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1 Technical University of Darmstadt, Darmstadt, Germany
{bubel,haehnle,scaletta}@cs.tu-darmstadt.de

2 KTH Royal Institute of Technology, Stockholm, Sweden
dilian@kth.se

Abstract

Contracts specifying a procedure’s behavior in terms of pre- and postconditions are
essential for scalable software verification, but cannot express any constraints on the events
occurring during execution of the procedure. This necessitates to annotate code with
intermediate assertions, preventing full specification abstraction.

We propose a logic over symbolic traces able to specify recursive procedures in a mod-
ular manner that refers to specified programs only in terms of events. We also provide a
deduction system based on symbolic execution and induction that we prove to be sound
relative to a trace semantics.

Our work generalizes contract-based to trace-based deductive verification by extending
the notion of state-based contracts to trace-based contracts.

1 Introduction

To make deductive verification scale, modular specification and verification is of essence [21]. In
imperative programming languages, modularity manifests itself at the granularity of procedure
calls. A procedure’s behavior is specified in terms of a contract [34,35]: a pair of first-order pre-
and postconditions. During verification each procedure call in the code is replaced with a check
that the contract’s precondition holds at this point, the call’s effect is approximated by assuming
the postcondition. In consequence, verification of the called code is replaced (or approximated)
by first-order constraints. The overall verification effort for a program is proportional to its
length, instead of the unfolded (and unbounded) call graph. The contract-based approach
works for recursive procedures [26,46], it requires an induction principle [6,33], and it achieves
procedure-modular verification in state-of-art deductive verification systems, such as [1, 29,32].

The fundamental limitation of pre-/postcondition contracts, which in the following are called
state-based contracts, is the inability to specify events happening during execution of a proce-
dure. This is not only problematic for specifying concurrent programs, but already an issue for
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interactive programs or loop specification: For the latter, it is necessary to annotate code with
intermediate assertions, which worsens readability and impedes full abstraction from the im-
plementation during specification. Indeed, contracts written in popular specification languages
for deductive verification [4, 31] cannot be stated independently of the specified code.

The ability to specify recurring and intermediate assertions without referring to the code
under verification is a feature of temporal logic, as commonly used in model checking [11].
However, even though there exist extensions of temporal logic that permit to record proce-
dure calls and returns [2], these do not approximate procedure calls with contracts and, in
consequence, do not allow procedure-modular verification in the same manner as deductive ver-
ification. Instead, specification refinement is used to combat state explosion [10] and to permit
compositional verification [9, 19] in model checking.

In this paper we propose a specification logic that generalizes both, state-based procedure
contracts and trace-based modal logics, to a trace-based contract language that is sufficiently
expressive to model recursive calls (and thus also loops). The central idea is to provide speci-
fication elements that permit explicit representation of the control structures embodied in the
control flow graph (CFG) of a program. From the CFG point of view two requirements on a
trace-based contract language are derived: (i) It must be possible to specify scopes relating to
procedure calls and other control structures: To demarcate scopes we introduce events that are
semantically connected with the specified code; (ii) it must be possible to represent cyclic edges
in the CFG in a finite manner: this is achieved by a least fixed-point operator. Both aspects are
not new, of course, but inspired by ideas first expressed in process logic [23], interval temporal
logic [22], and the modal µ-calculus [30].

However, we use the resulting logic of trace contracts differently from temporal/modal logic:
like in Hoare logic [25,26] and dynamic logic [24,41], we admit explicit judgments about a given
program: if s is a program and Φ a trace contract, then s : Φ expresses that any possible execu-
tion of s results in one of the traces characterized by Φ. As mentioned above, we incorporate
events into contracts to enable full abstraction from the specified code (cf. [28] who use ac-
tions to design an abstract semantics). Consequently, our logic generalizes Hoare/dynamic
logic from state-based to trace-based contracts via events (which permit scoping) and recursive
specifications. This sounds more complex than it is. Still, to keep the presentation intuitive
and manageable, it is crucial to choose (i) a suitable deductive framework and (ii) an adequate
semantics to demonstrate soundness.

Regarding the first point, we adapt a symbolic execution calculus for deductive verification
in dynamic logic [1]: It reduces a program s via symbolic execution to a sequence of elementary
symbolic state updates Us (plus path conditions), hence, it reduces judgments of the form
s : Φ to Us : Φ. Adding events to this formalism is easy. Also, dynamic logic is closed under
propositional and first-order operators, which enables formulation of a fixed-point induction
rule over the syntactic structure of programs.

Concerning the second issue, an adequate semantics must be trace-based, i.e. it provides
(a) for a given state σ and program s the trace of s when started in σ and (b) for a given trace
formula Φ the set of all traces it characterizes. Our deduction rules for symbolic execution
act on programs of the form s; r, where s is a single statement and r the trailing statements.
In consequence, an adequate semantics evaluates locally each different kind of statement s
and puts r into a continuation. Such a local, trace-based semantic framework was suggested
in [14,15]—here, we specialize it to sequential programs with recursive procedures.

To summarize, the main contributions of this paper are: (1) A trace-based specification
language that permits fully abstract, modular specification of recursive procedures; (2) the
extension of a symbolic execution calculus for procedure-modular verification by structural
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P ∈ Prog ::= M {d s} M ∈ ProcDecl ::= m(x) sc

d ∈ VarDecl ::= ε | x; d sc ∈ Scope ::= {d s; return e}
s ∈ Stmt ::= skip | x = e | x = m(e) | if e { s } | s; s | while e { s }

Global lookup table: G = {⟨m(x) sc⟩ | m ∈ procedures(P )}

Figure 1: Syntax of an imperative language with recursive procedures

induction and trace abstraction; (3) a soundness proof of the deduction rules based on a local
trace semantics.

In Sect. 2 we present the local trace semantics, then define syntax and semantics of trace
contracts in Sect. 3. The deductive verification system is given in Sect. 4. Related work is in
Sect. 5, conclusion with future work in Sect. 6.

2 Local Trace Semantics of Recursive Procedures

We provide an LAGC-style [14, 15] trace semantics for the sequential language with recursive
procedures whose grammar is shown in Fig. 1.

The definition of integer and boolean expressions is standard, they are assumed to be well-
typed. Scopes of procedure bodies may only write to local integer variables, initialized to zero,
i.e. procedure calls have no side effects. We stress that this is not a fundamental limitation: to
handle side effects and aliasing [1,40] is orthogonal to the goals of our paper and this restriction
greatly simplifies the technical issues and thus readability.

Example 1. We illustrate the concepts in this paper with the running example in Figure 2. The
behavior of procedure m is the identity function for input k, but the control flow is non-trivial,
because the result is computed by k many non-tail recursive calls.

Definition 1 (State, Modification). Let Var be a set of program variables and Val a set
of values, with typical elements x and v, respectively. A state σ ∈ Σ is a partial mapping
σ : Var ⇀ Val from variables to values. Notation σ[x 7→ v] expresses the modification of state
σ at x with value v and is defined as σ[x 7→ v](y) = v if x = y and σ[x 7→ v](y) = σ(y) otherwise.

m(k) {
r ; // initialized to 0
if (k != 0){
r = m(k−1);
r = r + 1

};
return r

}

Figure 2: Running Example

We assume a standard evaluation function valσ for expres-
sions, for example, in a state σ = [x 7→ 0, y 7→ 1] we have
valσ(x+ y) = valσ(x) + valσ(y) = 0 + 1 = 1.

Definition 2 (Context). A (call) context is a pair ctx = (m, id),
where m is a procedure name and id is a call identifier. Given
a call identifier id we denote with resid the unique name of the
return variable associated with the call.

We define events sufficient to characterize the scope and call
structure of recursive procedures, but one could define further
event types, for example, input events or, in a concurrent setting,
scheduling events.
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Definition 3 (Event Marker). Let m be a procedure name, e a parameter, id a call identifier,
and v a return value. Then call(m, e, id) and ret(v) are event markers associated with a pro-
cedure call and a return statement, respectively. We also introduce event markers associated
with the start and end of a computation in context ctx, defined as push(ctx) and pop(ctx),
respectively. We denote with ev(e) a generic event marker over expressions e.

Definition 4 (Trace). A trace τ is defined by the following rules (where ε denotes the empty
trace):

τ ::= ε | τ ↷ t t ::= σ | ev(e)

This definition declares traces as sequences over events and states, but we need to associate
an event ev(e) uniquely with a specific state σ. This is done by inserting1 event ev(e) into a trace
between two copies of σ: We define the event trace evσ(e) as evσ(e) = ⟨σ⟩↷ ev(valσ(e)) ↷ σ.
Events do not change a state.

Like in process logic [23], sequential composition “r ; s” of statements is semantically modeled
as trace composition, where the trace from executing r ends in a state from which the execution
trace of s proceeds. Thus the trace of r ends in the same state as where the trace of s begins.
This motivates the semantic chop “∗∗” on traces [22, 23, 37] that we often use, instead of the
standard concatenation operator “·”.

Definition 5 (Semantic Chop on Traces). Let τ1, τ2 be traces, assume τ1 is non-empty and
finite. The semantic chop τ1∗∗τ2 is defined as τ1∗∗τ2 = τ · τ2, where τ1 = τ ↷ σ, τ2 = ⟨σ′⟩ · τ ′,
and σ = σ′. When σ ̸= σ′ the result is undefined.

Example 2. Let τ1 = ⟨σ⟩↷ σ[x 7→ 1] and τ2 = ⟨σ[x 7→ 1]⟩↷ σ[x 7→ 1, y 7→ 2], then τ1∗∗τ2 =
⟨σ⟩↷ σ[x 7→ 1] ↷ σ[x 7→ 1, y 7→ 2].

Our language is deterministic, so we design local evaluation valσ(s) of a statement s in state
σ to return a single trace: The result of valσ(s) is of the form τ · K(s′), where τ is an initial
(small-step) trace of s and K(s′) contains the remaining, possibly empty, statement s′ yet to
be evaluated.

Definition 6 (Continuation Marker). Let s be a program statement, then K(s) is a continuation
marker. The empty continuation is denoted with K( ) and expresses that nothing remains to
be evaluated.

The local evaluation rules defining valσ(s) are in Fig. 3a. The rules for call and return emit
suitable events, the rule for sequential composition assumes that empty leading continuations
are discarded, the remaining rules are straightforward.

We define schematic traces that allow us to characterize succinctly sets of traces (not)

containing certain events via matching. The notation
ev· · · represents the set of all non-empty,

finite traces without events of type ev ∈ ev. Symbol · · · is shorthand for
∅· · · and Ev includes all

event types in Def. 3. With τ1
ev· · · τ2 we denote the set of all well-defined traces τ1∗∗τ∗∗τ2 such

that τ ∈ ev· · ·. Schematic traces make it easy to retrieve the most recent event and the current
call context from a given trace:

1Alternatively, one could use state transitions labeled with (possibly empty) events.
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valσ(skip) = ⟨σ⟩ ·K( ) valσ({ s }) = valσ(s)

valσ(x = e) = ⟨σ⟩↷ σ[x 7→ valσ(e)] ·K( )

valσ(return e) = retσ(valσ(e)) ·K( )

valσ( if e { s }) =
{
⟨σ⟩ ·K(s), if valσ(e) = tt

⟨σ⟩ ·K( ) otherwise

valσ(while e { s }) = valσ( if e { s; while e { s }})
valσ(r; s) = τ ·K(r′; s),

where valσ(r) = τ ·K(r′) and ; s⇝ s

valσ({ x; d s }) = ⟨σ⟩↷ σ[x′ 7→ 0] ·K({d s[x← x′] })
with x′ ̸∈ dom(σ)

valσ(x = m(e)) = callσ(m, valσ(e), id) ·K(x = resid)

where resid ̸∈ dom(σ)

(a) Local Program Semantics

↷ popσ6[res0 7→1]((m, 0))
↷ σ7[x 7→ 1]

↷ popσ4[res1 7→0]((m, 1))
↷ σ4[r

′ 7→ 0]
↷ σ5[r

′ 7→ 1]
∗∗retσ6

(1)

callσ0(m, 1, 0)∗∗
pushσ0

((m, 0)) ↷
σ0[res0 7→ 0] ↷ σ1[r

′ 7→ 0]
∗∗callσ2

(m, 0, 1)
∗∗pushσ2

((m, 1)) ↷
σ2[res1 7→ 0] ↷ σ3[r

′′ 7→ 0]
∗∗retσ4

(0)

[[x = m(1)]]⟨σ0⟩=

call m(1)
switch to (m, 0)

switch from (m, 0)

call m(0)
switch to (m, 1)

switch from (m, 1)

r′ = res1
r′ = r′ + 1
return r′

x = res0

init fresh res1, r
′′

return r′′

init fresh res0, r
′

(m, 1)

(m, 0)

(main,-1)

(b) Visualization of the semantics of
x = m(1) in σ0

Figure 3: Local Program Semantics and Visualization

Definition 7 (Last Event, Current Context). Let τ be a non-empty trace.

last(τ) =

{
evσ(v) τ ∈ · · · evσ(v)

Ev
· · ·

NoEvent otherwise

currCtx(τ) =


ctx τ ∈ · · · pushσ(ctx)

push,pop
· · ·

currCtx(τ ′) τ ∈ τ ′∗∗ pushσ(ctx) · · · popσ′(ctx)
push,pop
· · ·

(main,−1) otherwise

Since local evaluation of a statement s yields a small step τ of s plus a continuation K(s′),
traces of composite statements can be generated by evaluating the continuation and joining the
result with τ . This is performed by trace composition rules that operate on a configuration of
the form τ,K(s). The process terminates when all statements are evaluated, i.e. K(s) = K( ). In
this case, τ is the semantics resulting from evaluation of a program. There are three composition
rules. The following rule (Progress) evaluates a statement that has not been directly preceded
by a call or a return and extends the current trace accordingly.

τ ̸∈ · · · callσ( , , ) τ ̸∈ · · · retσ( ) σ = last(τ) valσ(s) = τ ′ ·K(s′)

τ,K(s)→ τ∗∗τ ′,K(s′)
(1)

Separate rules are needed to handle procedure calls and returns to model the change of call
context and the return of the computed result. Right after when a call statement is evaluated,
i.e. if τ ends with a call event, the call context is switched to the new context ctx and the body
s′ of the called procedure is inlined in the following (Call) rule. It also declares the result
variable resid:

ctx = (m, id) τ ∈ · · · callσ(m, v, id) s′ = sc[x← v], where lookup(m,G) = m(x) sc

τ,K(s)→ τ∗∗pushσ(ctx),K(resid; s
′; s)

(2)
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Immediately after evaluating a return statement, the returned value is assigned to the result
variable associated with the current context and that context is switched back to the old ctx
retrieved from τ via matching in the (Return) rule:

ctx = currCtx(τ) = (m, id) τ ∈ · · · retσ(v)

τ,K(s)→ τ ↷ σ[resid 7→ v]∗∗popσ[resid 7→v](ctx),K(s)
(3)

Taken together, the rules (2)–(3) model synchronous procedure calls.

Example 3. We evaluate configuration ⟨σ0⟩,K(x = m(1)) for empty σ0, with m as defined in
Example 1. Let s = mb[k ← 1], where mb is the body of m. Applying the progress and call
rule we obtain the initial sequence of configurations:

⟨σ0⟩,K(x = m(1)) → callσ0(m, 1, 0),K(x = res0) → callσ0(m, 1, 0)∗∗pushσ0
((m, 0)),K(res0; s; x = res0)

It is straightforward to see that the local evaluation and the composition rules are exhaustive
and deterministic, which justifies the following definition:

Definition 8 (Program Trace). Given a program s and a state σ, the trace of s (with implicit
lookup table) is the maximal sequence obtained by repeated application of composition rules,
starting from ⟨σ⟩,K(s). If finite, it has the form ⟨σ⟩,K(s) → · · · → τ,K( ), also written

⟨σ⟩,K(s)
∗→ τ,K( ).

Definition 9 (Program Semantics). The semantics of a program s is only defined for termi-

nating programs as [[s]]τ = τ ′ if τ,K(s)
∗→ τ∗∗τ ′,K( ).

From this definition and the local semantics of sequential statements it is easy to prove by
induction:

Proposition 1. [[r; s]]τ = τ ′∗∗[[s]]τ ′ , with τ ′ = [[r]]τ .

Example 4 (Continuing Example 3). Fig. 3b visualizes the semantics [[x = m(1)]]⟨σ0⟩ with
the intermediate states σ1 = σ0[res0 7→ 0], σ2 = σ1[r

′ 7→ 0], σ3 = σ2[res1 7→ 0], σ4 = σ3[r
′′ 7→ 0],

σ5 = σ4[r
′ 7→ 0], σ6 = σ5[r

′ 7→ 1], and σ7 = σ6[res0 7→ 1].

We only consider traces that are adequate, i.e. consistent with local evaluation and compo-
sition rules: context switches can only occur in event pairs call-push and ret-pop consistently
with the current context, and the freshness of call identifiers has to be preserved. We define
Traces as the set of all adequate traces. For details, see Appendix A.

3 A Logic for Trace Contracts

We present a logic for specifying properties over finite program traces. The logic is a temporal
µ-calculus [43] with two binary temporal operators, corresponding to concatenation and chop
over sets of traces, respectively. We consider the syntax fragment without negation, which
guarantees that fixed-point formulas indeed denote fixed points of the corresponding semantic
transformers, and with least fixed-point recursion only. Then we show this logic to be suitable
for expressing relevant finite-trace properties of recursive programs.
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3.1 Syntax

The formulas of our logic are built from a set LVar of first-order (“logical”) variables and a
set RecVar of recursion variables. The syntax of the logic is defined by the following grammar:

Φ ::= ⌈P ⌉ | X(t) | Ev | Φ ∧ Φ | Φ ∨ Φ | Φ · Φ | Φ ∗∗Φ | (µX(y).Φ)(t)

where P ranges over first-order predicates, X over recursion variables, y over tuples of first-
order variables, t over tuples of terms over first-order variables, and where in the last clause the
arities of y and t agree. We also admit result variables resi to appear in trace formulas that
contain the return value of the call with identifier i when the call is finished, and 0 when not.

Events Ev have the form start(m, e, i) or finish(m, e, i). There are no push or pop events, but
the finish events record the context. As stated in the introduction, we aim at procedure-modular
specification and verification. Therefore, it is not necessary to record all context switches in a
global trace, as long as corresponding calls and returns can be uniquely identified.

Remark 1. Events Ev in the logic are syntactic representations of events Ev in the local
semantics (Sect. 2), thus different entities. This permits to tailor events to the desired degree of
abstraction of specifications and the deduction system. For example, if one is only interested in
the interface behavior of a program, but not in internal state changes, one might choose abstract
events of the form start(m)/finish(m), where call identifiers and arguments are dropped.

Example 5. To illustrate our logic, we introduce a formula template (or pattern) that we
make extensive use of later. Let m be a finite, possibly empty, list of procedure names, and
let NoEv(m) be a predicate that is true for any trace element which is not an event involving
any m ∈ m. Consider the recursive formula: Ψm = µX.(NoEv(m) ∨NoEv(m) ·X).

It recursively constructs a trace formula that holds exactly for finite traces not containing
any event involving any m ∈ m.

Using Ψm, we define the binary operator Φ1
m·· Φ2 as shorthand for Φ1∗∗Ψm∗∗Φ2, expressing

the trace property of satisfying Φ1 initially, satisfying Φ2 in the end, and not containing any

event involving an m ∈ m in between. This is the logic equivalent of the semantic operator
ev· · ·

on traces introduced earlier. In case m is empty, we simply write “··”.

3.2 Semantics

To define the semantics of our logic, we need a first-order interpretation I for predicate and
function symbols, a first-order variable assignment β : LVar → D, and a recursion variable
assignment ρ : RecVar → (D → 2Traces) that assigns each recursion variable to a set of traces.
The (finite-trace) semantics [[Φ]]I,β,ρ of formulas as a set of traces is inductively defined in Fig. 4.

By a trace formula we mean a formula of our logic that is closed with respect to both first-
order and recursion variables. Since the semantics of a trace formula does not depend on any
variable assignment, we sometimes use [[Φ]] to denote [[Φ]]I,β,ρ for arbitrary β and ρ. We also
permit a slight extension, where we allow trace formulas to be syntactically closed with respect
to first-order operators, as long as fixed-point formulas occur only in positive positions.

3.3 Specifying Procedure Contracts

In general, a (finite-trace) procedure contract captures the sequences of states and events that
may be generated as a result of a call to the procedure. Since the procedure calls can be
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[[start(m, e, i)]]I,β,ρ = {callσ(m, valσ(e), i)∗∗pushσ((m, i)) ↷ σ[resi 7→ 0] | σ ∈ Σ}

[[finish(m, e, i)]]I,β,ρ = {retσ(valσ(e)) · popσ[resi 7→valσ(e)]((m, i)) | σ ∈ Σ}

[[⌈P ⌉]]I,β,ρ = {⟨σ⟩ | σ ∈ Σ ∧ σ, I, β |= P} [[X(t)]]I,β,ρ = ρ(X)([[t]]I,β)

[[Φ1 ∧ Φ2]]I,β,ρ = [[Φ1]]I,β,ρ ∩ [[Φ2]]I,β,ρ [[Φ1 · Φ2]]I,β,ρ = {τ1 · τ2 | τ1 ∈ [[Φ1]]I,β,ρ ∧ τ2 ∈ [[Φ2]]I,β,ρ}

[[Φ1 ∨ Φ2]]I,β,ρ = [[Φ1]]I,β,ρ ∪ [[Φ2]]I,β,ρ [[Φ1 ∗∗Φ2]]I,β,ρ = {τ1 ∗∗ τ2 | τ1 ∈ [[Φ1]]I,β,ρ ∧ τ2 ∈ [[Φ2]]I,β,ρ}

[[(µX(y).Φ)(t)]]I,β,ρ = [[µX(y).Φ]]I,β,ρ([[t]]I,β) [[µX(y).Φ]]I,β,ρ = ⊓{F : D→ 2Traces | λd.[[Φ]]
I,β[y 7→d],

ρ[X 7→F ]

⊑ F}

⊑ and ⊓ denote point-wise set inclusion and intersection, respectively
[[t]]I,β denotes the evaluation of term t under I and β

Figure 4: Semantics of trace formulas

recursive, such contracts need to be stated recursively. The base case(s) of a recursive contract
should specify the traces that do not involve any procedure calls. The induction case(s), on the
other hand, should specify the remaining traces, and use recursion variables, properly applied
to arguments, at the points where calls to procedures are made.

It is not obvious how to define a general pattern for procedure contracts, so we illustrate
the idea on a particular class of contracts that generalize Hoare-style, state-based contracts
to trace-based ones. Like in Hoare logic, we use state predicates over logical variables to
formulate pre- and postconditions expressing the intended relationship between the values of
the program variables upon procedure call and return. But in addition, we capture the structure
and arguments of recursive procedure calls. We propose pattern Hm below, wherem is the name
of the specified procedure, n the value of its (sole) formal parameter it is called with, and i the
call identifier:

Hm =µXm(n, i).(
⌈prebasem ⌉ ∗∗ start(m,n, i)

m·· finish(m, fm(n), i) ∗∗⌈resi
.
= fm(n)⌉ ∨

⌈prestepm ⌉ ∗∗ start(m,n, i)
m·· Xm(step−1(n), i+ 1)

m·· finish(m, fm(n), i) ∗∗⌈resi
.
= fm(n)⌉

)
Both base and inductive cases use state predicates pre

base/step
m to establish the precondition.

Either uses state predicate resi
.
= fm(n) to specify the return value resi of m as a function fm

depending on the value n of the formal parameter. The inductive case additionally specifies a
recursive call to m. The first argument of the recursion variable is the inverse of the recursive
step function, for example, step−1 = n− 1 when step = n+ 1.

Example 6. We illustrate pattern Hm to provide a contract for procedure m from Example 1.
To specify that the returned value equals the value of the parameter, we define prebasem = n

.
= 0,

fm as the identity function, prestepm = n > 0, and step(n) = n + 1. As a result, we obtain
contract Φm by instantiating the schema Hm:

Φm := µXm(n, i)
(
⌈n .

= 0⌉ ∗∗start(m, 0, i)
m·· finish(m, 0, i) ∗∗⌈resi

.
= 0⌉ ∨

⌈n > 0⌉ ∗∗start(m,n, i)
m·· Xm(n− 1, i+ 1)

m·· finish(m,n, i) ∗∗⌈resi
.
= n⌉

)
Contract Φm exposes the structure of recursive calls when m(n) is executed. In contrast,

the big-step semantics of state-based contracts can be expressed simply as2

Hm ⊆ ⌈prebasem ∨ prestepm ⌉ ·· ⌈resi
.
= fm(n)⌉ .

2Formally, the trace formula on the right should be bound by µX(n, i), even though there is no occurrence
of X. We take the liberty of omitting such trivial variable binders.
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In addition to the final state, we can also specify behavior related to intermediate states.
The contract in Example 6 can be extended to relate the result of the internal recursive call to
the final state by replacing the postcondition of the recursive call with ⌈resi

.
= resi+1 + 1⌉.

Trace formulas (by design) completely abstract away from a specified program, to which
they are only connected via events. The set Ev of events can be extended if needed. It is also
conceivable to expose part of the program state in traces.

4 A Calculus for Deductive Verification

To verify whether a program fulfills its trace contract, we design a symbolic execution calculus.
The most important feature of the calculus is that it permits procedure-modular verification:
Each procedure m is specified with a trace formula Φm, relative to a precondition prem. A
trace contract Cm for m expresses that any execution of m satisfying prem produces one of the
traces in the semantics of Φm. Crucially, Φm may refer to contracts of procedures called in m.

Trace contracts are over judgments of the form s : Φ, expressing that any run of the procedure
body s is a trace in the semantics of Φ. Judgments permit to express correctness of contracts,
hence the rules of our calculus decompose judgments via symbolic execution.

To prove correctness of a program statement s with calls to procedures m ∈ m against
a trace specification Φ, one then needs to show that (1) the judgment s : Φ holds and (2) all
contracts Cm for any m ∈ m hold.

To achieve modularity, during symbolic execution each encountered procedure call is approx-
imated by the specification given by its contract. To avoid technical complications, it turns
out that it is advisable to disentangle symbolic execution and contract application. Therefore,
in a first phase, the calculus infers for a given statement s the symbolic state changes Us it
produces by applying symbolic execution rules that ignore recursive calls. In a second step,
called abstraction, we replace each recursive call with the specification provided in its contract
and show that this is sufficient to prove s : Φ.

The strategy laid out above defines the structure of the present section: Symbolic state
changes are syntactically represented in a notation called update, defined Sect. 4.1. Then we
formally introduce judgments and give the symbolic execution rules for straight-line programs
in Sect. 4.2. Next we formalize contracts and provide a rule for proving their correctness in
Sect. 4.3, followed in Sect. 4.4 by the abstraction rule that uses a proven contract to approximate
a call. Finally, in Sect. 4.5, we state and prove soundness of the calculus.

4.1 Updates

Updates [1] can be seen as explicit substitutions recording state changes. An elementary update
assigns an expression e to variable v, denoted by {v := e}. We also admit event updates
{ev(e)} to record that event Ev with parameters e occurred (here, ev is start or finish, but this
is generalizable). A composite update U is a (possibly empty) sequence of elementary/event
updates u, see the grammar on top of Fig. 5. Updates U precede statements s and have the
meaning that in Us statement s is evaluated under the state changes embodied by U .

Example 7. An expression such as “ {start(m, 0, i)}{r := 0} return r ” results after partial
symbolic execution of a procedure m, where only the return statement is left to be executed in
a state where a local variable r is initialized to 0.
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U ::= ϵ | {v := e}U | {ev(e)}U (ϵ empty sequence of updates)

valσ(uUs) = τ ·K(Us), if valσ(u) = τ ·K( )

valσ({v := e}) = valσ(v = e), with v ̸= resi

valσ({resi := e}) = ⟨σ⟩ ·K( )

valσ({v := m(e)}) = [[v = m(e)]]⟨σ⟩ ·K( ), when [[v = m(e)]]⟨σ⟩ is defined

valσ({start(m, e, i)}) = callσ(m, valσ(e), i)∗∗pushσ((m, i)) ↷ σ[resi 7→ 0] ·K( )

valσ({finish(m, e, i)}) = retσ(valσ(e)) · popσ[resi 7→valσ(e)]
((m, i)) ·K( )

Figure 5: Update syntax and local evaluation of statements with leading updates

4.1.1 Local Evaluation

We extend the local semantic evaluation rules to programs with leading updates. Fig. 5 contains
semantic rules for expressions of the form uUs, where u is either an elementary update or an
event update. If U is empty then after the evaluation of u the rules from Sect. 2 apply.
The semantic rules for updates are similar to those for statements. The first rule is similar
to the rule for sequential composition. Three rules are needed to evaluate different cases of
elementary updates: (a) the case corresponding to plain assignments; (b) if a result variable
resi is assigned, then the update is simply ignored: it is redundant, because its evaluation always
follows finish(m, e, i); (c) the semantics of procedure calls invokes the program semantics. The
final two rules in Fig. 5 evaluate event updates occurring in the deduction rules. They represent
the start and end of the execution of m, respectively, and generate suitable events.

Example 8. One step of local evaluation of Example 7 in a state σ yields the expression
“callσ(m

′, 0, i) ∗∗ pushσ((m′, i)) ·K({r := 0}return r)”.

4.1.2 Updates over Expressions

Expressions e are evaluated in the current program state, represented by a preceding composite
update U . To evaluate e under U , written U(e), we apply updates from inner- to outermost. Ap-
plying an elementary update {v := e′} to an expression e corresponds to syntactic substitution.
Events have no effect on the value of expressions. We obtain the following rules:

U ′u(e) = U ′(u(e)) {v := e′}(e) = e[v/e′]) {Ev( )}(e) = ϵ(e) = e

Trace composition is performed by applying rule PROGRESS (1), overloaded to support updates.
The semantics of programs with updates is defined in analogy to Def. 9:

Definition 10 (Semantics of Programs with Updates). We define the semantics of a (possibly
empty) terminating program s (undefined else) with leading updates as

[[U s]]τ = τ ′, if τ,K(U s)
∗→ τ∗∗τ ′,K( ).

When symbolically executing the return statement we need to generate a finish event whose
context matches the current context of the leading update. We retrieve that call context from
the leading update with a helper function:
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Assign
Γ ⊢ U{v := e}s : Φ
Γ ⊢ U v = e; s : Φ

VarDecl
Γ ⊢ U{v′ := 0}{s[v′/v]} : Φ v′ fresh for s,Γ,Φ

Γ ⊢ U{v; s} : Φ

Cond
Γ,U(e) ⊢ Us; s′ : Φ Γ,U(!e) ⊢ Us′ : Φ

Γ ⊢ U if e { s }; s′ : Φ
Prestate

Γ ⊢ Q Γ ⊢ Us : Φ
Γ ⊢ Us : ⌈Q⌉ ∗∗Φ

Return
currCtx(U) = (m, i) Γ ⊢ U{finish(m, e, i)}resi = e : Φ

Γ ⊢ U return e : Φ
Scope

Γ ⊢ Us : Φ
Γ ⊢ U{s} : Φ

Figure 6: Sequent rules for straight-line programs

Definition 11 (Current Context for Updates).

currCtx(U) =


(m, i) U = U ′{start(m, , i)}
currCtx(U ′) U = U ′{v := e} or U = U ′{start(m, , i)}U ′′{finish(m, , i)}
(main,−1) otherwise

Example 9. The context in which the return statement of Example 7 executes is:
currCtx({start(m, 0, i)}{r:=0}) = currCtx({start(m, 0, i)}) = (m, i).

4.2 Calculus for Straight-line Programs

We present a calculus for programs that contain neither loops nor procedure calls. Our deductive
proof system is a Gentzen-style sequent calculus, where partial symbolic execution of a program
is represented by Us, with U the executed part and s the remaining part. If we judge Us to
conform to a trace specification Φ we write U s : Φ, where the judgment U s : Φ is evaluated in
a current state σ, formally:

Definition 12 (Judgment, Assertion, Sequent). A judgment has the shape U s : Φ, where U
is an update, s a program statement, and Φ a trace formula. An assertion is either a closed
first-order predicate P or a judgment. A sequent has the shape Γ ⊢ U s : Φ, where Γ is a set of
assertions.

Definition 13 (Semantics of Sequents). Let σ be a state. A first-order predicate P is true
in σ if σ |= P , as usual in first-order logic. A judgment U s : Φ is true in σ, denoted σ |= U s : Φ,
when [[U s]]⟨σ⟩ is undefined or [[U s]]⟨σ⟩ ∈ [[Φ]]. A sequent Γ ⊢ U s : Φ is true in σ if one of the
assertions in Γ is not true in σ or σ |= U s : Φ. A sequent is valid if it is true in all states σ.

The schematic rules of the symbolic execution calculus for straight-line programs are in
Fig. 6. For space reasons, we omit the standard rules for Gentzen-style first-order sequent
calculi. In addition to the symbolic execution rules, we need a rule for unfolding fixed-point
formulas:

Unfold
Γ ⊢ Us : Φ

[
(µX(y).Φ)/X, t/y

]
Γ ⊢ Us : (µX(y).Φ)(t)

Example 10. We show in Fig. 7 the symbolic execution phase of the straight-line program

r; if (k!=0) { r=k−1; r=r+1; } return r

with premise k > 0 and under a similar event update {start(m, k, i)} as in Example 7. First
the local variable r is initialised (VarDecl) generating the update {r := 0}. Then, the following
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(symbolic execution finished)

k > 0 ⊢ {start(m, k, i)}{r := 0}{r := k− 1}{r := r + 1}{finish(m, r, i)}{res i := r} : Φ
Assign

k > 0 ⊢ {start(m, k, i)}{r := 0}{r := k−1}{r := r+1}{finish(m, r, i)}res i=r :Φ
Return

k > 0 ⊢ {start(m, k, i)}{r := 0}{r := k− 1}{r := r+1}return r : Φ
Assign

k > 0 ⊢ {start(m, k, i)}{r := 0}{r := k−1}r=r+1; return r : Φ
Assign

k > 0 ⊢ {start(m, k, i)}{r := 0}r=k−1; r=r+1; return r : Φ
Cond

k > 0 ⊢ {start(m, k, i)}{r := 0} if (k!=0) {r=k−1; r=r+1;} return r : Φ
VarDecl

k > 0 ⊢ {start(m, k, i)}r ; if (k!=0) {r=k−1; r=r+1;} return r : Φ

Figure 7: Proof Tree for Example 10

statement is a conditional, so rule Cond is applied. Observe that {start(m, k, i)}{r := 0}(k!=0)
evaluates to k != 0 and is subsumed by k > 0. We show only the left premise as the right
premise is immediately closed due to k > 0. The final sequent is the result of applying rule
Assign twice, followed by an application of the Return rule.

4.3 Procedure Contracts

Specifying and verifying trace contracts for each procedure allows us to verify procedure calls
in a modular way. First, we show how to specify a procedure m with a contract Cm, then we
present the rule ProcedureContract that is used to prove Cm in our calculus. Let

Cm=∀n.(prem(n)→m(n):Φm(n)) (4)

specify a stand-alone procedure call outside of an assignment. The local evaluation of such
a stand-alone call is given as valσ(m(e)) = callσ(m, valσ(e), id) · K( ) and the same as for
procedure calls with an assignment, except for the empty continuation (cf. Fig. 3a). When
proving correctness of trace contracts Cm of recursive procedures m, one establishes that Φm

is a specification invariant for the implementation of m under the given precondition.

Example 11. A valid contract for procedure m from Example 1 is obtained from prem(k) ≡
k ≥ 0 and Φm ≡ ∃i. (··start(m, 0, i)··), which expresses that when m is started with a non-
negative k, then in the resulting trace there is a recursive call with argument 0.

In the special case Φm(n) ≡ Φ′
m(n) ∗∗⌈res .

= fm(n)⌉, where fm(n) is the result of m given
input n, equation (4) can be seen as the generalization of the Hoare-style state-based contract
∀n.({prem(n)}m(n){res .

= fm(n)}), where n is a first-order parameter.
To prove a contract in state-based deductive verification [1,26,27,46], one shows by induction

that the inlined body of m respects the contract, under the assumption that when verification of
the method body encounters a recursive call to m, one can assume the contract holds already for
that call. This yields partial correctness. We generalize this method to traces in the following
rule for recursive self-calls:

ProcCon
Γ, prem(n′), Cm ⊢ inline(m,n′, i′) : Φm(n′, i′)

Γ ⊢ Cm

(with i′, n′ fresh)

The rule expresses that for any parameter n′ and any recursion depth i′, the trace specifi-
cation Φm(n′, i′) is an invariant for the inlined procedure body, where Cm can be assumed in
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recursive calls. To represent inlining succinctly, p being the procedure parameter, we use

inline(m,n, i) = {start(m,n, i)}mb[n/p] . (5)

In general, other procedures might be called in m, so the assumption in rule ProcCon should
be generalized to

∧
m∈procedures(P ) Cm.

Example 12. Symbolic execution for procedure m from Example 1 with contract Cm =
∀n, i.(m(n) : Φm(n, i) ∗∗⌈resi

.
= n⌉):

(here symbolic execution of procedure body starts, similar to Example 10)

n′ ≥ 0, Cm ⊢ {start(m,n′, i ′)}{r′ := 0}s[n′/k, r′/r] : Φm(n
′, i ′)

VarDecl
n′ ≥ 0, Cm ⊢ {start(m,n′, i ′)}{r′; s[n′/k, r′/r]} : Φm(n

′, i ′)

n′ ≥ 0, Cm ⊢ inline(m,n′, i ′) : Φm(n
′, i ′)

ProcCon ⊢ Cm

4.4 Procedure Calls

As Example 12 shows, after applying rule ProcCon, a procedure body can be fully symbolically
executed, where recursive calls in assignments are simply handled by the Assign rule. The
semantics of elementary updates with a call on the right ensures that this is sound under our
assumption that a procedure call has no side effects. In this way, we can retrofit standard,
state-based verification into our trace-based framework.3 Complete symbolic execution of a
procedure body with a recursive call to m yields a judgment of the form

U1{r := m(e)}U2 : Φ1 ∗∗Φm(e, k) ∗∗Φ2 . (6)

The updates are here followed by the “empty” program, indicating that symbolic execution
finished. For the trace specification, the above shape is also justified, because typically we have
Φm = µX(y).(Φ1(y)∨ · · · ∨Φn(y)). This specification one strengthens into µX(y).Φi(y), where
Φi is the specification case corresponding to the current symbolic execution path. At this point,
we use pattern (6) and the proof of Cm to justify the trace abstraction rule

TrAbs
Γ ⊢ U1 : Φ1 Γ ⊢ U1(prem(e)) Cm ⊢ {v := fm(U1(e))}U2 : Φ2

Γ,Cm ⊢ U1{v := m(e)}U2 : Φ1 ∗∗Φm(e, k) ∗∗Φ2

where fm(·) is the function computed by m. The trace abstraction rule decomposes the con-
clusion into three premises. The first premise verifies that the trace represented by U1 conforms
to Φ1. The second premise guarantees that the precondition of contract Cm is satisfied. The
proof of contract Cm is now implicitly used to guarantee that the trace of update {v := m(e)}
conforms to Φm(e, k), up to assignment of the procedure’s result to program variable v. The
task of the third premise is then to ensure that the trace consisting of the latter assignment
followed by update U2 conforms to Φ2.

Example 13. Trace abstraction is applied in the continuation of Example 12, after the recursive
call in the body was symbolically executed and moved to an update. At this point the goal
sequent has the form

n′ > 0,Cm ⊢U1{r′ := m(n′ − 1)}U2 : Φ1
m·· Φm(n

′ − 1, i ′ + 1)
m·· Φ2

3We stress that the absence of side effects is for ease of presentation and not a fundamental limitation of
our approach. How to model side effects in symbolic execution is well-known (for example: [1]).
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with abbreviations U1 ≡ {start(m,n′, i ′)}{r′ := 0}, U2 ≡ {r′:=r′+1}{finish(m, r′, i ′)}{res i ′:=r′},
Φ1 ≡ ⌈n′ > 0⌉∗∗start(m,n′, i ′)

m··, Φm(n
′−1, i ′+1) ≡ Xm(n

′−1, i ′+1) and Φ2 ≡
m··finish(m,n′, i ′) ·

⌈res i ′
.
= n′⌉ .

Applying the trace abstraction rule results in the following three sequents:

n′ > 0 ⊢{start(m,n′, i ′)}{r′ := 0} : ⌈n′ > 0⌉∗∗start(m,n′, i ′)
m··

n′ > 0 ⊢ n′ > 0,

res i ′+1
.
=n′−1 ⊢

{r′ := res i ′+1}{r′ := r′ + 1}{finish(m, r′, i ′)}{res i ′ := r′} : m··finish(m,n′, i ′) · ⌈res i ′
.
= n′⌉

The first subgoal is provable with rule Prestate. Like the third premise, it additionally requires
the rules found in Appendix B; the second premise is trivial.

Remark 2 (Weakening). It is not possible to prove the contract in Example 11 with the rules
so far. The reason is that the TrAbs rule expects that the contract of m exactly matches Φm

in the conclusion, but often we only need a trace formula that is implied by the specification of
m. This motivates the Cons rule, shown in Figure 8.

Cons
Γ ⊢ s : Φ′ Φ′ ⊢t Φ

Γ ⊢ s : Φ

Figure 8: The Cons rule

This rule assumes there is a calculus ⊢t to prove con-
sequence of trace formulas. This is unsurprising, because
deductive verification with state contracts assumes one can
weaken pre- and postconditions (which then boils down to
first-order consequence). To provide a sound and complete
calculus for ⊢t is out of scope of this paper and deferred to
future work.

Remark 3 (Loops). For space reasons, we do not provide rules for dealing with loops. Conceptu-
ally, it is well-known that contracts can be used to specify loops, because they can be expressed
as tail-recursive procedures. A systematic overview and comparison between invariant-based
and contract-based loop specification is in [16]. A suitable adaptation of our contract rules to
the case of loops will be the topic of future work.

4.5 Soundness

We conclude the section about our calculus by discussing and proving its correctness. First, we
define the notion of soundness for individual rule schemata, then lift the notion to the calculus
as a whole.

Definition 14 (Soundness). A rule of the calculus is sound if the validity of the conclusion
follows from the validity of the premises. A calculus is sound if it can prove only valid state-
ments.

The proofs for the local soundness of the calculus rules make use of some recurring equations.
To streamline their presentation, we state them separately in the following proposition:

Proposition 2. 1. [[Us]]τ = [[U ]]τ ∗∗ [[s]][[U ]]τ

2. [[UU ′]]τ = [[U ]]τ ∗∗ [[U ′]][[U ]]τ

3. [[{v := m(e)}]]τ = [[{v := m(e)}]]last(τ).
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We state and prove now that our proof system is sound, since every rule of the system is
locally sound.

Theorem 1 (Calculus soundness). The presented sequent calculus is sound.

Proof. The result is a direct consequence of the (local) soundness of each rule, which we show
here for selected rules. Recall that a rule is sound if its conclusion is a valid sequent whenever
all its premises are. For some rules we show even reversibility (also called backward soundness),
which means that whenever the conclusion of the rule is a valid sequent, the rule can be applied
backwards in a way so that all premises are valid.

Rule Assign We prove soundness and reversibility of the rule. Let σ be a state. We have,
with τ = [[U ]]⟨σ⟩:

σ |= U{v := e}s : Φ
⇔ [[U{v := e}s]]⟨σ⟩ ∈ [[Φ]] {Def. 13}

⇔ τ ∗∗ [[{v := e}]]τ ∗∗ [[s]][[{v:=e}]]τ ∈ [[Φ]] {Prop. 2}

⇔ τ ∗∗ [[v = e]]τ ∗∗ [[s]][[v=e]]τ ∈ [[Φ]] {Def. valσ({v := e})}

⇔ [[Uv = e; s]]⟨σ⟩ ∈ [[Φ]] {Prop. 1,2}

⇔ σ |= Uv = e; s : Φ {Def. 13}

We therefore have that the sequent Γ ⊢ {v := e}s : Φ is valid if and only if Γ ⊢ v = e; s : Φ is
valid.

Rule Cond We prove soundness and reversibility of the rule. Let σ be a state. We have, with
τ = [[U ]]⟨σ⟩ and σ′ = last(τ):

σ |= U(e) ⇒ σ |= Us; s′ : Φ ∧ σ |= U(!e) ⇒ σ |= Us′ : Φ
⇔ σ |= U(e) ⇒ [[U s; s′]]⟨σ⟩ ∈ [[Φ]] ∧ σ |= U(!e) ⇒ [[U s′]]⟨σ⟩ ∈ [[Φ]] {Def. 13}
⇔ σ |= U(e) ⇒ τ ∗∗ [[s; s′]]τ ∈ [[Φ]] ∧ σ |= U(!e) ⇒ τ ∗∗ [[s′]]τ ∈ [[Φ]] {Prop. 2}
⇔ valσ′(e) = tt ⇒ τ ∗∗ [[s; s′]]τ ∈ [[Φ]] ∧ valσ′(e) = ff ⇒ τ ∗∗ [[s′]]τ ∈ [[Φ]] {Def. σ |= U(e)}
⇔ τ ∗∗ [[ if e { s }; s′]]τ ∈ [[Φ]] {Fig. 3a, Def. 9}
⇔ [[U if e { s }; s′]]⟨σ⟩ ∈ [[Φ]] {Prop. 2}
⇔ σ |= U if e { s }; s′ : Φ {Def. 13}

Explanation: Given Fig. 3a, Def. 9 we have

τ, K( if e { s }; s′) ∗→ τ, K(s; s′), if vallast(τ)(e) = tt, and

τ, K( if e { s }; s′) ∗→ τ, K(s′), if vallast(τ)(e) = ff

Therefore

[[ if e { s }; s′]]τ = [[s; s′]]τ if vallast(τ)(e) = tt, and

[[ if e { s }; s′]]τ = [[s′]]τ if vallast(τ)(e) = ff

We therefore have that the sequent Γ ⊢ U if (e) s; s′ : Φ is valid if and only if the sequents
Γ,U(e) ⊢ Us; s′ : Φ and Γ,U(!e) ⊢ Us′ : Φ are valid.
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Rule Unfold We prove soundness and reversibility of the rule. By Tarski’s fixed-point theorem
for complete lattices [45], the semantics [[(µX(y).Φ)(t)]]I,β,ρ of a fixed-point predicate µX(y).Φ

is indeed a fixed point of the trace predicate transformer λF.λd.[[Φ]]
β[y 7→d],ρ[X 7→F ]

. We therefore

have the following fixed-point unfolding equivalence:

(µX(y).Φ)(t) ≡ Φ
[
(µX(y).Φ)/X, t/y

]
where Φ1 ≡ Φ2 is defined to hold whenever [[Φ1]]I,β,ρ = [[Φ2]]I,β,ρ for all β and ρ. The soundness
and reversibility of the rule is a direct consequence of this equivalence.

Rule ProcedureContract Since the details are somewhat technical, soundness is only sketched
here. We follow the approach taken in [46] to prove the soundness of a similar rule, but there in
the context of Hoare logic. The essence of the approach is to find a suitable notion of validity
of sequents that allows to capture an inductive argument on the recursive depth of procedure
calls. In [46], this is achieved by augmenting the notion of sequent validity with an explicit
parameter n of that depth, in turn relying on a modified version of the operational semantics
that is also parameterised on n as a bound on the maximal recursion depth when going from
an initial state to a final one. For our case, we use the same approach, but apply it to traces.

Rule TrAbs We prove soundness of the rule.

TrAbs
Γ ⊢ U1 : Φ1 Γ ⊢ U1(prem(e)) Cm ⊢ {v := fm(U1(e))}U2 : Φ2

Γ,Cm ⊢ U1{v := m(e)}U2 : Φ1 ∗∗Φm(e, k) ∗∗Φ2

where fm(·) is the function computed by m.
Assuming the premisses (I)–(III) (from left to right) are valid, we have to show that the

conclusion is valid. This means that for all states σ

σ |= (Γ ∧Cm)→ U1{v := m(e)}U2 : Φ1 ∗∗Φm(e, k) ∗∗Φ2

holds. We consider only the non-trivial case where σ |= Γ ∧Cm holds. This means we have to
prove that

[[U1{v := m(e)}U2]]⟨σ⟩ ∈ [[Φ1 ∗∗Φm(e, k) ∗∗Φ2]]

We can decompose the left side as follows:

[[U1{v := m(e)}U2]]⟨σ⟩ = τ · [[v = m(e)]]τ︸ ︷︷ ︸
τ ′

·τ ′′,

with [[U1]]⟨σ⟩ = τ and [[U2]]τ ′ = τ ′′.

Validity of premise (I) ensures already that τ ∈ [[Φ1]]⟨σ⟩.
For the middle part, we observe that

[[v = m(e)]]τ =

τ̄︷ ︸︸ ︷
calllast(τ)(m, e, k)∗∗pushlast(τ)((m, i)) ∗∗[[mb[p 7→ e]; v = resk]]τ̄

= [[m(e); ]]τ∗∗[[v = resk; ]]τ̂

with τ̂ = [[m(e); ]]τ .
By assumption σ |= Cm, i.e.,

σ |= ∀n, i.(prem(n)→ m(n) : Φm(n, i) ∗∗⌈resi
.
= fm(n)⌉)
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and hence,
σ |= (prem(e1)→ m(e1) : Φm(e1, k) ∗∗⌈resk

.
= fm(e1)⌉)

with valσ(e1) = valσ(U1e) and e1 fresh rigid constant symbol and i instantiated with k. Validity
of premise (II) asserts that

σ |= U1prem(e)⇔ σ |= prem(U1e)⇔ σ |= prem(e1) .

Consequently (modus ponens),

σ |= m(e1) : Φm(e1, k) ∗∗⌈resk
.
= fm(e1)⌉

⇔[[m(e1)]]⟨σ⟩ ∈ [[Φm(e1, k) ∗∗⌈resk
.
= fm(e1)⌉]]⟨σ⟩

⇒[[m(e1)]]⟨σ⟩ ∈ [[Φm(e1, k)]]⟨σ⟩

Because there are no side effects from procedure calls on the state, we have that if for any
two states σ, σ′

valσ(e) = valσ′(e) and valσ(k) = valσ′(k)

then
[[m(e)]]⟨σ⟩ = [[m(e)]]⟨σ′⟩ and [[Φm(e, k)]]⟨σ⟩ = [[Φm(e, k)]]⟨σ′⟩ .

Thus we can deduce:

[[m(e1)]]⟨σ⟩ = [[m(e)]]⟨last(τ)⟩ = [[m(e)]]τ = τ̂ ,

and further,
τ̂ ∈ [[Φm(e, k)]]τ .

In summary, we have now that τ · τ̂ ∈ [[Φ1 ∗∗Φm(e, k)]]⟨σ⟩. We have not yet considered the
whole trace of the procedure call update. Recall that:

[[v = m(e)]]τ = [[m(e); v = resk]]τ = [[m(e); ]]τ∗∗[[v = resk; ]]τ̂

It remains to show that
[[v = resk; ]]τ̂∗∗[[U2]]τ ′ ∈ [[Φ2]]τ̂

This is a direct consequence of premise (III), the only critical point being the equality of
the value of variable v. This follows from the fact that in the conclusion, v has the value
computed by the procedure when called with parameters U1(e), which is the same value to
which fm(U1(e)) evaluates by definition of fm.

5 Related Work

We specify symbolic traces, so it is unsurprising to find related work in extensions of LTL model
checking and program synthesis. CaReT logic [2] can specify the call structure of programs
which is modeled as pushdown automata. It has abstract versions of the temporal next and
until operators that jump over balanced calls. The call and event structure is fixed. Systems of
procedural automata [18] model procedure calls with context-free rules for atomic actions and
procedure calls. The goal is to learn automata from observed traces. Temporal Stream Logic [17]
features uninterpreted function terms and updates in addition to standard LTL operators,
aiming at program synthesis of Büchi stream automata and FPGA programs. Müller-Olm [36]
defines a fixed-point logic with chop that is close to a propositional version of our logic, while
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Bruse & Lange [7] extend propositional temporal logic with a recursive operator. In each case
the setup is finite or propositional, not first-order. The connection to specification of recursive
procedures is not made.

Cousot and Cousot [12] investigate abstract intepretation of temporal logics. In particular
they apply it to a generalization of the µ-calculus, which provides the possibility to express
also reversal and state abstraction modalities (beyond the classical CTL and LTL modalities).
They differ from our approach in the following significant ways: (i) their reasoning is based
on abstract interpretation and model checking, trading precision for full automation, while our
approach allows for high precision, maintains high (but not full) automation; (ii) their trace
specification language uses temporal logic to implicitly characterize the traces, while we admit
explicit trace specification; most importantly, (iii) our main contribution is modular contract-
based specification and verification of programs, which is not addressed by their approach.

Process logic [23] and interval temporal logic [22] feature the chop operator, which was taken
up by Nakata & Uustalu [37], who used infinite symbolic traces to characterize non-terminating
loops. These were extended to a rich dynamic logic [8] and equipped with events and a local
trace semantics [15].

Cyclic proof systems to prove inductive claims, including contracts of recursive procedures,
date back to Hoare’s axiomatization of recursive procedures [26]. Gurov &Westman [20] provide
an abstract framework based on denotational semantics to formally justify (cyclic) procedure-
modular verification, while the paper [6] investigates the expressive power of sequent calculi for
cyclic and infinite arguments that are often used as a basis in deductive verification. Recursive
predicate specifications are standard, for example, in separation logic [39], but not used to
specify program traces. Several papers [13, 42] present a first-order µ-calculus, but do not
feature explicit programs or events.

Logical frameworks [5,38] feature abstract specifications in terms of typed higher-order logic
formulas, but they target functional languages and feature neither events nor traces.

The authors of [47] are concerned with the specification of closures in Rust. One particular
problem they encounter is the need to address the evolution of the captured state in a closure.
They use history invariants to express invariant relations between call sites of the closure.
History invariants are naturally subsumed by our proposed logic and can be embedded as
conditions of the trace after repeated calls.

The paper [44] is about specification and reasoning on delegates. For named delegates they
universally quantify over Hoare triples used as the delegates’ specification. This provides plug-
in specifications at call sites, similar to, but more specific than what our approach achieves with
recursion variables. Their approach does not allow to talk about traces.

Ancona et al. [3] present a runtime verification approach that features trace-based specifi-
cation and a trace-based rewrite calculus, implemented as part of runtime monitors (or their
synthesis). Their work allows one to specify program traces that consist of events (method
invocations and returns, both might carry symbolic data expressions) and they allow recursive
specification equations. Our approach differs in the following points: (i) we admit to specify
general state properties in the traces; (ii) we use first-order deduction to simplify and weaken
properties; (iii) our specification language can define method contracts in terms of pre- and
postconditions.

6 Conclusions and Future Work

In this paper we established the fundamental theory of trace-based contracts, generalizing
specification and deductive verification with state-based contracts. The ingredients are (i) a
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fixed-point logic to characterize event structures over recursive procedures; (ii) a uniform, local
trace-event semantics for programs, state updates, and the trace logic; (iii) a sound symbolic
execution calculus with rules to prove trace contracts and programs with recursive procedures.
Programs and trace contracts communicate semantically via a configurable set of events. This
permits fully abstract specification of programs and a highly flexible approach to specify con-
cepts like user input, concurrency, etc.

To fully harvest the opportunities arising from trace-based specification and verification is
the goal of follow-up papers, where we will look at concurrent programs, explicitly defined loops,
and more complex case studies, for example, from protocol verification. This requires to provide
a calculus for consequence between trace formulas and to add support for heap data with side
effects. The latter is also interesting, because it will permit an experimental comparison of our
approach to the more specific setting of [44, 47]. Specifically, paper [47] is interesting, as they
keep aliasing manageable by relying on Rust’s ownership type system—something we will keep
in mind for possible adoption.

Also the trace construction operators of [3] for shuffling (interleaving) of distributed pro-
grams, as well as their prefix closure operator might be interesting to look at, but it remains to
be seen whether the latter is as useful for static verification than for runtime verification.

On the theoretical side, we would like to characterize the expressiveness of our trace logic
and investigate its relation to temporal logic and standard mu-calculus on finite traces. Finally,
it would be interesting to prove (relative) completeness.
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[1] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt, and M. Ulbrich, editors. Deductive
Software Verification—The KeY Book: From Theory to Practice, volume 10001 of LNCS. Springer,
2016.

[2] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and returns. In
K. Jensen and A. Podelski, editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, 10th Intl. Conf., TACAS, Barcelona, Spain, volume 2988 of LNCS, pages 467–481. Springer,
2004.

[3] D. Ancona, L. Franceschini, A. Ferrando, and V. Mascardi. RML: theory and practice of a domain
specific language for runtime verification. Sci. Comput. Program., 205:102610, 2021.
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A Trace Adequacy

We only consider traces consistent with local evaluation and composition rules: at most one
variable update occurs between two consecutive states and the events in a trace properly record
call events, context switches, and return events.

Definition 15 (Trace Adequacy). We say τ = τ1∗∗τ2 is an adequate trace if either τ1 = τ2 = ⟨σ⟩
or τ1 is adequate and exactly one of the following holds:

1. τ2 = ⟨σ⟩↷ σ[x 7→ v]

2. τ2 = callσ( , , id), τ1 /∈
push(( ,id)), pop(( ,id)), call( , ,id)

· · · and last(τ1) ̸∈ {call, ret}

3. τ2 = retσ( ), last(τ1) ̸∈ {call, ret}

4. τ2 = pushσ((m, id)), τ1 ∈ · · · callσ(m, , id)

5. τ2 = popσ((m, id)), τ1 ∈ · · · retσ(m), currCtx(τ1) = (m, id).

Traces is the set of all adequate traces.

The second clause expresses that call identifiers are unique as well as one part of the require-
ment that call/return events are followed immediately by push/pop events. That requirement
is ensured together with the remaining clauses.

The events call and ret are always followed by push and pop respectively. Therefore they can
be the last event of a trace only if they occur at the end of the trace. This result is formalized
in the following lemma.

Lemma 1. If ⟨σ⟩, K(s)
n→ τ, K(s′) and call = lastEv(τ), or ret = lastEv(τ), then τ =

· · · calllast(τ) or τ = · · · retlast(τ), respectively.

If τ, K(s)
∗→ τ ′, K(s′) in exactly n steps then we write τ, K(s)

n→ τ ′, K(s′).

Lemma 2. Given a program s, if ⟨σ⟩, K(s)
n→ τ, K(s′) then τ is adequate.

Proof. We prove the lemma by induction on n, i.e. on the number of applications of composition
rules.

Base case (n=1). For non trivial programs, s has the form “x d; r”, i.e. at least a variable
x is declared. Otherwise, assignment and procedures calls cannot occur. Therefore if n = 1
then the rule applied is the progress rule.

⟨σ⟩, K(x d; r)→ ⟨σ⟩↷ σ[x 7→ 0], K(d; s)

where ⟨σ⟩↷ σ[x 7→ 0] satisfies condition (1) of Def. 15.

Inductive Step. Let’s assume as IH that ⟨σ⟩, K(s)
n→ τ, K(s′) with τ adequate and s′ ̸= .

Let also σ′ = last(τ). There are three main cases:

• τ = τ ′∗∗callσ′(m, , i): condition (4) is satisfied since applying call rule we have
τ, K(s′)→ τ ′∗∗callσ′(m, , i)∗∗pushσ′((m, i)), K(s′′)

• τ = τ ′∗∗retσ′( ): condition (5) is satisfied since applying return rule we have

τ, K(s′)→ τ ′∗∗retσ′( )∗∗popσ′((m, id)), K(s′′)

where currCtx(τ ′) = (m, id) by definition.
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• τ ̸= τ ′∗∗callσ′ and τ ̸= τ ′∗∗retσ′ : the progress rule applies and we have three cases

– ⟨σ⟩, K(s)
n→ τ, K(x := m(e); r)): a call with a fresh call identifier is generated.

Since, by Lemma 1 we have that last(τ) ̸∈ {call, ret} condition (2) is satisfied.

– ⟨σ⟩, K(s)
n→ τ, K(return e; r)): a ret is generated. Since, by Lemma 1 we have that

last(τ) ̸∈ {call, ret} condition (2) is satisfied.

– Otherwise we have τ, K(s′)
n→ τ ′, K(s′′)) where either τ ′ = τ adequate by IH, or

τ ′ = τ ↷ σ′[x 7→ v], that satisfies condition (1).

Therefore, given
⟨σ⟩, K(s)

n→ τ, K(s′)

with τ adequate we have

⟨σ⟩, K(s)
n+1→ τ ′, K(s′′)

where τ ′ is adequate.

Theorem 2 (Adequacy of Program Semantics). The program semantics [[s]]⟨σ⟩ is an adequate
trace for any state σ and terminating program s.

Proof. From Lemma 2 it follows that given a program s if ⟨σ⟩, K(s)
∗→ τ, K( ) then τ is

adequate. In other words [[σ]]s is adequate.

B Selected Update Simplification Rules

We provide some of the needed update simplification rules:

elimUpdate1
Γ ⊢ U : Φ, ∆ Γ ⊢ U{x := e}φ, ∆

Γ ⊢ U{x := e} : Φ · ⌈φ⌉, ∆

elimUpdate2
Γ ⊢ U : Φ, ∆ Γ ⊢ ((Ue) boolOp e′) ∧ (Ui) .

= i′, ∆

Γ ⊢ U{resi := e} : Φ ∗∗⌈resi′ boolOp e′⌉, ∆

elimUpdate3

Γ ⊢ U : Φ, ∆
Γ ⊢ (Ue) .

= e′, ∆

Γ ⊢ U{ev(e)} : Φ ∗∗ev(e′), ∆

subsumeUpdates1
Γ ⊢ U1 : Φ, ∆

Γ ⊢ U1U2 : Φ
m··, ∆

if U2 does not contain any
update dependent of m

In elimUpdate2 boolOp is a placeholder for boolean operators, as “
.
=” or “>”.
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