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Abstract

Derangement is one well-known problem in the filed of probability theory. An in-
stance of a derangement problem contains a finite collection C of n paired objects,
C = {(x1, y1), ..., (xn, yn)}. The derangement problem asks how many ways to gener-
ate a new collection C ′ ̸= C such that for each (xi, yj) ∈ C ′, i ̸= j. We propose an efficient
dynamic programming algorithm that divides an instance of the derangement problem into
several subproblems. During a recursive process of unrolling a subproblem, there exists a
repeated procedure that allows us to make a use of a subsolution that has already been
computed. We present the methodology to formulate a concept of this subproblem as well
as parts of designing and analyzing an efficiency of the proposed algorithm.

1 Introduction

In the theory of probability and statistics, a derangement problem is a problem that asks how
many ways we can generate a collection of paired objects such that it is completely different
from the given input collection [2, 3]. For instance, given that there were three customers would
like to stop by a restaurant for lunch. Each customer had his own umbrella. They dropped
their umbrellas in a box before getting in the restaurant. After all of them finished their food,
they came out and randomly picked an umbrella from the box. The derangement problem asks
how many ways it can be where every customer did not get his own umbrella.

For detailed clarification, let us formulate this problem. Let X be a finite set that contains
n customers, i.e., X = {x1, x2, x3} where xi represents Customer i. Clearly, |X| = 3 for this
problem instance. Let Y = {y1, y2, y3} be another finite set where yi represents an umbrella
possessed by Customer i. Similarly, |Y | = 3 for this instance. Let C be an input collection,
i.e., C = {(x1, y1), (x2, y2), (x3, y3)} since Customer i is mapped with Umbrella i at the very
beginning. Since there were only three pairs, using a brute force methodology (or exhaustive
search like [6]) to generate all possible collections C ′ that satisfy the condition of derangement
was feasible. Recall that a collection C ′ that qualifies must satisfy the property:

∀(xi, yj) ∈ C ′, i ̸= j
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As we all can verify, the were totally two ways that we can generate a collection that satisfies
the desired objective. The first collection, denoted as C ′

1, was defined as

C ′
1 = {(x1, y2), (x2, y3), (x3, y1)}

C ′
1 can simply be interpreted as Customer 1 took Umbrella 2, Customer 2 took Umbrella 3,

and Customer 3 took Umbrella 1. The second collection, C ′
2, was defined as

C ′
2 = {(x1, y3), (x2, y1), (x3, y2)}

C ′
2 can be interpreted as Customer 1 took Umbrella 3, Customer 2 took Umbrella 1, and

Customer 3 took Umbrella 2. Hence, for the case that n = 3, there are only two possible
ways to generate satisfied collection (C ′

1 and C ′
2). Therefore, the solution of this instance of

derangement problem is two. Table 1 summarizes all solutions of derangement problems, as well
as instances, of cases when n = 2,3, and 4, respectively. In Table 1, the column !n represents a
total number of solutions to the case n. Table 2 shows solutions to cases of small n.

Table 1: Total Solutions and Instances of Solutions for Small n.
n !n Instances C ′ of Solution
1 0 ∅
2 1 C ′

1 = {(x1, y2), (x2, y1)}

3 2
C ′
1 = {(x1, y2), (x2, y3), (x3, y1)}

C ′
2 = {(x1, y3), (x2, y1), (x3, y2)}

4 9

C ′
1 = {(x1, y2), (x2, y1), (x3, y4), (x4, y3)}

C ′
2 = {(x1, y2), (x2, y3), (x3, y4), (x4, y1)}

C ′
3 = {(x1, y2), (x2, y4), (x3, y1), (x4, y3)}

C ′
4 = {(x1, y3), (x2, y1), (x3, y4), (x4, y2)}

C ′
5 = {(x1, y3), (x2, y4), (x3, y1), (x4, y2)}

C ′
6 = {(x1, y3), (x2, y4), (x3, y2), (x4, y1)}

C ′
7 = {(x1, y4), (x2, y1), (x3, y2), (x4, y3)}

C ′
8 = {(x1, y4), (x2, y3), (x3, y1), (x4, y2)}

C ′
9 = {(x1, y4), (x2, y3), (x3, y2), (x4, y1)}

Table 2: Total Solutions for Small n.
n 1 2 3 4 5 6 7 8 9 10 11 12
!n 0 1 2 9 44 265 1854 14833 133496 1334961 14684570 176214841

Even though there are mathematical formulas that can precisely compute a solution to a
derangement problem with input size n, n ∈ N, it is still worth to come up with a meaningful
and fully logical procedure by the use of a fundamental well-known algorithm, a dynamic
programming. The dynamic programming is a concept that utilize a recursive algorithm by
thinking ahead of how many finite possible solutions to every valid subproblem they can be
and memorizing those such subsolutions for future use. The dynamic programming is mostly
used to find an optimal solution to a given problem such as finding an optimal RNA secondary
structure of a given RNA string.

We organized this paper as follows: Section 2 examines existing methodologies that relate to
both derangement problem and dynamic programming. Section 3 constructs a concept of how
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we extract a subproblem that lies in the procedure of computing a solution to the derangement
problem. Section 4 describes the proposed dynamic programming algorithm and its tractable
efficiency. Finally, Section 5 summarizes the contribution described in this paper as well as
feasible future applications.

2 Preliminaries

2.1 Derangement

2.1.1 Mathematical Approach in Probability Theory

In probability and counting theory, the derangement problem can also be called a hat-check
problem. The problem can be described by given n people with n hats. The problem asks
how many ways that we can return n hats to n people where no hat is returned to its owner.
Several mathematicians have come up with formulas. Here is a list of selected formula to solve
the derangement problem.

1. The first one formulate the hat-check problem by proposing that there are totally two
mutually-exclusive cases for any n ∈ N. Given that there are n people. Let xi represent
Person i where i ∈ N and i ≤ n. Similarly, let yi represent a hat that belongs to Person
i. Let C ′ be a valid instance of a solution.

• The first case happens when {(x1, yj), (xj , y1)} ⊆ C ′, j ∈ N, 1 < j ≤ n. Since
(x1, yj) ∈ C ′ and (xj , y1) ∈ C ′, then the problem is reduced to solving an instance
of n− 2.

• The second case happens when (x1, yj) ∈ C ′ but (xj , y1) /∈ C ′. This case creates a
smaller instance of a problem where Xnew = X \ {x1} and Ynew = Y \ {yj}. Clearly,
|Xnew| = |Ynew| = n− 1.

According to the two cases, a formula could be formulated as a recursive procedure:

!n = (n− 1)(!(n− 1)+!(n− 2)), n ≥ 2

where !n represents the number of solutions of the problem with n people and !1 = 0 and
!0 = 1 [15]. For the other two formulas, we will mention only the formula itself.

2. The second formula is formulated using the same base idea as the previous formula:

!n = n!

n∑
i=0

(−1)i

i!
, n ≥ 0

3. The third formula is defined as:

!n =

⌊
n!

e
+

1

2

⌋
where ⌊x⌋ is a floor function on an input x ∈ R [16].
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2.1.2 Bell’s Number

A Bell’s number [13], B = (B1, B2, B3, ...), is a sequence of natural numbers where Bn represents
a total number of valid partitions P over a finite set S where |S| = n. In order to compute an
asymptotic expansion of !n, there is another formula of the upper bound of !n that implementing
a Bell’s number Bn:

!n− n!

e
−

m∑
k=1

(−1)n+k−1Bk

nk
= O

(
1

nm+1

)

2.1.3 Concatenation of Permutation Functions

Let us define a concatenation AB of two finite set, A = {x1, x2, ..., xn} and B = {y1, y2, ..., yn}
as:

AB = {(xi, yj) ∈ A×B}

that comes with constraints:

1. ∀xi ∈ A, xi must show up in exactly one ordered pair in AB.

2. ∀yj ∈ B, yj must show up in exactly one ordered pair in AB.

3. ∀(xi, yj) ∈ AB, i ̸= j.

We can view AB as a bijection from A→ B. Computing a total ways that we can create AB is
equivalent to an objective of a derangement problem. In order to compute using this concept,
we have to run an algorithm to generate all permutations PB of B by using permutation
functions fB : B → B. After we get all candidates, we construct all possible AB,B ∈ PB .
We visit every candidate of AB and remove one that does not satisfy all three constraints of
concatenation. The remaining AB candidates that qualify are precisely instances of solution
of the derangement. We use the case of n = 3 as an example to simulate the algorithm. Let
A = {x1, x2, x3} and B = {y1, y2, y3}. All permutation functions of B, PB , are:

PB = {B1, B2, B3, B4, B5, B6} , where

B1 = {y1, y2, y3}
B2 = {y1, y3, y2}
B3 = {y2, y1, y3, }
B4 = {y2, y3, y1}
B5 = {y3, y1, y2}
B6 = {y3, y2, y1}

Although |PB | = 6, not all of them can be a valid candidate of AB. For example, AB2 =
{(x1, y1), (x2, y3), (x3, y2)} is not a valid concatenation since (x1, y1) ∈ AB2. From the above
work, we have two valid AB candidates left after filtering out all the unqualified sets, which
are AB4 = {(x1, y2), (x2, y3), (x3, y1)} and AB5 = {(x1, y3), (x2, y1), (x3, y2)}. Therefore, there
are two valid solutions for n = 3. Even though this methodology returns both number of
solutions and corresponded instances of solution, its running time is not efficient enough since
each permutation requires n! and it has been proven that n! /∈ Θ(nk), k ∈ Z [4].
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2.2 Dynamic Programming

A dynamic programming (DP) is an algorithm that can be implemented to solve many computer
science problems. Most algorithm that implement DP are efficient. The concept of DP that
makes it dissimilar to traditional recursive algorithm is that once DP successfully computes
a subsolution of a subproblem, it does memorize the subsolution for further use. Memorizing
subsolutions in a data storage, e.g., an array, help improving the running time when dealing
with the same subproblem in the future. Retrieving a subsolution from the array costs us O(n)
where n is the size of the current array, which is considered efficient. Practical examples of
problems that have a DP algorithm to solve can be found in [10].

3 Extracting a Subproblem of Derangement

We initiate our concept by thinking about the most simple case, which is the case that n = 2,
i.e., X = {x1, x2} and Y = {y1, y2}. Let S2 denote all possible ways of permutation of Y where
|Y | = 2. Clearly, S2 = 2! = 2. Particularly, all permutations of Y are {y1, y2} and {y2, y1}.
The only valid instance of the derangement of this case is {(x1, y2), (x2, y1)}. Therefore, the
number of solutions of the case n = 2 is just one way. We define C(i,j) to denote the total
number of ways that there are j out of i people that do not get their umbrellas. Clearly, C(2,2)

is nothing but a total number of solutions of the derangement that we would like to know for
this case. In general, for a given derangement problem of n people, the objective is just to
compute C(n,n).

Let us list all possible permutations of Y and observe the result when making a collection
of (xi, yi), xi ∈ X, yi ∈ Y . The first collection that we can create is {(x1, y1), (x2, y2)} and the
second collection is {(x1, y2), (x2, y1)}. The total number of collections that we get must equal
S2. We can see that the first collection is the case that every umbrella is taken by its owner.
Hence, C(2,0) = 1. Similarly, the second collection is when no umbrella is taken by its owner,
which is the instance of the solution of derangement that we want, and it makes C(2,2) = 1.

Let examine one more case when n = 3 in order to reveal more solid pattern. For this round,
X = {x1, x2, x3} and Y = {y1, y2, y3}. S3 = 3! = 6. Thus, there are six collections that we can
create:

C ′
1 = {(x1, y1), (x2, y2), (x3, y3)}

C ′
2 = {(x1, y1), (x2, y3), (x3, y2)}

C ′
3 = {(x1, y2), (x2, y1), (x3, y3)}

C ′
4 = {(x1, y2), (x2, y3), (x3, y1)}

C ′
5 = {(x1, y3), (x2, y1), (x3, y2)}

C ′
6 = {(x1, y3), (x2, y2), (x3, y1)}

C ′
1 is the only case that every umbrella is taken by its owner, so C(3,0) = 1. There are two cases

that nobody gets its own umbrella, which are C ′
4 and C ′

5. Hence, C(3,3) = 2. The remaining
collections (C ′

2, C ′
3, and C ′

6) represent cases when there is exactly one umbrella taken by its
owner, thus C(3,2) = 3.

From both cases, n = 2 and n = 3, we can see that the permutation of n itself equals a
summation of all collections C ′

i that could be created. Particularly, for n = 2:

S2 = |{(x1, y1), (x2, y2)}|+ |{(x1, y2), (x2, y1)}| (1)

S2 = C(2,0) + C(2,2) (2)
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And for n = 3:

S3 = |C ′
1|+ |C ′

2 ∪ C ′
3 ∪ C ′

6|+ |C ′
4 ∪ C ′

5| (3)

= C(3,0) + C(3,2) + C(3,3) (4)

Lemma 1 For n ∈ N, a collection C ′
i of valid permutations of Y must belong to exactly

one set Sk, 0 ≤ k ≤ n, such that |Sk| = C(n,k).
Proof Suppose there exists a collection C ′

i such that it belongs to Sk and Sm,m ̸= k, at
the same time. Since C ′

i ∈ Sk, there are k umbrellas that are not taken by their owners, i.e.,
there are k numbers of (xa, yb) pairs that a ̸= b in C ′

i . Since C ′
i ∈ Sm, there are m umbrellas

that are not taken by their owners, i.e., there are m numbers of (xa, yb) pairs that a ̸= b in C ′
i .

To have these two statements satisfy true, k must equal m. So there is a contradiction. Hence,
proved ■

Theorem 2 For n ∈ N, !n = Sn −
∑n−1

i=0 C(n,i)

Proof For n ∈ N:

Sn = C(n,0) + C(n,1) + C(n,2) + · · ·+ C(n,n) ∵ Lemma 1 (5)

Sn = C(n,0) + C(n,1) + C(n,2) + · · ·+ C(n,n−1) + C(n,n) (6)

Sn =

n−1∑
i=0

C(n,i) + C(n,n) (7)

Sn =

n−1∑
i=0

C(n,i)+!n (8)

!n = Sn −
n−1∑
i=0

C(n,i) ■ (9)

Lemma 3 For n ∈ N, C(n,1) = 0
Proof It is obvious that for any collection, there must be at least 2 umbrellas that are not

taken by their owners or every umbrella is correctly taken by its owner. The case only one
umbrella is left not taken by its owner cannot happen. Hence, proved ■

After we get Theorem 2, we are going to extract a subproblem. Again, we use the case
n = 3 to initialize a concept. Recall Theorem 2on n = 3:

!3 = S3 −
3−1∑
i=0

C(3,i) (10)

!3 = 3!−
(
C(3,0) + C(3,1) + C(3,2)

)
(11)

!3 = 3!−
(
C(3,0) + 0 + C(3,2)

)
∵ Lemma 3 (12)

!3 = 3!−
(
C(3,0) + C(3,2)

)
(13)

!3 = 3!−
(
1 + C(3,2)

)
∵ C(3,0)=1 (14)

From the last equation (Line 14), the term C(3,2) represents the case that there are two umbrellas
(out of three umbrellas) that not taken by their owners. This term initiate a subproblem. In
order to solve C(3,2), let us elaborate the situation. Having two umbrellas incorrectly taken
means that there is one umbrella that is correctly taken by its owner. So we can recursively
compute C(3,2) by:

C(3,2) =

(
3

1

)
C(2,2) (15)
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where
(
3
1

)
represents total ways that there is only one umbrella correctly taken and C(2,2)

represents the total number of derangement solutions for n = 2, i.e, !2, which is 1. Let us plug
in every value we get back in the Line 14 to confirm the correctness:

!3 = 3!−
(
1 + C(3,2)

)
(16)

= 6−
(
1 +

(
3

1

)
C(2,2)

)
(17)

= 6− (1 + (3)(1)) (18)

= 2 ■ (19)

Next, let us observe the case of n = 4 using the same methodology:

!4 = 4!−
(
C(4,0) + C(4,1) + C(4,2) + C(4,3)

)
(20)

!4 = 4!−
(
1 + C(4,2) + C(4,3)

)
(21)

Again, we can see that two terms, C(4,2) and C(4,3), are the parts that the subproblems (that
we have already computed the subsolution) kick in. The equation can be re-written to:

!4 = 4!−
(
1 +

(
4

2

)
C(2,2) +

(
4

1

)
C(3,3)

)
(22)

!4 = 4!−
(
1 +

(
4

2

)
!2 +

(
4

1

)
!3

)
(23)

!4 = 24− (1 + (6)(1) + (4)(2)) (24)

!4 = 9 ■ (25)

Lastly, we simulate the last example with the case n = 5. However, this time we show every
subsolution being stored every time we compute a subproblem. Let O be an array of integers
where OPT [n] represents !n. At first, OPT is (0) since !1 = 0.

• Initialize

!5 = 5!−
(
C(5,0) + C(5,1) + C(5,2) + C(5,3) + C(5,4)

)
(26)

O← (0) (27)

• Step 1: Compute C(5,0)

!5 = 5!−
(
1 + C(5,1) + C(5,2) + C(5,3) + C(5,4)

)
(28)

O← (0) (29)

• Step 2: Compute C(5,1)

By Lemma 3

!5 = 5!−
(
1 + 0 + C(5,2) + C(5,3) + C(5,4)

)
(30)

O← (0) (31)

• Step 3: Compute C(5,2)

Since C(5,2) =
(
5
3

)
C(2,2) and C(2,2) = 1. We add C(2,2) = 1 to O[2].

!5 = 5!−
(
1 + 0 + 10 + C(5,3) + C(5,4)

)
(32)

O← (0, 1) (33)
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• Step 4: Compute C(5,3)

Since C(5,3) =
(
5
2

)
C(3,3), in order to compute C(3,3), we recall C(2,2,) from OPT (by

Equation in Line 17). We add C(3,3) = 2 to O[3].

!5 = 5!−
(
1 + 0 + 10 + 20 + C(5,4)

)
(34)

O← (0, 1, 2) (35)

• Step 5: Compute C(5,4)

Since C(5,4) =
(
5
1

)
C(4,4), in order to compute C(4,4), we recall C(2,2) and C(3,3,) from OPT

(by Equation in Line 23). We add C(4,4) = 9 to O[4].

!5 = 5!− (1 + 0 + 10 + 20 + 45) (36)

O← (0, 1, 2, 9) (37)

• Step 5: Compute !5

!5 = 5!− (1 + 0 + 10 + 20 + 45) (38)

!5 = 44 ■ (39)

4 Design and Analysis of the Proposed Dynamic Pro-
gramming Algorithm

4.1 Design an Algorithm

Algorithms 1 and 2 completely describes the procedure to compute the number of solutions of
the derangement problem with input size n that we have described in Section 3.

Algorithm 1 Dynamic Programming Algorithm for Derangement Problem.

1: function Total-Derangement(n)
2: return REC-DERANGE(n, n)
3: end function

4.2 Analyze the Algorithm

Algorithm 2 contains two parts that involves in the total running time calculation. The first
part is the iteration in Lines 13 to 15. Since the iteration repeats at most n times, this part
has O(n) running time. Another part is the part that does recursive call in Line 9. However,
with the implementation of the dynamic programming concept, the time consumed in this part
equals the time that we do a linear search on array O (which has possibly maximum size of n),
which is O(n). Therefore, the overall running time of Algorithm 2 is O(n2). Since the algorithm
has a polynomial running time, it is theoretically considered efficient.

5 Conclusion and Feasible Future Applications

We propose an algorithm that can precisely return the total number of solutions of a derange-
ment problem with an input n ∈ N by using a concept of dynamic programming, which known
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Algorithm 2 Algorithm for Subproblem of Derangement.

1: function Rec-Derange(n, i)
2: if i = 0 then
3: return 1
4: end if
5: if i = 1 then
6: return 0
7: end if
8: if 1 < i ≤ n− 1 then
9: return

(
n

n−i

)
REC-DERANGE(i, i) ▷ Get the value from the array O

10: end if
11: if i = n then
12: sum← 0
13: for j = 0 : n− 1 do
14: sum← sum + REC-DERANGE(n, j)
15: end for
16: return n!− sum
17: end if
18: end function

to be efficient most of the time. The derangement problem with inputs X = {x1, ..., xn} and
Y = {y1, ..., yn} simply asks how many ways we can generate a collection C ′ = {(xi, yj) ∈
X × Y } such that i ̸= j and every xi ∈ X shows up exactly once as well as every yj ∈ Y . We
start by simulate a methodology to compute total ways for the cases of small n to extract a
recursive procedure that is hidden as a subproblem. We discover that we can reuse what we
have already computed in the previous recursive call, which guides us to recall the concept of
dynamic programming. The output of the proposed algorithm is shown to be precise and the
algorithm itself comes with a polynomial running time that guarantees its efficiency.

The derangement problem can lead to several applications that need to rearrange a finite
set such that the original arrangement is expected not to be returned. The example of such
applications is designing a sequence of addresses for the address the verification task given the
specific starting address [1, 5, 7, 8]. Another good example is designing a matching problems
for the paper folding test, which is a test of individual spatial visualization (VZ) [9, 11, 12, 14].
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