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Abstract

We present the design philosophy of a proof checker based on a notion of foundational
proof certificates. At the heart of this design is a semantics of proof evidence that arises
from recent advances in the theory of proofs for classical and intuitionistic logic. That
semantics is then performed by a (higher-order) logic program: successful performance
means that a formal proof of a theorem has been found. We describe how the AProlog
programming language provides several features that help guarantee such a soundness
claim. Some of these features (such as strong typing, abstract datatypes, and higher-order
programming) were features of the ML programming language when it was first proposed
as a proof checker for LCF. Other features of AProlog (such as support for bindings,
substitution, and backtracking search) turn out to be equally important for describing and
checking the proof evidence encoded in proof certificates. Since trusting our proof checker
requires trusting a programming language implementation, we discuss various avenues for
enhancing one’s trust of such a checker.

1 Introduction

A range of computational systems that prove that certain formulas are, in fact, theorems are
in regular use today. Such systems range from interactive theorem provers to model checkers,
type checkers, and static analyzers. Generally, these systems produce proof evidence in many
and varying formats for classical and/or intuitionistic logics.

It is increasingly recognized that such proof systems need to be able to communicate proofs
and to find some means to trust each other. One approach to making such communications
possible is to build a particular technological bridge between two specific provers so that proofs
from one system can be exported to the other system in such a way it can be checked and
trusted. See, for example, [§] where an SMT prover was modified to output its proof evidence
as proof scripts that Isabelle could then execute and trust. A similar approach is done with
SMTCoq [2] for the type-theory based proof assistant Coq. Other approaches exist: for example,
the OpenTheory project [I3] attempts to provide a framework where various HOL theorem
provers can share proofs.

In this extended abstract, we report on a multi-year effort to design, define, and check
foundational proof certificates. In this setting, we emphasize a technology-free description of
proof evidence making use of basic results and designs taken from the proof theory of sequent
calculus d la Gentzen and Girard. Recent results in the theory of focused sequent calculus proofs
are used to build the elements of our framework. We also discuss the design of our certificate
checker that exploits higher-order logic programming (specifically AProlog [1]]).
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2 Trustworthy communication of theorems and proofs

Our main concern here is to communicate the validity of theorems by the transmission of proof
evidence from one machine to another machine in such a way that the human operators of these
machines can check and trust the transmitted proof. Thus, we remove the human from any
interesting involvement with the transmitted proof itself: for example, we are not concerned
with whether or not a human can understand the structure of such proofs. While having humans
read and learn from machine proofs is an interesting and important topic, we set aside that
topic for the more narrow and, hopefully, solvable problem of having machines read and check
each other’s proofs.

It seems difficult to develop trust in theorem provers and model checkers by completing
large scale formal proofs of them. It also seems undesirable to do so given that such systems
are often evolving and incorporate experimental concepts for which formal correctness may
not be established. Instead, one can turn towards checking their individual outputs, i.e., their
claims that certain “proof evidence” exists for a given proposed theorem. One solution could
be to have, for every kind of output (and, possibly, for every software version of a prover), a
specific proof checker. For example, Coq makes use of a small, trusted kernel for checking proof
evidence generated by other parts of that system. Similarly, one can increase confidence in a
SAT solver by checking the proofs that they output [6]. While it is probably desirable for every
theorem prover to contain a trusted kernel that always checks its proof claims, one still has the
problem that there are many checkers to trust and that one is still not addressing the need to
communicate proof evidence between provers.

Instead of living with a proliferation of proof formats and proof checkers, we propose to
explore to what extent we can take a foundational—instead of technological—approach to
proof checking. After all, logic and proof have been studied for a long time (longer than, say,
context-free grammars and parsing) and that literature is mature and contains a number of
deep results backed-up with a lively research community. Furthermore, symbolic logic and
proof theory have always purported to deal with the eternal and universal structures behind
reasoning.

2.1 Size of the proofs

An important aspect of proofs that makes communicating and trusting them difficult is their
size. While the size of formal proofs can vary a great deal among various provers and application
domains, formal proofs will almost always be too large for humans to check with confidence.
Thus, machines will need to do such checking. There is also evidence that in some settings,
the size of proofs can be a challenge for their transmission and storage: the literature on proof
carrying code (e.g., [22]) is shaped partly by the need to address large proof objects.

One way to address the problem of communicating and checking such large objects involves
allowing a trade-off between explicit proofs and proof reconstruction. A common principle
involved with reducing the size of proofs is the Poincaré principle (formulated by Barendregt
and Barendsen in [3]): traces of computation should not be included in a proof. One expects,
instead, the checker to redo computations which implies that the checker must incorporate into
its trusted base a programming language implementation with all its associated components
(parsers, printers, compilers, garbage collectors, etc). The Poincaré principle is not, however,
without problems: for example, if the elided computation comes from a complex algorithm then
either that algorithm is implemented outside the checker (thus augmenting the trusted base for
each such algorithm) or it is coded within the proof checker as a naive computation that will
likely run for too long.
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A more interesting approach might be to find ways to handle huge proofs efficiently, which
can be done both in a practical way using, for instance, incremental checking as proposed in [24],
and in a theoretical way by designing certificates that can be recognized in deterministic log
space (e.g., the RUP format for proofs of unsatisfiability [27]).

2.2 Proof reconstruction

Besides leaving out computation, a proof can be further reduced by replacing details, such as
“shallow” subproofs or (potentially large) witnesses, with “holes”. Filling in those holes can be
done by the checker using features such as unification and (bounded) backtracking proof search.
For example, instantiating a quantifier in a proof is a small step but describing the substitution
term might involve a lot of space. On the other hand, a proof checker using unification might
easily determine an appropriate term from context. Similarly, if the checker also involves
(bounded) backtracking search, then many small subproofs might well be reconstructed from
context, thereby removing the need to insert those subproofs explicitly into the proof certificate.

Given that proof checking will involve performing general computations and proof recon-
struction, it seems natural to use logic programming—where unification and backtracking search
are central—to build sound and flexible proof checkers. Such a conclusion is certainly not sur-
prising given that relational programming can easily be seen as a generalization of functional
programming and given that many key concepts of proof systems are relational, the central one
being the most basic relationship M : A between a term (proof) and a type (formula).

3 Proof checking as (logic) programming

While the first automated proof checker was Automath [7], the ML programming language
was the first programming language designed to provide a flexible framework for writing proof
checkers [10]. This functional programming language has lead to the implementation of the
LCF-family of tactics and tacticals that are at the core of many interactive theorem provers.
We argue here that logic programming, as opposed to functional programming, is a good choice
for doing the kind of proof checking we have described: this is particularly true when the logic
programming language chosen is AProlog [18].

3.1 Important programming language features

Below we list various aspects of programming languages that are important for the construction
of trusted proof checkers. The first three of these features are present in LCF /ML while all five
are present in AProlog.

Strong static typing. In ML, it is possible to describe a type thm of theorems. This type
can be built using constants representing axioms (of type thm) and functions of type, say,
thm -> thm -> thm denoting a binary inferences rule (such as modus ponens). Thus modeling
proofs on the familiar Hilbert-Frege style of proof is easy to capture in ML via its static type
checker and type preservation property. While the role of types is rather different in logic
programming (see [I8] for a discussion of these differences), simple types are also important
in AProlog since they are used to denote “syntactic categories” such as formulas, terms, and
certificates as well as categories such as “a term-level abstract over formulas” by a type such
as term -> form. In this setting, capturing the notion that = is a proof of formula B or the
notion that a formula is a theorem is done not by types but by predicates (central to all logic
programming).
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Abstract datatypes. In the LCF/ML approach to proof checking, the type thm needs to
be protected in the sense that only authorized primitive functions can construct members of
type thm. In order to enforce this, ML allows this type to be an abstract datatype, which
means that the constructors of that type are available to only certain, privileged functions. For
example, functions that compute directly with axioms and inference rules can be placed into
this abstract type and can be given access to the constructors of thm. Any other function that
can build theorems must use these privileged functions. In a similar way, the abstract datatypes
of AProlog allow one to define constructors for sequents, to allow certain clauses to describe
how provability of some sequents are able to infer provability of other sequents (encodings of
inference rules), and then to forbid any other clauses from using this sequent constructor. In
this way, the rules of inference are sealed from “code injection attacks”.

Higher-order programming. The ability to manipulate functions (in ML) and relations
(in AProlog) as first-class objects is not only a powerful programming feature but also makes
abstract datatypes far more useful. For example, if a multiset is an abstract datatype, then a
natural way to manipulate such a structure is via higher-order programs for, say, applying a
certain operation to all elements of a multiset or for selecting elements from a multiset depending
on a given predicate.

Backtracking search and unification. While functional programming languages can ac-
commodate these features, they are an essential and central aspect of logic programming. The
implementation of these two features has always been a part of the trusted core of logic pro-
gramming implementations. While historically some Prolog implementations did not provide
sound unification (since they did not implement the occurs-check within unification), most
modern Prolog systems provide a way to turn this check on. Implementations of A\Prolog have
always implemented sound unification.

Bindings. A proof checker for first-order (quantificational) logic needs to treat syntax with
binders. Thus it must handle operations such as checking for equality modulo A-conversion,
instantiating quantifiers, treating eigenvariables and their associated restrictions, and unifying
terms and formulas. In particular, AProlog implements the A-tree approach to higher-order
abstract syntax [18].

3.2 Logic foundations for these features

All the features described above are present in one logical system, namely a fragment of the
intuitionistic version of Church’s 1940 Simple Theory of Types (STT). In order to understand
(and implement) what entailment involving AProlog programs should be, one simply needs to
understand intuitionistic reasoning in STT. A large literature also exists that describes that
logic and various ways to implement it, e.g., goal-directed search [19], higher-order unifica-
tion [12] [16], backtracking search [20], term representation to support efficient A-reduction and
unification [21], etc. While a particular implementation of logic programming is a particular
piece of technology, that logic programming language and the checker implemented in it are
not tied to that technology. Anyone familiar with the above mentioned literature of logic and
algorithms for implementing logic can build their own foundational proof checker. Other proof
systems, such as Isabelle and Twelf, make use of a similar intuitionistic foundation. As we shall
argue in Section[5] such a declarative and mature foundation can be a great asset in establishing
trust of a proof checker.
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4 The checker’s architecture

Our approach to certificate checking is based on three components—the kernel, the client, and
the clerks and experts—described in more details below.

The kernel is a AProlog implementation of the LKU focused proof system [I5]. Formulas
in LKU contain a mix of classical and linear logic connectives and (first-order) quantifiers.
Unrestricted, LKU is essentially a verbose presentation of the focused classical logic LKF [14].
The LKU proof system allows for various restrictions to be placed on its structural rules.
One set of restrictions (reminiscent of Gentzen’s restricting of classical inference rules to only
single-conclusion sequents) gives rise to the LJF [14] focused proof systems for intuitionistic
logic. Another set of restrictions (reminiscent of Girard’s restricting of classical inference rules
so that weakening and contraction are not available) gives rise to a focused proof system for
(multiplicative-additive) linear logic [I]. Thus this one kernel can capture focused proof sys-
tems in these three logics. Even if one uses LKU only to capture classical and intuitionistic
proofs, aspects of linear logic still play an important role in LKU. For example, Gentzen’s
characterization of an intuitionistic sequent as having only a single conclusion is captured, in
part, by forbidding contraction of formulas on the right of the encoded sequent: LKU treats
this restriction by mixing classical and linear logic connectives. Furthermore, formulas whose
introduction rules are invertible (in both classical and intuitionistic proof systems) are treated
as purely linear within LKU: that is, they are never contracted nor weakened. The linear logic
aspects of LKU allow a simple treatment of this important aspect of invertible formulas.

The client of the checker is the programmer of a theorem prover who would like to export
a proof for checking. The client will not need to know the specifics of our checker: that is, she
will not need to know that it is based on a focused sequent calculus or that it is implemented
in AProlog. The hope is, instead, that the client will be able to “pretty-print” her proof
evidence into a document that can then be checked. Significant effort by the client should not
be necessary to transform internal justifications for provability into some strikingly different
format. For example, if the client is a resolution refutation prover, the document output for
checking should be something familiar, such as a list of numbered clauses as well as a list of
triples describing which two clauses resolve to yield a third.

In order to translate the information in the client’s proof certificate into instructions to
drive the kernel’s inference rules, we use a third component composed of clerks and experts [4].
An analogy might succinctly convey the spirit of this component of checking. Imagine an
accounting office that needs to check that a certain mound of financial documents (provided by
the client) represents a legal transaction (as judged by the kernel). The office workers called
experts are given the responsibility of looking into the mound and extracting information: they
must decide into which series of transactions to dig and they need to know when to release their
findings for storage and later reconsideration. On the other hand, the clerks are responsible
for taking information released by the experts and performing some computations on them,
including their indezing and storing. The justification of this division of effort between clerks
and experts comes from the structure of focused sequent proof systems [I, 14, [I5]: experts
operate during the synchronous phase of proof construction while the clerks operation during
the asynchronous phase. Furthermore, the vocabulary of decide, release, and store is reused
as structural rules within the focused proof system. The actual definition of a proof certificate
format essentially amount to describing a flow of work between the experts and the clerks. Such
a work-flow is defined using small AProlog programs that define predicates that interface with
the kernel. That interface has been designed so that no matter how badly coded the clerks and
experts are, the soundness of the kernel is never compromised.
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The current implementation of our proof checker can be found at https://team.inria.
fr/parsifal/proofcert/.

5 Avenues to trust

We would like to be able to claim that our checker is sound: that is, if our checker succeeds in
checking a proof certificate for a formula B from some client, then B is a theorem. Trust in
such a claim is built around many elements, so we break this claim into smaller elements.

First, we must trust the logic programming language implementation and the many things
on which it depends. In our current setting, we rely on the correctness of the Teyjus implemen-
tation [26] of AProlog (which is itself implemented in OCaml and C) and a host of associated
computing subsystems: printers, parsers, compilers, garbage collectors, hardware processors,
etc. Pollack’s paper [23] explores many of the trust aspects of such components when applied
to proof checking.

Second, one must trust that the LKU proof system [I5] is, in fact, correct in its claim of
representing proofs for classical, intuitionistic, and linear logics. Since developing trust in a
mathematical text is a familiar problem to academics, we do not elaborate on this here.

Third, one must trust that our logic programming implementation of LKU is correct and
that there is no way for “malicious” experts and clerks to “attack” our kernel. The AProlog
programming language provides many features that make it easy to trust this aspect of cor-
rectness: (i) Bindings, eigenvariables, and substitutions are implemented within the language
and with great care for their correct treatment. (i4) Sequent calculus inference rules (such as
those in LKU) naturally correspond to Horn clauses so it is easy to examine whether or not a
set of Horn clauses correctly captures a proof system. (iii) By exploiting abstract datatypes,
it is possible to close the set of inference rules so that no attacker can add new inference rules
to the kernel. Finally, the interface between the kernel and the clerks and experts is via a set
of predicates which are defined via AProlog clauses. Furthermore, these predicates are used
only as premises to the clauses specifying the various LKU inference rules. As a result, it is
a relatively easy matter to verify that our AProlog source files do indeed implement our LKU
kernel in a sound fashion.

We would also like to insist that by employing declarative techniques in specifying a proof
checking kernel, we are adhering to a proven approach to writing trustworthy software. Con-
sider, by analogy, writing a parser for some programming language. Often one tries to construct
such a parser in two distinct steps. First, one declares the lexical structure (using techniques
from finite state machines) and grammar (using techniques from context-free language theory).
Given these specifications, one then uses tools—such as lex and yacc—that generate code that
actually tokenizes and parses input strings. Of course, these tools are complex but since they
are so commonly used, since their formal foundation is well understood and documented, and
since a number of people depend on them to be correct, parsers achieved by this route are often
considered more trustworthy than if one implements a parser by hand. The architecture behind
our proof checking system similarly relies on declarative specifications (of inference rules and
of the clerks and experts) since their semantics is clear (by being founded on logic). The many
other tools on which we rely (such as Teyjus) are used by a number of other people for different
tasks and usually with similar concerns for correctness.

We have discussed only the soundness of proof checking. If one provides a resolution refu-
tation as a proof certificate for some formula B (the paper [4] describes how this can be done),
the only conclusion we can claim from a successful run of the kernel is that B is a theorem. The
kernel makes no claim that the certificate is, in fact, a proper resolution refutation. Specific
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knowledge of how the clerks and experts work is needed to provide such a guarantee. The
specific resolution checker that was presented in [4] will accept all resolution refutations (with
factoring) but will accept more things than are officially defined as resolution steps. Of course,
the additional items that are accepted are still sound proof evidence even if they are not proper
resolution steps.

6 Related and Future Work

There are many projects trying to get different theorem provers to communicate proofs and a few
of these have the goal of being universal. One of these is Dedukti [25] which aims at capturing all
intuitionistic proofs using All-calculus modulo as its foundation [5]. While Dedukti separates
computation from deduction (the former is not part of a certificate but is executed by the
checker), it does not support directly the possibility of doing (bounded) proof reconstruction.
It is also not clear whether or not such an intuitionistic framework will treat classical logic
well. One can always use the excluded middle as an assumption within intuitionistic logic but
this means that instances of the excluded middle axiom must be part of the certificate. Also
the use of axioms leads one away from truly analytic proof theory in which subformulas of a
conjectured sequent are needed for consideration within (cut-free) proofs. Also in the general
area of enhancing intuitionistic proof representations for checking, there is also recent work on
extending the MI-calculus with side conditions [24] and with external predicates [11].

The proof checker described here is currently restricted to first-order logic: we are planning
to extend this work to include proof checking in logics with least and greatest fixed points as
well as higher-order quantification. We also hope to eventually extend this kind of checking to
both partial proofs and counterexamples [I7]. In order to increase confidence in various aspects
of our existing checker, we plan to undertake some formal proofs involving our code in the
Abella prover [9]. From the efficiency point of view, as of now, it is not yet clear how effective
our current software architecture will handle large proof certificates or intensive checker-side
computations. Teyjus is currently under development in anticipation of some of these potential
problems.
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