us first show that this is in fact a generalized subsumption-merge chain.

432



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

(a) A (proper) subsumption-merge
chain

xy

xyztuvw yz

xztuvw zuv

xtuvw xtv

xuvw uv

xvw vw

xw

v

y

z

t

u

v

(b) A generalized subsumption-merge chain obtained by dis-
tributivity with D = xytu

ytu

yzttuvw yyztu

yzttuvw yztuv

yttuvw ytuv

ytuvw ytuuv

ytuvw ytuvw

ytuw

v

y

z

t

u

v

= D ⊗x xy

= D ⊗x yz

= D ⊗x zuv

= D ⊗x xtv

= D ⊗x uv

= D ⊗x vw

(c) The generalized subsumption-merge chain after
dropping redundant merges

ytu

yzttuvw yztuv

yttuvw ytuv

ytuvw ytuvw

ytuw

= D ⊗x xy

= D ⊗x zuv

= D ⊗x xtv

= D ⊗x vw

v

z

t

v

(d) The generalized subsumption-merge chain
after simplifying unnecessary resolvents

ytu

yzttuvw zuv

yttuvw ytuv

ytuvw vw

ytuw

= D ⊗x xy

= D ⊗x xtv

v

z

t

v

(e) The proper subsumption-merge chain after cutting tautologies off

ytuv

ytuvw vw

ytuw

= D ⊗x xtv
v

v

Figure 5: Applying distributivity laws to the left-purifier in the proof from Example 2.

Proposition 3. Let A, E and D be proper clauses such that l /∈ A and the resolution A⊗k E
is proper and a merge. Then, the resolvent (D ⊗l A) ⊗k (D ⊗l E) is a merge. Furthermore,
whenever k ∈ D ∪

{
l
}

, that resolvent equals D ⊗l A.

Proof. Let us first show the resolvent is a merge. For this we need to show that (D⊗lE)\
{
k
}
⊆

D ⊗l A, or equivalently that D \
{
l, k
}
∪ E \

{
l, k
}
⊆ D \ {l} ∪ A \

{
l
}

. Now, the first term

of this union is a subset of D \ {l}; and the second term can be rewritten as E \
{
k
}
\
{
l
}

,

which is then a subset of A \
{
l
}

because the resolvent A ⊗k E is itself a merge. This shows
the inclusion above.

We now show that, assumming k ∈ D∪
{
l
}

, the equality (D⊗lA)⊗k (D⊗lE) = D⊗lA holds.

Because A⊗lE is itself a merge, we have E \
{
k
}
⊆ A, so we conclude E \

{
k, k, l

}
⊆ A\

{
k, l
}

.
Furthermore, because A ‖ E = {k} and E is a proper clause, we obtain k /∈ E. Hence,
E \

{
k, l
}
⊆ A \

{
l, k
}

, and this implies (D⊗lA)⊗k (D⊗lE) = D \ {l}∪A \
{
l, k
}

. Now, since

l /∈ A and k ∈ A, we know that k 6= l. This means that either k ∈ D \ {l}, or k = l. In both

433



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

(a) Generalized subsumption-resolution chain obtained by distributivity

D ⊗l E0

D ⊗l A0 D ⊗l E1

D ⊗l A1 D ⊗l E2

. . .
D ⊗l An−1 D ⊗l En

D ⊗l An

v

k1

k2

kn

(b) Generalized subsumption-merge chain after dropping merges

D ⊗l Eϕ(0)

D ⊗l Aϕ(0) D ⊗l Eϕ(1)

D ⊗l Aϕ(1) D ⊗l Eϕ(2)

. . .
D ⊗l Aϕ(m−1) D ⊗l Eϕ(m)

D ⊗l Aϕ(m)

v

kϕ(1)

kϕ(2)

kϕ(m)

(c) Generalized subsumption-merge chain obtained by simplifying unnecessary resolvents

E?
ϕ(0)

D ⊗l Aϕ(0) E?
ϕ(1)

D ⊗l Aϕ(1) E?
ϕ(2)

. . .
D ⊗l Aϕ(m−1) E?

ϕ(m)

D ⊗l Aϕ(m)

v

kϕ(1)

kϕ(2)

kϕ(m)

(d) Subsumption-merge chain obtained by cutting tautologies off

E?
ϕ(s)

D ⊗l Aϕ(s) E?
ϕ(s+1)

D ⊗l Aϕ(s+1) E?
ϕ(s+2)

. . .
D ⊗l Aϕ(m−1) E?

ϕ(m)

D ⊗l Aϕ(m)

v

kϕ(s+1)

kϕ(s+2)

kϕ(m)

Figure 6: Refining generalized subsumption-merge chains obtained by distributivity into proper
subsumption-merge chains.

434



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

cases, the equality D \ {l} ∪A \
{
l, k
}

= D \ {l} ∪A \
{
l
}

= D ⊗l A is straightforward.

Proposition 3 can be applied to every resolvent in the derivation from Figure 6a to show
it is a generalized subsumption-merge chain. Even more interesting is the second claim, which
essentially states that some merges can be skipped altogether: whenever ki ∈ D ∪

{
l
}

, we have
D⊗lAi−1 = D⊗lAi, so the resolvent upon ki can be omitted. Formally, we can enumerate the
indices {0}∪

{
0 < i ≤ n | ki /∈ D ∪ {l}

}
through a strictly increasing mapping ϕ : {0, . . . ,m} −→

{0, . . . , n} for some m ∈ N.

Proposition 4. The derivations from Figures 6a and 6b are generalized subsumption-merge
chains deriving D ⊗l An.

Proof. We first show this for the derivation ρ from Figure 6a. From Theorem 1 we know that ρ
is a generalized subsumption-resolution chain. We show by induction that for all 0 < i ≤ n the
resolution (D⊗lAi−1)⊗ki

(D⊗lEi) = Ai is a merge, which then implies that ρ is a generalized
subsumption-merge chain. We know that Ai−1 ⊗ki

Ei = Ai is a proper merge; and since the
clause An and the resolvent D⊗l An are proper, we also know that l /∈ An, which by Lemma 1
implies k /∈ Ai−1. Therefore, Proposition 3 concludes that (D⊗l Ai−1)⊗ki

(D⊗l Ei) = Ai is a
merge.

Let us now show that the derivation ρ′ from Figure 6b is a generalized subsumption-
resolution chain. We show by induction that the subchain ρ′i is a generalized subsumption-
resolution chain for all 0 ≤ i ≤ m. The definition of ϕ forces ϕ(0) = 0, so the claim trivially
holds for i = 0. Now, let us assume the claim holds for some 0 ≤ i < m. Then, we simply need
to show that

(D ⊗l Aϕ(i))⊗kϕ(i+1)
(D ⊗l Eϕ(i+1)) = D ⊗l Aϕ(i+1) (1)

and that this is a merge.

The definition of ϕ constrains its values in such a way that ϕ(i) < ϕ(i+1), and additionally
for all ϕ(i) < j < ϕ(i + 1) we have kj ∈ D ∪

{
l
}

. Furthermore, since D ‖ An = {l}, and An

is proper, we know that l /∈ An, and by Lemma 1 this implies l /∈ Aj . Proposition 3 then
guarantees that

D ⊗l Aj = (D ⊗l Aj−1)⊗kj
(D ⊗l Ej) = D ⊗l Aj−1 (2)

Then we obtain

D ⊗l Aϕ(i) = D ⊗l Aϕ(i)+1 = · · · = D ⊗l Aϕ(i+1)−1

And so we conclude

(D⊗l Aϕ(i))⊗kϕ(i+1)
(D⊗l Eϕ(i+1)) = (D⊗l Aϕ(i+1)−1)⊗kϕ(i+1)

(D⊗l Eϕ(i+1)) = D⊗l Aϕ(i+1)

We have shown the equality (1); that it is a merge follows straightforward from the equality
above, considering that ρ is a generalized subsumption-merge chain. Finally, we need to show
that it derives D ⊗l An; but this follows straightforward from (2).

Example 5. The generalized subsumption-resolution chain from Figure 5b is a generalized
subsumption-resolution chain. As predicted by Proposition 4, this is a generalized subsumption-
merge chain. However, the merge resolutions yzttuvw ⊗y yyztu = yzttuvw and ytuvw ⊗u

ytuuv = ytuvw are redundant. This matches Proposition 3, since y, u ∈ xxytu. By dropping
those merges, we obtain the generalized subsumption-merge from Figure 5c.

435



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

Simplifying unnecessary resolvents The next step is to simplify some of the premises in
the generalized subsumption-merge chain from Figure 6b. All premises there are of the form
D ⊗l Eϕ(i). However, it may happen that D ‖Eϕ(i) 6= {l}. It turns out some of these premises
can be outright replaced by the premise Eϕ(i) itself, for which we already have a derivation.
This is based on the following result:

Proposition 5. Consider clauses A and E, and let us assume that l /∈ E and k /∈ D. Then,
(D ⊗l A)⊗k (D ⊗l E) = (D ⊗l A)⊗k E.

Proof. Observe that the side conditions imply D \ {l} = D \ {l, k} and E \
{
l, k
}

= E \
{
k
}

.
Hence, the equality is straightforward from:

(D ⊗l A)⊗k (D ⊗l E) = D \ {l} ∪A \
{
l, k
}
∪ E \

{
l, k
}

(D ⊗l A)⊗k E = D \ {l, k} ∪A \
{
l, k
}
∪ E \

{
k
}

Let us apply this result to our case. The condition kϕ(i) /∈ D is satisfied for every i, as per

the previous stage in the transformation. Then, the result claims that, whenever l /∈ Eϕ(i), we

can replace the chain premise D⊗lEϕ(i) by Eϕ(i). Formally, we define E?
ϕ(i) as Eϕ(i) if l /∈ Eϕ(i),

and D ⊗l Eϕ(i) otherwise. The chain from Figure 6c is then a generalized subsumption-merge
chain.

Proposition 6. The derivation from Figure 6c is a generalized subsumption-merge chain de-
riving D ⊗l An.

Proof. That this derivation derives D ⊗l An is straightforward from Proposition 4. We now
need to show that the identities (D ⊗l Aϕ(i−1)) ⊗kϕ(i)

E?
ϕ(i) = D ⊗l Aϕ(i) hold for 0 < i ≤ m

and that they are merges. Showing that they hold follows straightforward from Proposition 5
and the definition of E?

ϕ(i); we now show they are merges. In the case where l ∈ Eϕ(i) we have
E?

ϕ(i) = D⊗lEϕ(i), and then Proposition 4 yields the claim. Otherwise, E?
ϕ(i) = Eϕ(i). Because

Aϕ(i)−1 ⊗l Eϕ(i) = Aϕ(i) is a merge resolution, Lemma 1 yields Eϕ(i) \
{
kϕ(i)

}
⊆ Aϕ(i)−1 ⊆

Aϕ(i−1). Now, since l does not occur in Eϕ(i), we conclude Eϕ(i) ⊆ Aϕ(i−1)\
{
l
}
⊆ D⊗lAϕ(i−1),

and this shows the missing case.

Example 6. We now apply the transformation above to the generalized subsumption-merge
chain from Figure 5c obtained in Example 5. Observe that x ∈ xtv and x /∈ zuv, vw. Hence,
we can replace the resolvents yztuv = xytu ⊗x zuv by zuv; and ytuvw = xytu ⊗x vw by vw.
We thus obtain the generalized subsumption-merge chain from Figure 5d.

Cutting tautologies off The derivation obtained in the previous stage is still not a proper
subsumption-merge chain, due to the possible presence of tautologies. However, the proof has
now a restricted enough form to solve this in a simple way. Let s be the largest 0 < s ≤ m
such that kϕ(s) ∈ D, or just 0 if there is no such s. Then, Aϕ(s) is the first Aϕ(i) that is proper,
and Lemma 1 guarantees that so is any subsequent Aϕ(i). By removing the inferences above
D ⊗l Aϕ(s) from the chain from Figure 6c, we obtain the chain from Figure 6d, which is this
time a proper subsumption-merge chain, thus concluding the procedure.

Lemma 3. For all ϕ(s) ≤ i ≤ n we have D ‖Ai = {l}. In particular, the resolvent D ⊗l Aϕ(i)

is a proper clause for all s ≤ i ≤ m.

436



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

Proof. We proceed by reverse induction. We have been assumming from the beginning that
D ‖ An = {l}, so the base case holds. We now show the induction claim: for all ϕ(s) < i ≤ n
such that D ‖Ai = {l} holds, so does D ‖Ai−1 = {l}. Let us show first that ki /∈ D.

• If i ∈ {ϕ(s+ 1), . . . , ϕ(m)}, then the definition of s yields ki /∈ D.

• Otherwise, from the definition of ϕ we know ki ∈ D ∪
{
l
}

. Observe that, because the
original derivation from Figure 1c is a proper subsumption-merge chain, we have ki /∈ Ai

by Lemma 2. On the other hand, l ∈ An ⊆ Ai by Lemma 1, and since Ai is a proper
clause, we obtain ki 6= l. Thus, ki ∈ D holds and since D is proper too, ki /∈ D.

Then, because Ai−1 = Ai ∪ {ki}, we conclude D ‖ Ai−1 = D ‖ Ai = {l}, which shows the
induction claim, and so the result holds.

Lemma 4. For all s < i ≤ m, we have kϕ(i) ∈ D ⊗l Aϕ(i−1) and D ⊗l Aϕ(i) = D ⊗l Aϕ(i−1) \{
kϕ(i)

}
.

Proof. From Lemma 1 we know that D⊗lAϕ(i) ⊆ D⊗lAϕ(i−1) and D⊗lAϕ(i−1) \D⊗lAϕ(i) ⊆{
kϕ(i)

}
. We thus just need to show kϕ(i) ∈ D ⊗l Aϕ(i−1) \ D ⊗l Aϕ(i). By the definition of

ϕ we know that kϕ(i) /∈ D ∪ {l}. Furthermore, the original derivation from Figure 1c is a
subsumption-merge chain, so Lemma 2 says that kϕ(i) ∈ Aϕ(i−1) and kϕ(i) /∈ Aϕ(i) hold. Hence
we conclude kϕ(i) ∈ D ⊗l Aϕ(i−1) and kϕ(i) /∈ D ⊗l Aϕ(i).

Lemma 5. For all s ≤ i ≤ m, the clause E?
ϕ(i) is proper.

Proof. If l /∈ Eϕ(i), then we have E?
ϕ(i) = Eϕ(i), which is in any case proper. We now show the

case when l ∈ Eϕ(i), in which case E?
ϕ(i) = D ⊗l Eϕ(i). Observe that both D and Eϕ(i) are

proper clauses, so it suffices to show that D ‖Eϕ(i) = {l}. The “⊇” inclusion is straightforward;
we now show the “⊆” inclusion. We discuss two different cases.

• If i = 0, then Eϕ(i) ⊆ Aϕ(i), and Lemma 3 then yields D ‖ Eϕ(i) ⊆ D ‖Aϕ(i) = {l}.

• If i > 0, then observe that kϕ(i) /∈ D by the definition of ϕ. Furthermore, the inclusion

Eϕ(i) \
{
kϕ(i)

}
⊆ Aϕ(i−1) holds because the resolution Aϕ(i−1) ⊗kϕ(i)

Eϕ(i) is a merge.
Then, we conclude

D ‖ Eϕ(i) = D ‖ (Eϕ(i) \
{
kϕ(i)

}
) ⊆ D ‖Aϕ(i−1) = {l}

as we wanted, where we have used Lemma 3.

Lemma 6. The clause E?
ϕ(s) is subsumed by D ⊗l Aϕ(s). Furthermore, for all s < i ≤ m, we

have D ⊗l Aϕ(i−1) ‖ Eϕ(i) =
{
kϕ(i)

}
.

Proof. Let us first show the subsumption. The case s = 0 follows straightforward because the
derivation from Figure 6c is a generalized subsumption-merge chain. We now show the case
s > 0, where the definition of s forces kϕ(s) ∈ D. On the other hand, the definition of ϕ yields

kϕ(s) /∈ D∪
{
l
}

. From these two facts we can observe kϕ(s) ∈ D\{l} ⊆ D⊗lAϕ(s). Furthermore,
because the resolution (D ⊗l Aϕ(s))⊗kϕ(s)

E?
ϕ(s−1) is a merge, we obtain

E?
ϕ(s) \

{
kϕ(s)

}
⊆ (D ⊗l Aϕ(s−1)) \

{
kϕ(s)

}
= D ⊗l Aϕ(s)

using Lemma 4, which concludes the proof of the subsumption.

437



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

Now we show the second claim. Because the resolvent (D ⊗l Aϕ(i−1)) ⊗kϕ(i)
E?

ϕ(i) is a

merge, the inclusion E?
ϕ(i) \

{
kϕ(i)

}
⊆ D⊗l Aϕ(i−1) holds. Now observe that kϕ(i) ∈ E?

ϕ(i), and
furthermore Lemma 5 says that E?

ϕ(i) is proper. Then we obtain the inclusion

E?
ϕ(i) \

{
kϕ(i)

}
⊆ (D ⊗l Aϕ(i−1)) \

{
kϕ(i)

}
This implies that whenever k ∈ D⊗lAϕ(i−1) and k ∈ E?

ϕ(i) for some literal k, we have k = kϕ(i);

hence we have shown D⊗lAϕ(i−1) ‖E?
ϕ(i) ⊆

{
kϕ(i)

}
. To show the “⊇” inclusion, simply observe

that the definition of ϕ implies l 6= kϕ(i) 6= l; this implies:

kϕ(i) ∈ Aϕ(i−1) \ {l} ⊆ D ⊗l Aϕ(i−1)

kϕ(i) ∈ Eϕ(i) \
{
l
}
⊆ E?

ϕ(i)

Proposition 7. The derivation from Figure 6d is a subsumption-merge chain deriving D⊗lAn.

Proof. To show the claim, we proceed in several stages. The first stage is to show that our
derivation is a generalized subsumption-merge chain. Proposition 6 makes this a mere matter
of proving that E?

ϕ(s) v D ⊗l Aϕ(s); this is in turn shown by Lemma 6. The second stage is to
show that this chain is in fact proper. We need to show that the clauses E?

ϕ(i) and D ⊗l Aϕ(i)

are proper for s ≤ i ≤ m, which is given by Lemmas 5 and 3; and that the resolutions
(D ⊗l Aϕ(i−1)) ⊗l (E?

ϕ(i)) are proper for s < i ≤ m, which is shown in Lemma 6. Finally, we
need to show that this chain derives D⊗lAn, but this is straightforward from Proposition 6.

Example 7. In the generalized subsumption-merge chain from Figure 5d, the merge pivots
are z, t and v. We can remove every inference above the merge upon t because the clause
D = xytu contains t. The obtained derivation, shown in Figure 5e is again a generalized
subsumption-merge chain, and this time a proper one since we got rid of all tautologies.

Putting all the pieces together Observe that all the conditions above are expressed ex-
clusively in terms of the clause D, the premises Ei and the merge pivots ki. In particular, it is
not necessary to compute the intermediate clauses Ai to generate the subsumption-merge chain
that derives D⊗l An. All in all, we can write the process above as a relatively simple recursive
function, which we call the pseudo-distributive operator. If ρ is the subsumption-merge chain
from Figure 1c, we call D(D, l, ρ) the subsumption-merge deriving D ⊗l An from Figure 6d.
By carefully checking the conditions above, we can define D(D, l, ρ) recursively on ρ as follows:

D(D, l, An : E0) = An : E?
0

D(D, l, An : ρ⊗kn En) =


D(D, l, An : ρ) if kn ∈ D ∪

{
l
}

E?
n if kn ∈ D \ {l}
D(D, l, An : ρ)⊗kn

E?
n if kn, kn /∈ D

where as before E?
i is Ei if l /∈ Ei; and D⊗lEi if l ∈ Ei; this encodes the paragraph Simplifying

unnecesary resolvents. The third case corresponds to the default; the first case skips some
resolvents as per the Dropping redundant merges paragraph, and the second case represents the
early cutoff in Cutting tautologies off .

The development of the pseudo-distributive operator reduces the appearance of undesired
redundant inferences, hence reducing the size of the resulting proof. Pseudo-distributivity

438



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

can be directly applied to subsumption-resolution proofs; however, part of its utility lies on its
reuse of some already present premises. Explaining how to efficiently use the pseudo-distributive
operator over DAG-like proofs (as RUP proofs are) as opposed to tree-like proofs is still missing,
though; since enhanced clause sharing is a feature of pseudo-distributivity, it makes much sense
to get advantage of this. The next section is devoted to this optimization in the context of RUP
proofs.

6 Clause isolation in RUP proofs

Now that we are equipped with an analogue of Theorem 1 for subsumption-merge chains, we
use it to generate isolated RUP refutations without first transforming the input proof into a
subsumption-resolution refutation. So far we have relied on the notion of purifiers, which does
not readily transfer to RUP proofs. For the time being, we will regard RUP inferences in a
RUP refutation as merely fragments of a subsumption-resolution refutation; later on we show
that we can forego this view and work directly on RUP inferences. For a subsumption-merge
chain ρ as in Figure 1c, we denote by ρ(i) its subchain Ai : E0 ⊗k1 . . . ⊗ki Ei. We can use the
pseudo-distributive operator from Section 5 to achieve clause isolation.

Example 8. We assume that we are trying to achieve clause isolation for some clause C upon
the literal x. For the moment we are regarding subsumption-merge chains as fragments of a
global resolution proof; assume we know which chain premises are impure. In the chain in the
left, the premise xu is impure, and it is immediately involved in a right-purifier.

xyz

xyztu xtu

xyzu yz

xyu xu

yu yu

y

v

t

z

x

u

 

yzu

yztu tu

yzu yz

yu yu

y

v

t

z

u

= xu⊗x xyz

= xu⊗x xtu

Here we could just apply the rules from Figure 3 to the purifier xyu⊗x xu = yu, but then the
issues exposed at the beginning of Section 5 would arise. Instead, we use pseudo-distributivity:
the subsumption-resolution chain D

(
xu, x, ρ(2)

)
derives the intermediate clause yu, so we re-

place ρ(3) with D
(
xu, x, ρ(2)

)
. The clause xu is still impure, so we could then move on to

compute the subsumption-merge chains D(xu, x, ρ′), where ρ′ is the chains deriving xyz and
xtu. This would in turn require computing new subsumption-merge chains through the pseudo-
distributive operator.

More complex cases can occur, e.g. some intermediate clauses Ai could be impure. We
classify the chains as follows:

Theorem 3. Let us consider a subsumption-merge chain ρ as in Figure 1c. Then, exactly one
of the following holds:

1. ρ is a pure chain: for all 0 ≤ i ≤ n the clause Ei is pure.

2. ρ is a left-semipure chain: there exist 0 ≤ i < j ≤ n such that Ei is impure and kj = l.

439



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

3. ρ is a right-semipure chain: there exists an 0 < i ≤ n such that Ei is impure and ki = l.

4. ρ is an impure chain: for some 0 ≤ i ≤ n the clause Ei is impure, and furthermore
kj /∈

{
l, l
}

for each 0 < j ≤ n.

Furthermore, the derived clause An is impure if and only if ρ is impure.

Proof. We first show that at least one of the alternatives holds. Let us assume that ρ is neither
pure, nor left-semipure, nor right-semipure; we show it is then impure. Since ρ is not pure,
there must be an 0 ≤ i ≤ n such that Ei is impure. We distinguish two cases:

• If i = 0, then since Ei is impure we know that l ∈ E0 ⊆ A0. Since A0 is a proper clause,
we conclude l /∈ A0, so Lemma 2 implies that kj 6= l for all 0 < j ≤ n. Furthermore,
because ρ is not left-semipure, we conclude that kj 6= l for all 0 < j ≤ n. This shows that
ρ is impure.

• If i > 0, then observe that Ai−1 ‖Ei = {ki} because ρ is a subsumption-merge chain, and
l ∈ Ei because Ei is impure. Now, ρ is not right-semipure, so ki 6= l, which means that
l ∈ Ai = Ai−1⊗ki

Ei. Lemma 2 then implies that for all 0 < j ≤ i, the literal kj is neither
l nor l. Furthermore, since ρ is not left-impure, we know that kj 6= l for all i < j ≤ n.
Finally, let us assume that kj = l for some i < j ≤ n; then Lemma 2 shows that l ∈ Ai,
but this leads to a contradiction because Ai is a proper clause. We have thus shown that
ρ is impure in this case too.

Now let us show that no pair of alternatives may simultaneously hold. The only non-
trivial case is where ρ is both left-semipure and right-semipure. But in this case there exist
0 ≤ i < j ≤ n such that ki = l and kj = l, which contradicts Lemma 2.

We now show the final claim. We show that An is impure if ρ is impure, and that An is
pure in each other case.

• If ρ is pure, then ρ is a resolution-subsumption derivation where each premise is pure,
and so An is pure.

• If ρ is left-semipure, then there are 0 ≤ i < j ≤ n such that Ei is impure and kj = l.
Now, from Lemma 2 we know that l = kj /∈ An, so in particular An cannot be impure.

• If ρ is right-semipure, then there is an 0 < i ≤ n such that Ei is impure and ki = l.
Because ρ is a subsumption-merge chain, the clause Ai−1 contains ki = l, and so it does
not contain l. Finally, An ⊆ Ai−1, so An is pure because l /∈ An.

• If ρ is impure, there is some 0 ≤ i ≤ n such that Ei is impure, and additionally kj is
neither l nor l for each 0 < j ≤ n. If i = 0, then since E0 v A0, we conclude that A0

is impure; if i > 0, then since ki /∈
{
l, l
}

, we deduce that Ai = Ai−1 ⊗ki Ei is impure.

In both cases we have shown that Ai is impure. Since kj /∈
{
l, l
}

for each i < j ≤ n, a
simple induction argument shows that the Aj are all impure; in particular An is.

Observe that Theorem 3 depends exclusively on the premises Ei and the pivots ki of each
subsumption-merge chain, so we do not need to reconstruct the chain to decide whether clauses
in a RUP proof are pure or impure.

440



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

Example 9. Consider the DRAT proof from Example 1. If we consider the RAT xu as an
impure clause, then the chains for the clauses xy and x are impure, the ones for y, u and 2 are
right-semipure, and the one for zuw is pure.

Let us reconsider the method for clause isolation on resolution-subsumption refutations as
discussed in Example 8. Intuitively, for each left-purifier E ⊗l E

′, where E is impure, what our
method does is finding a different derivation of the pure resolvent by reordering the proof. In
particular, we find a way to derive E ⊗l E

′ without deriving the impure clause E. In order to
do so, we may need to derive new clauses, but those can be derived by a purifier as well, i.e.
by the resolvent of an impure clause with a pure clause upon l. We exploit this to design an
algorithm for clause isolation on RUP refutations.

Algorithm overview Our algorithm proceeds bottom-up in the RUP refutation π of F∪{C}.
Throughout the process, a to-do list T containing pairs [L,R] is kept, where R is a pure clause
and L ‖R = {l}; observe that the resolvent L⊗l R is then always pure. Each pair [L,R] in the
to-do list represents a resolvent L⊗lR for which a derivation needs to be found. At every stage
of the algorithm, we have an unprocessed RUP derivation π of a CNF formula G from F ∪{C}.
According to π, some of the clauses in G are pure; we call this subformula Gpure. We also
have a generated RUP refutation σ of the pure clauses in G together with the resolvents L⊗lR
originating in the to-do list. Initially, both σ and T are empty. In every step, the algorithm
removes the last RUP inference from π, and prepends some RUP inferences σ′ to σ in such a
way that Invariant 1 is preserved.

Invariant 1. The following hold at every step in the algorithm:

• π is a RUP derivation of a CNF formula G from F ∪ {C}.

• For every pair [L,R] ∈ T , we have L ∈ G, R ∈ Gpure, and L ‖R = {l}.

• σ is a RUP refutation of Gpure ∪ {L⊗l R | [L,R] ∈ T}.

Every time a RUP inference from π is dropped, so is a clause from G; for each pair [L,R]
in the to-do list containing that clause, a derivation must be found to maintain Invariant 1. By
the end of the algorithm, σ holds a RUP refutation of (F ∪ {C})pure ∪ {L⊗l R | [L,R] ∈ T}.
The first member of this union is just F . Furthermore, the clauses L⊗l R are either resolvents
of two clauses in F , which are RUPs in F anyway [18]; or L = C and R ∈ F hold, and then the
resolvents C ⊗l R are allowed as premises of an isolated proof. Hence, C will be isolated upon
l in the output proof.

Processing a single RUP We now describe how to construct the prepended RUP inferences
σ′. We will use the pseudo-distributive operator defined in Section 5.

Given a clause D, a literal l and a subsumption-merge chain ρ given by A : E0⊗k1
. . .⊗kn

En

where D ‖ A = {l}, the subsumption-merge chain D(D, l, ρ) is given by Figure 6d. Some of
the premises Ei are used in D(D, l, ρ) in the form D ⊗l Ei; we refer to these premises as the
external premises of D(D, l, ρ); similarly, we call the premises Ei which are used in D(D, l, ρ)
as themselves its internal premises. Let us show first a few auxiliary results that will be helpful
in arguing the correctness of our algorithm.

Lemma 7. Let D be a clause, k any literal, and ρ a subsumption-merge chain as in Figure 1c
such that D ‖An = {k}. Then, the following hold:

441



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

1. kj /∈
{
k, k
}

for each 0 < j ≤ n.

2. For each internal premise Ei of D(D, k, ρ), we have k /∈ Ei.

Proof. 1. The condition D ‖An = {k} implies that k ∈ An, and since An is a proper clause,
we conclude that k /∈ An. Since k ∈ An, we have k ∈ Aj for all 0 ≤ j ≤ n. Because
Aj = Aj−1 \ {kj} for each 0 < j ≤ n, we conclude that kj 6= k. On the other hand, this
also implies that k /∈ Aj for each 0 ≤ j ≤ n, and since ρ is a subsumption-merge chain we
conclude that kj 6= k for all 0 < j ≤ n.

2. Straightforward from the conditions for E?
i = Ei in the definition of D(D, k, ρ) in Sec-

tion 5.

Let ρ be the last chain in the RUP derivation π of G from F ∪ {C}. The subproof π′

up to ρ derives the formula G′. Then, ρ is given by A : E0 ⊗k1
. . . ⊗kn

En, and furthermore
G = G′ ∪ {A} holds. Let us also assume that we have a to-do list T and a RUP refutation σ
such that Invariant 1 holds for π, T and σ. We define a new to-do list T ′ and a new sequence
of RUPs σ′ such that Invariant 1 holds for π′, T ′ and σ′σ.

The order of the RUPs in σ′ is irrelevant, so we merely explain which RUPs must be derived
and how to obtain the corresponding subsumption-merge chains. In order to enforce Invariant 1,
we need to make sure that the premises of these chains either occur in G′pure, or are the resolvent
L⊗l R of clauses L,R ∈ G′ such that R is pure; in the latter case we also need to add the pair
[L,R] to the to-do list T . In any case T ′ is obtained from T by removing all pairs containing
the derived clause A, and adding the necessary pairs as above.

We may need to obtain two kinds of subsumption-merge chains. The first kind derives the
clause A itself, provided it is pure; if A is impure, then it is not a premise of σ, so there is no
need to derive it. The second kind derives the resolvent corresponding to each pair [A,R] or
[L,A] in the to-do list. These cases are summarized in Algorithm 1.

Deriving the same conclusion If A is pure, we need to provide a subsumption-merge chain
deriving A. Theorem 3 restricts this to three cases:

• If ρ is a pure chain, then ρ itself satisfies the aforementioned purity requirements for
Invariant 1.

• If ρ is a left-semipure chain, then there is some 0 < i ≤ n with ki = l. Lemma 2 makes j
unique. Since the subchain ρ(i−1) derives Ai−1 and we have Ai = Ai−1⊗lEi = Ei⊗lAi−1,
then we can derive A through the subsumption chain:

A : D
(
Ei, ki, ρ

(i−1)
)
⊗ki+1

Eki+1
⊗ki+2

. . .⊗kn
En (3)

We now show that the purity requirements above hold. First, every premise Ej with
i < j ≤ n is pure because Lemma 2 forces l /∈ Ej . Second, Lemma 7 ensures that for
every internal premise Ej in D

(
Ei, l, ρi−1

)
we have l /∈ Ej , and so they are pure too.

Finally, for every external premise Ej in D
(
Ei, l, ρi−1

)
, its corresponding resolvent is

Ej⊗lEi, and since l ∈ Ei we know that Ei is pure, so the pair [Ej , Ei] satisfies the purity
requirements.

• If ρ is a right-semipure chain, then there is an 0 < i ≤ n such that Ei is impure and
ki = l. In this case, we use again the chain (3). This time, since the pairs introduced in

442



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

the to-do list are of the form [Ei, Ej ] for some 0 ≤ j < i, we need to show that Ej is pure
for all j 6= i. For i < j ≤ n, this is granted by Lemma 2. For 0 < j < i, Lemma 2 shows
that l ∈ Aj (so in particular l /∈ Aj) and l 6= kj 6= l. Since ρ is a subsumption-merge
chain, this means that Ej \

{
kj
}
⊆ Aj . We thus conclude l /∈ Ej , so Ej is pure. Finally,

for the case j = 0, we know by the same argument as above that l /∈ A0, so l /∈ E0, hence
E0 is pure too.

Deriving resolvents for pairs in the to-do list For every pair in the to-do list containing
A, we need to provide a subsumption-merge chain deriving the corresponding resolvent. Let us
distinguish three cases:

• If a pair [A,R] occurs in T , then the subsumption-merge chain D
(
R, l, ρ

)
derives the

resolvent A⊗l R. For every external premise Ei of this pseudo-distribution, the premise
Ei⊗lR is used; but this is unproblematic because the pair [Ei, R] satisfies the conditions
from Invariant 1. Furthermore, we need to make sure that every internal premise Ei is
pure; Lemma 7 says that l /∈ Ei, which precludes that they are impure.

• If a pair [L,A] occurs in T and L is pure, then Invariant 1 forces A to be pure as well. Since
A will be derived anyway because it is pure, we can simply prepend the subsumption-
merge chain (L⊗l A) : L⊗l A.

• If a pair [L,A] occurs in T and L is impure, then as above A must be pure. Now, Lemma 7
together with Theorem 3 forces ρ to be a pure chain, so all Ei are pure and therefore the
subsumption-merge chain D(L, l, A) derives L⊗lA and satisfies the purity requirements.

Example 10. We showcase our clause isolation procedure for RUP proofs by transforming the
DRAT proof from Example 1 into a RUP proof. The proof contains only one RAT, namely xu
upon x; our goal is to eliminate it by isolating this clause upon x. We proceed backwards in
the proof, starting with an empty generated RUP refutation σ, and an empty to-do list T .

1. We process the right-semipure chain 2 : zuv⊗vuvw⊗wxyw⊗zxyz⊗xx⊗yy⊗uu. The to-do
list is empty, so as explained above we must derive 2 through the chain D

(
x, x, ρ(3)

)
⊗y

y ⊗u u. This is given by

2 : zuv ⊗v uvw ⊗w [x, xyw]⊗z [x, xyz]⊗y y ⊗u u

where pairs [L,R] denote the resolvent L ⊗x R. By the end of this step the to-do list is
T = {[x, xyw], [x, xyz]}.

2. Similarly to the previous step, the right-semipure chain u : zuv⊗v uvw⊗w xyw⊗z xyz⊗x

x⊗y y must be replaced by the chain D
(
x, x, ρ(3)

)
⊗y y given by:

u : zuv ⊗v uvw ⊗w [x, xyw]⊗z [x, xyz]⊗y y

The to-do list remains the same, since we only add pairs that already exist in T .

3. The right-semipure chain y : uvw ⊗v zuv ⊗u zuw ⊗w xyw ⊗z xyz ⊗x xy is replaced by
D
(
xy, x, ρ(4)

)
:

y : uvw ⊗v zuv ⊗u zuw ⊗w [xy, xyw]⊗z [xy, xyz]

The two new pairs are added to the to-do list, which now contains the pairs [x, xyw],
[x, xyz], [xy, xyw], and [xy, xyz].

443



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

Algorithm 1: Single RAT elimination

Input: F , a CNF formula
Input: l, a literal
Input: C, a RAT clause in F upon l
Input: θD, a subsumption-merge chain deriving C ⊗l D from F for each D ∈ F
Input: π, a RUP refutation of F ∪ {C}
Let σ = ε
Let T = ∅
while π is of the form π′, ρ where ρ is A : E0 ⊗k1

. . .⊗kn
Ekn

do
if ρ is a pure chain then

σ := ρ, σ
else if ρ is left-semipure then

Let 0 < i ≤ n such that ki = l

Let ρ′ be A : D
(
Ei, l, ρ

(i−1))⊗ki+1
Eki+1

⊗ki+2
. . .⊗kn

En

σ := ρ′, σ
T := T ∪ {[Ej , Ei] such that Ej is an external premise in ρ′}

else if ρ is right-semipure then

Let 0 < i ≤ n such that ki = l

Let ρ′ be A : D
(
Ei, l, ρ

(i−1))⊗ki+1
Eki+1

⊗ki+2
. . .⊗kn

En

σ := ρ′, σ
T := T ∪ {[Ei, Ej ] such that Ej is an external premise in ρ′}

end
for [L,R] ∈ T do

if L = A then

Let ρ′ be A⊗l R : D
(
R, l, ρ

)
σ := ρ′, σ
T := T \ {[A,R]} ∪ {[Ej , R] such that Ej is an external premise in ρ′}

else if R = A then
Let ρ′ be L⊗l A : D(L, l, ρ)
σ := ρ′, σ
T := T \ {[L,A]} ∪ {[L,Ej ] such that Ej is an external premise in ρ′}

end

end
π := π′

end
for [L,R] ∈ T do

if L = C then
σ := θR, σ

else
Let ρ be L⊗l R : L⊗l R
σ := ρ, σ

end

end
Output: σ, a RUP refutation of F

444



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

4. We do not need to derive the clause x because its chain x : zuw⊗wxyw⊗uxu⊗z xyz⊗y xy
is impure. However, x occurs in two pairs from T , so we need to compute the chains for
the corresponding resolvents. These are D(xyw, x, ρ) and D(xyz, x, ρ), which are given
by:

yw : zuw ⊗u [xu, xyw]⊗z [xyz, xyw]

yz : zuw ⊗w [xyw, xyz]⊗u [xu, xyz]

The to-do list then contains the pairs:

[xy, xyw]

[xy, xyz]

[xu, xyw]

[xu, xyz]

[xyz, xyw]

[xyw, xyz]

5. The chain zuw : uvw ⊗v zuw is pure, so we can simply reuse it. Furthermore, the clause
zuw does not occur in T , so no additional chains must be derived.

6. The chain xy : uvw⊗v zuv⊗uxu⊗w xyw⊗z xyz is again impure, so we only need to derive
the chains for the corresponding pairs in T , namely D(xyw, x, ρ) and D(xyz, x, ρ). These
are given by:

yw : uvw ⊗v zuv ⊗u [xu, xyw]⊗z [xyz, xyw]

yz : uvw ⊗v zuv ⊗u [xu, xyz]⊗w [xyw, xyz]

The final to-do list then contains the pairs:

[xu, xyw] [xu, xyz] [xu, xyw] [xu, xyz]

[xyz, xyw] [xyw, xyz] [xyz, xyw] [xyw, xyz]

Observe that the resolvents for pairs in the first line are RUPs because xu is a RAT upon x,
and their chains are given in the DRAT proof from Example 1; the resolvents for pairs in the
second line are RUPs, for both clauses are in the original CNF formula. The generated RUP
refutation is then:

σ′ = yuw, yzu, yuw, yzu, (RAT resolvents)

yzw, yzw, yzw, yzw, (pure resolvents)

yw, yz, zuw, yz, yw, y, u,2 (generated RUPs)

Complexity considerations Each application of the clause isolation procedure may add to
a refutation of length n at most n2 clauses, since each pair [L,R] spawns a new chain. Given a
DRAT proof of length n containing r RAT inferences, the output refutation length is bounded
by 2rn2

r

.

7 Conclusion

We have presented a general algorithm to transform DRAT proofs into RUP proofs, parameter-
ized by a clause isolation procedure. Coupled with any method to generate interpolants from

445



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

RUP proofs, this solves the problem of interpolant generation from DRAT proofs, enabling
satisfiability-preserving techniques for SAT solving in model checking.

We have introduced two methods for clause isolation. The first method regards RUP proofs
as subsumption-resolution proofs. Relaxing the usual conditions of the resolution rule enables
distributivity laws over clauses and inferences. The iterative application of these laws yields
clause-isolated proofs.

Proofs generated through distributivity contain redundant and useless fragments. To palliate
this, we lift the distributivity rules to a pseudo-distributive operator. A clause isolation method
which works directly on the premises of the subsumption-merge chains that make up RUP
inferences is attained. Part of the inherent clause sharing in RUP proofs is preserved, and
useless tautological inferences are avoided.

This has a cummulative saving effect, for clause isolation is iteratively applied when per-
forming RAT elimination. The complexity properties of our method are exponential, yet it
is unclear that this can be avoided, due to complexity constraints on the size of interpolants
generated from DRAT proofs.

Related work After conversion to RUP, interpolants can be extracted by extending interpola-
tion rules to chains [20] or by splitting chains into hyper-resolution inferences [35]. Interpolation
techniques that do not require proofs exist [5, 12] but rely on incremental solving, which clashes
with the non-monotonicity of RAT inferences [31]; similar challenges arise in IC3 [11]. Moreover,
proofless interpolation can be exponentially more expensive than proof-based techniques [20].

Proof transformations where resolution inferences are reordered have been proposed to
change interpolant strength [16, 35], proof size [4, 9], or structure [15]. Unlike our trans-
formation, these transformations convert chains into single resolution inferences rather than
processing them directly.

Future work The methods presented here are a theoretical development. The obvious next
step is an implementation of our RAT elimination method, as well as research into further
optimizations in the clause isolation procedure. From a more practical perspective, we aim to
compare the efficiency of these methods in a model checking setting. Given that interpolant
size does not seem to significantly impact interpolant quality, the relevant question is whether
the gains from using satisfiability-preserving inprocessing techniques for SAT solving outweigh
the overhead introduced by RAT elimination in terms of total time spent in model checking.
Given the connection between DRAT, extended resolution and circuits [34], the methods devel-
oped in this paper might also be applicable to circuit-aware simplifications for bounded model
checking [37].

Acknowledgments We would like to thank our anonymous reviewers for their detailed and
helpful comments. This work was supported by the Austrian Science Fund (FWF) under project
W1255-N23, by the Vienna Science and Technology Fund (WWTF) under projects VRG11-005
and ICT15-103, and by Microsoft Research through its PhD Scholarship Programme.

References

[1] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. Solving difficult instances of boolean
satisfiability in the presence of symmetry. IEEE Trans. on CAD of Integrated Circuits and Systems,
22(9):1117–1137, 2003.

[2] P. B. Andrews. Resolution with merging. J. ACM, 15(3):367–381, 1968.

446



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

[3] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1998.

[4] O. Bar-Ilan, O. Fuhrmann, S. Hoory, O. Shacham, and O. Strichman. Reducing the size of
resolution proofs in linear time. Software Tools for Technology Transfer (STTT), 13(3):263–272,
2011.

[5] S. Bayless, C. G. Val, T. Ball, H. H. Hoos, and A. J. Hu. Efficient modular SAT solving for IC3.
In Formal Methods in Computer-Aided Design (FMCAD), pages 149–156. IEEE, 2013.

[6] A. Biere. Preprocessing and inprocessing techniques in SAT. In Haifa Verification Conference
(HVC), volume 7261 of LNCS, page 1. Springer, 2011.

[7] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), volume 1579 of LNCS,
pages 193–207. Springer, 1999.

[8] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications. IOS Press, February 2009.

[9] R. Bloem, S. Malik, M. Schlaipfer, and G. Weissenbacher. Reduction of resolution refutations and
interpolants via subsumption. In Haifa Verification Conference (HVC), volume 8855 of LNCS,
pages 188–203. Springer, 2014.

[10] M. L. Bonet, T. Pitassi, and R. Raz. No feasible interpolation for TC0-Frege proofs. In Foundations
of Computer Science (FOCS), pages 254–263. IEEE, 1997.

[11] A. R. Bradley. SAT-based model checking without unrolling. In Verification, Model Checking and
Abstract Interpretation (VMCAI), volume 6538 of LNCS, pages 70–87. Springer, 2011.

[12] H. Chockler, A. Ivrii, and A. Matsliah. Computing interpolants without proofs. In Haifa Verifi-
cation Conference (HVC), volume 7857 of LNCS, pages 72–85. Springer, 2012.

[13] W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb. Log.,
22(3):250–268, 1957.

[14] L. Cruz-Filipe, M. J. H. Heule, W. A. H. Jr., M. Kaufmann, and P. Schneider-Kamp. Efficient
certified RAT verification. In Conference on Automated Deduction (CADE), volume 10395 of
LNCS, pages 220–236. Springer, 2017.

[15] V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Restructuring resolution refuta-
tions for interpolation. Technical report, Oxford University, 2008.

[16] V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant strength. In Verifica-
tion, Model Checking and Abstract Interpretation (VMCAI), volume 5944 of LNCS, pages 129–145.
Springer, 2010.

[17] N. Eén and A. Biere. Effective preprocessing in SAT through variable and clause elimination. In
Theory and Applications of Satisfiability Testing (SAT), volume 3569 of LNCS, pages 102–104.
Springer, 2005.

[18] A. V. Gelder. Producing and verifying extremely large propositional refutations - have your cake
and eat it too. Ann. Math. Artif. Intell., 65(4):329–372, 2012.

[19] E. I. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for CNF formulas. In
DATE, pages 10886–10891. IEEE Computer Society, 2003.

[20] A. Gurfinkel and Y. Vizel. DRUPing for interpolants. In Formal Methods in Computer-Aided
Design (FMCAD). IEEE, 2014.

[21] M. Heule, M. Järvisalo, F. Lonsing, M. Seidl, and A. Biere. Clause elimination for SAT and QSAT.
J. Artif. Intell. Res., 53:127–168, 2015.

[22] M. Heule, W. A. H. Jr., and N. Wetzler. Trimming while checking clausal proofs. In Formal
Methods in Computer-Aided Design (FMCAD), pages 181–188. IEEE, 2013.

[23] M. Heule, W. A. H. Jr., and N. Wetzler. Verifying refutations with extended resolution. In
Conference on Automated Deduction (CADE), volume 7898 of LNCS, pages 345–359. Springer,
2013.

[24] M. J. H. Heule and O. Kullmann. The science of brute force. Communications of the ACM,

447



RAT Elimination A. Rebola-Pardo, G. Weissenbacher

60(8):70–79, 2017.

[25] M. Järvisalo, M. Heule, and A. Biere. Inprocessing rules. In International Joint Conference on
Automated Reasoning (IJCAR), volume 7364 of LNCS, pages 355–370. Springer, 2012.

[26] B. Kiesl, A. Rebola-Pardo, and M. J. H. Heule. Extended resolution simulates DRAT. In In-
ternational Joint Conference on Automated Reasoning (IJCAR), volume 10900 of LNCS, pages
516–531. Springer, 2018.

[27] L. Kovács and A. Voronkov. First-order interpolation and interpolating proof systems. In LPAR,
volume 46 of EPiC Series in Computing, pages 49–64. EasyChair, 2017.

[28] J. Kraj́ıcek and P. Pudlák. Some consequences of cryptographical conjectures for s12 and EF.
Information and Computation, 140(1):82–94, 1998.

[29] N. Manthey, M. Heule, and A. Biere. Automated reencoding of boolean formulas. In Haifa
Verification Conference (HVC), volume 7857 of LNCS, pages 102–117. Springer, 2012.

[30] K. L. McMillan. Interpolation and SAT-based model checking. In Computer Aided Verification
(CAV), volume 2725 of LNCS, pages 1–13. Springer, 2003.

[31] T. Philipp and A. Rebola-Pardo. Towards a semantics of unsatisfiability proofs with inprocessing.
In Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), volume 46 of EPiC
Series in Computing, pages 65–84. EasyChair, 2017.

[32] P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations.
Journal of Symbolic Logic, 62(3):981–998, 1997.

[33] A. Rebola-Pardo and L. Cruz-Filipe. Complete and efficient DRAT proof checking. In Formal
Methods in Computer-Aided Design (FMCAD), pages 1–9. IEEE, 2018.

[34] A. Rebola-Pardo and M. Suda. A theory of satisfiability-preserving proofs in SAT solving. In
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), volume 57 of EPiC Series
in Computing, pages 583–603. EasyChair, 2018.

[35] M. Schlaipfer and G. Weissenbacher. Labelled interpolation systems for hyper-resolution, clausal,
and local proofs. Journal of Automated Reasoning, 57(1):3–36, 2016.

[36] G. Tseitin. On the complexity of proofs in propositional logics. In J. Siekmann and G. Wrightson,
editors, Automation of Reasoning: Classical Papers in Computational Logic 1967–1970, volume 2.
Springer, 1983. Originally published 1970.

[37] Y. Vizel, A. Gurfinkel, and S. Malik. Fast interpolating BMC. In Computer Aided Verification
(CAV), volume 9206 of LNCS, pages 641–657. Springer, 2015.

[38] Y. Vizel, G. Weissenbacher, and S. Malik. Boolean satisfiability solvers and their applications in
model checking. Proceedings of the IEEE, 103(11):2021–2035, 2015.

[39] N. Wetzler, M. Heule, and W. A. H. Jr. DRAT-trim: Efficient checking and trimming using
expressive clausal proofs. In Theory and Applications of Satisfiability Testing (SAT), volume 8561
of LNCS, pages 422–429. Springer, 2014.

448


	Introduction
	Preliminaries
	RAT elimination through clause isolation
	Clause isolation using distributivity
	Refining distributivity for RUPs
	Clause isolation in RUP proofs
	Conclusion

