
EPiC Series in Computing

Volume 54, 2018, Pages 208–217

ARCH18. 5th International Workshop on Applied
Verification of Continuous and Hybrid Systems

Verification Challenges in F-16 Ground Collision Avoidance

and Other Automated Maneuvers

Peter Heidlauf1, Alexander Collins1, Michael Bolender1, and Stanley Bak2

1 Air Force Research Laboratory, Aerospace Systems Directorate
{peter.heidlauf.1, alexander.collins.3, michael.bolender}@us.af.mil

2 Safe Sky Analytics
stanleybak@gmail.com

Abstract

Benchmark Proposal: The F-16 Fighting Falcon is a highly-maneuverable aircraft in
production since the 1970s. Since then, several studies and books have investigated the
aircraft’s performance and created simulation models. In this paper, we present some of
these models as a verification challenge, providing MATLAB and Python code to simulate
an F-16 performing ground collision avoidance as well as other autonomous maneuvers.
The aircraft model and inner-loop controller has 16 continuous variables with piecewise
nonlinear differential equations. Autonomous maneuvers are performed by an outer-loop
controller using finite-state machines with guards involving the continuous variables. Pass-
fail specifications are provided based on the aircraft flight limits and boundaries of the
model. This model aims to be a starting point for analyzing detailed behaviors of aerospace
systems.

1 Introduction

Continuous and hybrid system verification models strive to analyze safety-critical systems gov-
erned by predictable continuous dynamics and possibly discrete logic. Aircraft dynamics and
performance are prime examples for verification as they are clearly safety-critical and can be
modeled with ordinary differential equations. Verification involving aircraft motion [8, 5], how-
ever, has often been done on very simplified models which, for example, assume aircraft are
point masses or follow Dubins paths [1].

This benchmark presents simulation code for the next level of complexity for aircraft models,
based on the well-studied F-16 system. The aerospace engineering models we present here can
simulate aircraft behavior in 3D space, dealing with the position, velocity and orientation of
the aircraft.

DISTRIBUTION A: Approved for public release; distribution unlimited. Case Number: 2018-0257 (original
case number(s): MSC/PA-2018-0056; 88ABW-2018-1310), completed on 18 Apr 2018.

G. Frehse (ed.), ARCH18 (EPiC Series in Computing, vol. 54), pp. 208–217

Verification Challenges in F-16 Ground Collision Avoidance and Other Automated Maneuvers Heidlauf et al.

We provide both MATLAB and Python versions of the simulation code on github1. The
code simulates different scenarios, providing visualizations as well as checking specifications at
each time step.

We first present the plant and inner-loop controller models in Section 2. Then, Section 3
presents some outer-loop autonomous controllers and associated safety specifications for various
aircraft maneuvers, including automated ground-collision avoidance.

2 F-16 and Inner-Loop Controller Model

Studies as early as the 1970s characterized the performance of the F-16 aircraft [4]. The basis
of the benchmark we provide is a standard model used in aerospace engineering and described
extensively in a textbook [7]. A shortened and accessible introduction which uses the same
base model is also available [6]. Here, we provide the basic details, and strongly recommend
the interested reader access the reference material for additional model information.

We model an F-16 aircraft with 6 degrees of freedom (DoF) nonlinear equations of motion.
Three equations each are used to model the forces, kinematics, moments, and position of the
aircraft, for a total of 12 governing equations. To capture the dynamics of the F-16 turbojet
engine, a 13th equation models the thrust lag state.

Three variables define the aircraft position in a global coordinate system. We assume a flat-
earth model, thus the position variables are northward displacement pn, eastward displacement
pe, and altitude alt. This is referred to as the north-east-down, or NED reference frame. This
reference frame is commonly used in aircraft dynamics to ensure right-hand orthogonality with
the aircraft nose, right wing, and landing gear defining the body-frame axes. The altitude
variable is inverted for ease of use.

The velocity of the aircraft is defined by the air speed Vt, angle of attack α, and angle of
sideslip β. See Figure 1 for a visualization of these parameters.

Three more variables, Euler angles, define the orientation of the aircraft. These Euler angles
are φ, θ, and ψ, the roll, pitch, and yaw angles of the aircraft respectively. An additional three
variables, P, Q, and R, define the angular roll rates of the aircraft about the Euler angles.

An aircraft has four standard inputs: one for the engine throttle command δt, and three
for the main control surfaces, the ailerons δa, the elevator δe, and the rudder δr. Each of
the control surfaces can be used individually to provide moments along a different axis of the
aircraft, as shown in Figure 2. In modern aircraft, however, the pilot does not typically provide
commands directly to the control surfaces. Instead the pilot controls the aircraft in a “fly-by-
wire” manner [2], actuating the control surfaces indirectly through an inner-loop controller.

The F-16 was designed to be slightly aerodynamically unstable in order to improve ma-
neuverability. This means that if left uncontrolled in a non-trimmed state, the aircraft will
experience increasing oscillations. To alleviate pilot exhaustion and simplify control of the air-
craft, an inner-loop controller uses two decoupled Linear-Quadratic Regulators (LQR). Integral
tracking control is applied to the upward acceleration Nz, the stability roll rate ps, and sum of
the side acceleration and yaw rate Ny + R. These three terms are commanded to produce the
desired maneuvers.

The inner-loop controller is created by linearizing the nonlinear F-16 model about a selected
steady-state trim point. The trim conditions for both the aircraft state and controls are saved for
later use. The longitudinal and lateral modes are then decoupled into two linear models, as the
cross-coupling terms are negligible, and the process of tuning the regulators is simplified. The

1The MATLAB version of the benchmark code is available at https://github.com/pheidlauf/AeroBenchVV
and the Python version is at https://github.com/stanleybak/AeroBenchVVPython.

209

https://github.com/pheidlauf/AeroBenchVV
https://github.com/stanleybak/AeroBenchVVPython

Verification Challenges in F-16 Ground Collision Avoidance and Other Automated Maneuvers Heidlauf et al.

Figure 1: The velocity variables are given in the body frame, and are defined by the air speed
Vt, angle of attack α, and angle of sideslip β. Image was taken from Seto [6].

Figure 2: The F-16 has four main inputs: the ailerons, elevator, and rudder, and the throttle
command to the engine. Image was taken from Seto [6].

decoupled longitudinal mode consists of the states α and Q, the elevator input, and the outputs
α, Q, and Nz. To determine the LQR gain matrix, appropriate weighting matrices for state
error, Q, and control effort, R, are selected and tuned to achieve a desired frequency response
with a loop transfer gain crossover frequency of 10 rad/s. These desired response characteristics
are typically expected by F-16 pilots. The throttle, δt, is left under manual control of the pilot.
The decoupled lateral mode consists of the states β, P, and R, the aileron and rudder inputs,
and the outputs β, Q, R, ps, and Ny + R. Again, the LQR weighting matrices Q and R are

210

Verification Challenges in F-16 Ground Collision Avoidance and Other Automated Maneuvers Heidlauf et al.

Figure 3: The inner-loop controller takes in throttle setting δt and reference input values uref
(Nz, ps, and Ny + R), and produces actuation commands for the individual control surfaces.

tuned to achieve desired frequency response with a loop transfer gain crossover frequency of
10 rad/s. In the lateral mode, both Ps and Ny + R are controlled. In all standard maneuvers,
the Ny + R term is regulated to zero, as combinations of side acceleration and yaw rate are
undesirable by pilots. A block overview of the controller is given in Figure 3. The tuning code
is provided as part of the benchmark, in BuildLqrControllers.py in the Python repository
and BuildLateralLqrCtrl.m and BuildLongitudinalLqrCtrl.m in the Matlab version.

An improved response is possible by repeating the linearization and LQR design process at
multiple setpoints, and then interpolating the gain matrices at runtime based on the current
aircraft state. This is called gain scheduling, and is typically done based on the ratio of the
static and dynamic pressure of the aircraft, or the ratio of the airspeed and the altitude. To
simplify the benchmark controller, we did not implement gain scheduling.

The inner-loop controller, which takes in the commands for Nz, ps, and Ny + R, uses an
integrator for each to eliminate steady-state error. These integrators add three more states to
the aircraft model, bringing the total number of variables to 16. A summary of the variables,
in the order they are used in the benchmark code, is given in Table 1.

The plant dynamics are defined by considering the forces and moments based on the aircraft
orientation and flight environment. Rather than using a first-principles design which would
depend on intricate details of the shape of the surfaces of the aircraft, aerospace engineers often
instead build an aircraft (or a scaled model of an aircraft), and then use a wind tunnel to measure
the lift, drag, and various moments experienced for different angles of attack α and sideslip β.
To simulate the system, this data is used to create look-up tables that are interpolated at
runtime. This sort of setup makes the right-hand side of the differential equations non-smooth.
Our benchmark code can use either this look-up table version to compute the aerodynamic
coefficients (the Stevens model [7]), or a polynomial fit computed from the look-up table data
(the Morelli model [3]).

211

Verification Challenges in F-16 Ground Collision Avoidance and Other Automated Maneuvers Heidlauf et al.

Table 1: State Variables in the Aircraft Model and Inner-Loop Controller

Variable Symbol Meaning

x[0] Vt Air Speed
x[1] α Angle of Attack
x[2] β Angle of Sideslip
x[3] φ Roll
x[4] θ Pitch
x[5] ψ Yaw
x[6] P Roll Rate
x[7] Q Pitch Rate
x[8] R Yaw Rate
x[9] Pn Northward Displacement
x[10] Pe Eastward Displacement
x[11] alt Altitude
x[12] pow Engine Power Lag
x[13] Nz (integrator) Upward Accel
x[14] Ps (integrator) Stability Roll Rate
x[15] Ny + r (integrator) Side Accel and Yaw Rate

There are other sources of complexity in the dynamics that make the ODEs non-smooth. For
example, the engine performance is a function of the dynamic pressure and the Mach number,
which depends on the density of the air, the speed of the aircraft, and the speed of sound. The
speed of sound depends on the temperature, which will depend on the weather as well as the
altitude. The relationship between temperature and altitude is linear up to the stratosphere
(about 36000 feet), where it basically becomes constant. Further, the engine power is also
qualitatively different depending on whether the throttle is below or above 70%, which is when
the afterburner becomes active. Finally, the engine model also uses look-up tables derived from
empirical data as part of its power calculation, which is likely simpler than a first-principles
model of an aircraft engine.

The aircraft state is most easily updated in the body frame, but the position needed for
verification is given in terms north-east-down coordinates. Sine and cosine therefore need to
be used in the dynamics in order to convert between the body frame and the north-east-down
frame. This could be made more complicated without assuming a flat-earth model, using an
earth-centered inertial (ECI) frame, which would require a further conversion. For simplicity,
we do not do this in the benchmark code. Portions of the model use degrees, so conversions to
radians are sometimes needed as well.

To further complicate matters, the F-16 is an American aircraft, so its design, control,
and simulation is most often done in imperial units. Temperature in the model, for example, is
measured in degrees Rankine, an absolute scale for Fahrenheit comparable to the Kelvin-Celsius
relationship.

212

Verification Challenges in F-16 Ground Collision Avoidance and Other Automated Maneuvers Heidlauf et al.

Table 2: Verification Cases for Engine Controller

Case Initial Altitude alt (ft) Initial Speed Vt (ft/sec) Setpoint sp (ft/sec)

1A 10000 1000 [1200, 1220]
1B 10000 1100 [1200, 1220]
1C 10000 [1000, 1100] [1200, 1220]
1D [10000, 11000] [1000, 1100] [1200, 1220]
1E 20000 1000 [2200, 2220]
1F 40000 1000 [2200, 2220]
1G [20000, 40000] 1000 [2200, 2220]
1H [5000, 30000] [1000, 2000] [1000, 2000]

Figure 4: A plot of the simulation from Case E of the the engine control benchmark meets the
settling time specification.

3 Outer-Loop Control Automation and Specifications

We now present three categories of verification problems that use the F-16 plant and inner-loop
controller model. For each specification, it could be considered using either the look-up table
version of the dynamics (Stevens), or the polynomial interpolation version (Morelli).

3.1 Easy: Engine Control (2 Variables)

The first benchmark examines the engine performance under fixed conditions. The model uses
only two variables: the air speed Vt, and the engine power lag state pow, with all other variables
fixed to constants (which may be parameters). Proportional control is done on the air speed
Vt to drive it to a setpoint, using the throttle input. We consider a settling-time specification
for this system: can you achieve within 5% of the desired setpoint within 60 seconds? The
specification can be considered for various initial altitudes alt, speeds Vt, and setpoints sp, as
shown in Table 2.

Although simulations can likely detect violations of some of the specifications, since the
model is nonlinear, sampling values within the ranges is likely insufficient to guarantee the
absence of violations without further reasoning.

213

Verification Challenges in F-16 Ground Collision Avoidance and Other Automated Maneuvers Heidlauf et al.

Table 3: Verification Cases for Longitudinal Dynamics

Case Initial States

2A-2H Same as 1A-1H using the airspeed controller and specs
2I Vt = 560, alt = [550, 560], sp=500
2J Vt = 560, alt = [590, 600], sp=[500, 505]
2K Vt = [560, 600], alt = [590, 600], sp=[500, 505]
2L Vt = [560, 500], alt = [600, 500], sp=[700, 800]
2M-2P Same as 2I-2L with α = [−0.1, 0.1], θ = α, Q = [-0.1, 0.1]

Figure 5: A simulation of the longitudinal model violates the g-limit specification (Nz goes
below -2 at time 0.5).

This problem can be simulated and plotted using check engine.py within the benchmark
code. An output of running the script for a value in Case E is shown in Figure 4. Running
the script in the case produces the output in the terminal: Simulation Conditions Passed:

True.

3.2 Medium: Longitudinal Control (7 Variables)

The longitudinal dynamics of an aircraft model the up-down movement without the side-to-side
dynamics (see Figure 2). Thus, in this model, we assume the aircraft is flying straight without
any roll or yaw. The inputs considered are the engine throttle and the elevator. This model
uses 7 state variables: the air speed Vt, angle of attack α, pitch angle θ, pitch rate Q, altitude
alt, engine power lag pow, and the Nz integrator.

The main specification we check is that the g-force experienced by the pilot remains within
the range [−2, 9]. If the aircraft experiences g-forces outside of this range, structural integrity
may be compromised, requiring grounding of the aircraft for extensive inspections and servicing.
Additionally, if the upper threshold of g-force is exceeded for more than a short time, blood
can rush away from the pilot’s brain causing greyout (loss of color vision), tunnel vision (loss
of peripheral vision), blackout (complete loss of vision), and eventually G-LOC (temporary
loss of consciousness). On the other end, large negative g-forces are extremely uncomfortable
for pilots (imagine the feeling of descending on a commercial flight) and can cause excessive

214

Verification Challenges in F-16 Ground Collision Avoidance and Other Automated Maneuvers Heidlauf et al.

Table 4: Verification Cases for GCAS system

Case Initial States

3A-3P Same as 2A-2P using the 16-dimensional model
3Q alt = [3600, 3700], xcg ±5%
3R Same as 3Q with φ = [0, π4]
3S Same as 3R with θ = [− 3π

5 ,−
2π
5]

3T Same as 3S with xcg ±25%
3U xcg ±5%, cxt, cyt, czt, clt, cmt, cnt ±40%
3V Same as 3U and 3R
3W Same as 3U and 3S
3X cxt, cyt, czt, clt, cmt, cnt ±40%
3Y cxt, cyt, czt, clt, cmt, cnt ±45%
3Z clt, cmt, cnt ±55%

blood pressure in the brain and eyes, leading to redout (blood entering the field of vision).
The asymmetric range on safe g-forces is the reason why, when F-16 pilots want to reduce
their altitude, they prefer to roll the aircraft upside down and pull back, experiencing positive
g-forces, rather than directly pitching the nose downward, which would cause a negative g-force.

The outer-loop logic we use for this model is a simple altitude hold controller that tries to
guide the aircraft to a specific altitude. If the difference between the initial altitude and target
altitude is too large, the g-limit can be exceeded. An example of such a violation, produced by
the check longitudinal.py simulation code, is shown in Figure 5.

The longitudinal model can also be used to check the earlier engine specifications, now with
the additional dynamics that will account for altitude changes. A table of specific verification
cases for this model is given in Table 3. Unless specified, initially all of the other seven state
variables in the model are 0.

3.3 Hard: Ground-Collision Avoidance (16 Variables)

A recent upgrade to modern F-16s is an automated ground collision avoidance system (GCAS).
The system was developed by Lockheed Martin, NASA, and the Air Force Research Labora-
tory2. As of the start of 2018, the system has been confirmed as saving six aircraft (at least
$25 million each) and seven lives.

The GCAS system detects when a ground collision is imminent and performs a recovery
maneuver. This can happen for a number of reasons. As mentioned before, due to the high
maneuverability of F-16s, during high-speed turns the g-forces can cause blood to rush away
from a pilot’s head and cause the pilot to pass out (G-LOC). If the aircraft happens to turn
towards the ground when the pilot is passed out, a ground collision may result. A first-person
video of this situation happening during a training mission, and the GCAS system saving the
pilot’s life, has recently been declassified3.

2This academic benchmark code and recovery logic are in no way connected to the code or methodology
used for the real GCAS system.

3http://aviationweek.com/air-combat-safety/auto-gcas-saves-unconscious-f-16-pilot-
declassified-usaf-footage

215

http://aviationweek.com/air-combat-safety/auto-gcas-saves-unconscious-f-16-pilot-declassified-usaf-footage
http://aviationweek.com/air-combat-safety/auto-gcas-saves-unconscious-f-16-pilot-declassified-usaf-footage

Verification Challenges in F-16 Ground Collision Avoidance and Other Automated Maneuvers Heidlauf et al.

Figure 6: The check gcas.py script can produce an animation of the GCAS recovery maneuver.

A simplified version of the GCAS recovery maneuver can be modeled as a state machine.
The aircraft first rolls until the wings are level, then begins a 5-G pull up until the nose is
above the horizon, at which point control is returned to the pilot. In the benchmark, we also
have a short time delay before the maneuver begins. The final verification problem uses the full
16-variable model (all the variables listed in Table 1) to check if a recovery can be guaranteed.

The main specification is that the aircraft stays above the ground (in this case alt ≥ 0),
although other limits on variables check that the aircraft model remains valid. Further, as
before, the full model can also be used for checking the earlier specifications. For cases 3A-3P,
assume unspecified state variables are initially zero. For 3Q and later, unless specified, use the
initial states pow = 9, α = 2.1215 degrees, alt = 3600, Vt = 540, φ = π

4 , θ = − 2π
5 , ψ = −π

4 .
Some cases consider variations on the model. In particular we consider variations on the x
position of the center of gravity xcg, which is normally 0.35 in the model. We also consider
modifying the aerodynamic force and moment coefficients, cxt, cyt, czt, clt, cmt, cnt, since
those elements are approximations computed from interpolating look-up tables and may vary
depending on the specific payload being carried by the aircraft. In this code, these adjustments
are made in subf16 model.py, although the multipliers are exposed in the top-level script,
check gcas.py. The specific test cases are given in Table 4.

216

Verification Challenges in F-16 Ground Collision Avoidance and Other Automated Maneuvers Heidlauf et al.

An additional challenge may be to determine the boundary of when the recovery is successful,
as a function of the 16 state variables. This boundary could be used at runtime to initiate the
recovery logic.

The check gcas.py script can be used to simulate the GCAS system and check the speci-
fications. It can also produce an animation of the maneuver. Several frames of the animation
are shown in Figure 6, while the full animation is viewable on the benchmark’s github page.

4 Conclusion

We have presented three benchmark scenarios of increasing complexity dealing with various
aspects of control of an F-16 aircraft. For each benchmark, several sets of initial states were
provided, and each benchmark can be run with either the Stevens or Morelli version of the F-
16 dynamics. The code to simulate the benchmarks is available both in MATLAB and Python.

Some possible enhancements to the model would be to increase fidelity by adding sensor and
actuator models. Further, beyond the scenarios and specifications in mentioned in this paper,
the code is structured so that it can be easily modified to simulate more complex autonomous
maneuvers, or duplicated to check air-to-air collision avoidance, multi-aircraft coordination or
swarm control algorithms.

References

[1] L. E. Dubins. On curves of minimal length with a constraint on average curvature, and with pre-
scribed initial and terminal positions and tangents. American Journal of mathematics, 79(3):497–
516, 1957.

[2] C. Favre. Fly-by-wire for commercial aircraft: the airbus experience. International Journal of
Control, 59(1):139–157, 1994.

[3] E. A. Morelli. Global nonlinear parametric modelling with application to f-16 aerodynamics. In
American Control Conference, 1998. Proceedings of the 1998, volume 2, pages 997–1001. IEEE,
1998.

[4] L. T. Nguyen. Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed
longitudinal static stability, volume 12854. National Aeronautics and Space Administration, 1979.

[5] A. Platzer and E. M. Clarke. Formal verification of curved flight collision avoidance maneuvers: A
case study. In International Symposium on Formal Methods, pages 547–562. Springer, 2009.

[6] D. Seto, E. Ferreira, and T. F. Marz. Case study: Development of a baseline controller for automatic
landing of an F-16 aircraft using linear matrix inequalities (LMIs). Technical report, Carnegie-
Mellon University Software Engineering Institute, 2000.

[7] B. L. Stevens and F. L. Lewis. Aircraft control and simulation. Aircraft Engineering and Aerospace
Technology, 76(5), 2004.

[8] C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution for air traffic management: A study in
multiagent hybrid systems. IEEE Transactions on automatic control, 43(4):509–521, 1998.

217

	Introduction
	F-16 and Inner-Loop Controller Model
	Outer-Loop Control Automation and Specifications
	Easy: Engine Control (2 Variables)
	Medium: Longitudinal Control (7 Variables)
	Hard: Ground-Collision Avoidance (16 Variables)

	Conclusion

