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Abstract

Local Compatibility Matrices (LCMs) are mechanisms for computing heuristics for graph matching

that are particularly suited for matching qualitative constraint networks and thus enabling the transfer

of qualitative spatial knowledge between qualitative reasoning systems or agents. A system of LCMs can

be used during matching to compute a pre-move evaluation, which acts as a prior optimistic estimate

of the value of matching a pair of nodes, and a post-move evaluation which adjusts the prior estimate in

the direction of the true value upon completing the move. We present a metaheuristic method that uses

reinforcement learning to improve the prior estimates based on the posterior evaluation. The learned

values implicitly identify unprofitable regions of the search space. We also present data structures that

allow a more compact implementation, limiting the space and time complexity of our algorithm.

1 Introduction

Qualitative spatial relations such as those defined in the RCC8 calculus [6] have proven useful
for producing descriptions of spatial scenes that can be processed by computer programs in
contexts where precise numerical representations are either too expensive or too expressive for
the task at hand. An important task for some applications that use qualitative information is
the projection of a qualitative description from some source such as a textual description or a
sketch map onto a target such as a spatial database (see e.g. [8, 9]). Particular examples of such
applications include the SketchMapia framework for sketch based GIS interaction [20], human-
robot interaction systems [21], and knowledge transfer between artificial agents for cooperation
or learning [10].

When the qualitative descriptions are given as graphs the process of finding the best pro-
jection is called graph matching. In this work we are interested in a particular type of graph
matching where the graphs being matched are qualitative constraint networks (QCNs) [19].
This is known as the QCN matching problem (QMP) [5].

Despite the existence of the applications cited above, the QCN matching problem (QMP)
has not been addressed adequately. The design of a scalable approach for QMP remains an open
problem. A matching algorithm for QMP that took into account the semantics of the spatial
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relations being considered was presented in [23]. Their method is based on a semi-formal
definition of QMP and uses an approximation of path-consistency, called algebraic closure, to
produce heuristics for exploring the search space. We gave a formal definition of QMP in [4]
and [5] based on work in [23]. In [4] we used a metaheuristic approach to solve small instances
of QMP.

The approach by [23] mentioned above does not scale to realistic use cases such as, for
example, the case of geographic scale sketch maps with 20 to a few hundred spatial entities.
Our metaheuristic approach in [3] on the other hand has been applied to larger sketch maps
with up to 80 objects. However even the metaheuristic method we use there suffers from long-
term forgetfulness. If a solution is revisited after many intervening solutions, it is likely that
the same actions will be repeated.

In the present work we outline an approach for solving QMP that incorporates learning and
could therefore be more scalable with respect to input data sizes and variations of the matching
problem than previous methods. In particular we give a technical interpretation of the so called
local compatibility matrix (LCM) that allows a compact, information rich representation of the
state space of a QMP instance [3]. A QMP instance is associated with a system of LCMs that
can be used to efficiently compute a pair of heuristic evaluation functions e(·,·)|m and em.

We use e(·,·)|m and em to learn better heuristic estimates for exploring the search space.
The learning takes the form of SARSA updates [22] from Reinforcement Learning (RL). To
evade the curse of dimensionality, we have devised an effective prototype based state-action
value representation for the SARSA learner.

Our presentation in this paper is motivated by practical considerations. We intend to
exemplify how learning approaches can be employed in solving the QCN matching problem. To
this end, our presentation is intended to be clear enough that other researchers can implement
it. Our evaluation is performed on the sketch-to-metric map alignment problem which is of
interest to a wider community and for which data is readily available.

1.1 Sketch-to-metric Map Alignment

Sketch-to-metric map alignment is the process of grounding sketch maps within a (plani)metric
map by identifying which features in the sketch map correspond to which ones in the metric
map. The goal of sketch-to-metric map alignment is to establish correspondences of objects
identified in the input sketch map to objects in the metric map. Applications of sketch-to-metric
map alignment span all the geospatial examples cited above.

1.2 QCN Matching

A QCN, also known as a complete qualitative constraint graph, is a graph N = (N, l), where
N is a set of nodes and l : N × N → 2R is a labelling function which assigns to every pair
i, j ∈ N a label R ⊂ R called the constraint on i, j. Typically, the labels are drawn from the
powerset of atomic relations over a spatial domain (e.g. the set of RCC8 relations: DC, EC,
PO, EQ, TPP , TPPI, NTPP , and NTPPI). A label R′ is said to be a refinement of a label
R if R′ ⊂ R and a QCN Q is said to be refined to a QCN Q′, written Q′ ≤ Q, if any of Q’s
labels are replaced by any of their refinements to obtain Q′.

A QCN N is said to be consistent if there exists an assignment of objects from the spatial
domain being represented to the nodes of N such that for every pair of the objects the relation
containing the pair is an element of the constraint on the corresponding pair of nodes. A QCN
is algebraically closed (or simply, closed) if every restriction to three nodes is consistent [15, 14].
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The disjoint union of N and N ′ = (N ′, l′) is N ]N ′ = (N ∪N ′, l′′) where

l′′(i, i′) =

 l(i, i′) if i, i′ ∈ N
l′(i, i′) if i, i′ ∈ N ′

R otherwise

An arc from N to N ′ is called a joining arc. Let Id be the identity relation in R. That is,
Id consists of object pairs (a, b) that cannot be distinguished by the relations in R. Let IN
denote the arcs of N labelled with Id. The QCN matching problem is the problem of finding
refinements of the joining arcs that maximize the number of those arcs labelled with the identity
relation such that the resulting QCN is algebraically closed. Where algebraic closure decides
consistency, this formulation of QMP guarantees that a solution is still attainable even in the
presence of uncertain information.

Definition 1. QMP (N ,N ′): find M≤ N ]N ′ such that

1. M is algebraically closed, and

2. for any closed M′ ≤ N ]N ′, |IM′ | ≤ |IM|.

The relationships between QMP and the maximum common subgraph problem [12] as well
as experience from [16, 2, 23, 4] suggest that QMP is a difficult problem and it is doubtful
that polynomial algorithms can be devised for it. This has motivated work into heuristic and
metaheuristic solutions to QMP including the present work.

In this work we consider a simple local search scheme with a prohibition mechanism known
as a tabu list [11]. At each iteration our algorithm can perform one of two actions: an ADD
move adds a pair of matched nodes to the current solution and a DROP move removes a pair
from the current solution.

The remainder of this paper is organised as follows. We first introduce LCMs and the two
heuristic functions in Section 2. The extension to learning is detailed in Section 3. In Section 4
we describe an efficient algorithm and data structures for representing and exploiting LCMs in
QCN matching algorithms followed by a brief evaluation of our method in Section 5. We close
the paper with some concluding remarks in Section 6.

2 LCM based Heuristics for QCN Matching

Local compatibility matrices [3] are an alternative to the standard 0–1 compatibility matrices [7]
which make explicit use of the edge labels from the input graphs. The idea is to obtain a more
general representation of compatibility between pairs of nodes that supports direct exploitation
of labels in the input graphs during the matching itself.

2.1 Local Compatibility Matrices

A compatibility matrix for the matching problem QMP (N , N ′) has for every two pairs (i, i′)
and (j, j′) of nodes, with i, j ∈ N and i′, j′ ∈ N ′, two cells containing the value c[l(i, j),l(i′, j′)],
for some compatibility function1 c[·,·] on 2R. Rows and columns are indexed by the node pairs
such that c[l(i, j),l(i′, j′)] is the value at the intersections of row (i, i′) and column (j, j′) and
vice-versa. Thus there are |N ×N ′|2 entries in the compatibility matrix.

1Usually a similarity function based on some metric d[·,·] : 2R× 2R → [0, 1] is used. E.g. c[x,y] = 1−d[x,y].
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Figure 1: Two RCC8 QCNs to be matched and the corresponding association graph created by
drawing an edge between two nodes (i, i′) and (j, j′) whenever l(i, j) ∩ l(i′, j′) 6= ∅. The label
on non-edges is the relation RCC8 relation DC. In the association graph a node is a pair of a
circle and the oval containing it.

In a LCM there is a special reference pair of nodes with respect to which the matrix is
defined. If (i, i′) is the reference pair the matrix will have entries l(i, j) ∩ l(i′, j′) for every
j ∈ N and j′ ∈ N ′. The LCM expresses compatibility between the reference pair (i, i′) and
every other pair (j, j′) ∈ N × N ′. Rows are indexed by input nodes j ∈ N and columns are
indexed by target nodes j′ ∈ N ′. The entry in a cell is the largest label common to both edges
l(i, j) and l′(i′, j′). Each LCM has |N ×N ′| entries and there are |N ×N ′| LCMs for QMP (N ,
N ′).

To illustrate how LCMs work we consider the simple example matching problem in Figure
1. The association graph in the lower part of the figure shows which node pairs are consistent
with each other in terms of the label intersections. The following LCM with reference pair
(c, d′) corresponds to the black arcs in the association graph:

a′ b′ c′ d′

(c, d′) (DC) (DC) (TPP ) (equal)

a(DC) DC DC ∅ ∅
b(TPP ) ∅ ∅ TPP ∅
c(equal) ∅ ∅ ∅ equal

2.2 Heuristic Evaluations

LCMs have the nice property that, for non-overlapping labels, cells having the same label form
a submatrix of the LCM and that these submatrices are non-overlapping [3]. So, the rows and
columns of an LCM can be sorted such that cells with a particular label are in a contiguous
region of the LCM. This led to the discovery of the two heuristic evaluation functions based on
LCMs.

Let L(i,i′) be the LCM with reference pair (i, i′) and L(i,i′),R the submatrix of L(i,i′) with
label R ⊆ R. Let rows(L(i,i′),R) and cols(L(i,i′),R) denote the number of rows and columns
of L(i,i′),R respectively. The function e(i,i′)|m determines an upper bound to the size of any
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solution containing the pair (i, i′) together with all pairs in the current solution m. This bound
is obtained by observing that for any submatrix L(i,i′),R the number of rows and columns
corresponding to pairs that can used in any solution must be equal: “only one cell can be used
per row and per column”.

To account for m, the LCM is updated so that if there is a pair in m that is incompatible
with any pair (j, j′), the entry for (j, j′) in L(i,i′) is artificially set to ∅. In this case a row
or column that previously had non-empty cells might become empty potentially reducing the
number of pairs that can be added to the current solution. The largest number of pairs that
can be used as part of a solution containing (i, i′) given the current solution m is

e(i,i′)|m =
∑
R⊆R

min (rows(L(i,i′),R), cols(L(i,i′),R))

The heuristic evaluation e(i,i′)|m almost always overestimates the extensibility of the solution
m after including the pair (i, i′). As a result an algorithm using these values to explore the
search space may quickly run into basins of local optima. For hill climbing algorithms this is
generally problematic because such basins may be difficult to escape.

A second heuristic computable upon return from the move that added (i, i′) to m gives
early feedback to the searcher. This heuristic function, called em, aggregates the effects of all
the pairs in m on the extensibility of m. Suppose that for fixed i ∈ N the pairs (i, i′), i′ ∈ N ′
are arranged in increasing order of e(i,i′)|m, breaking ties randomly. Then the last item in this
order, termed headi determines the largest possible solution containing input node i. For k ∈ N,
k ≤ |N | let

countk(m) = |{i ∈ N | k ≤ eheadi|m}| .

Then em is given by

em = max
countk(m)≥k

k .

The presentation of the two heuristic evaluation functions that we gave in [3] did not sug-
gest any approach for implementing them. In addition, from the description above a direct
implementation would require O(|N ×N ′|2) space and O(|N ×N ′|3) computation time which
is much more than what is strictly needed. In Section 4 we present a more efficient way to
maintain the LCMs.

3 Learning Search Paths

The heuristics e(·,·)|m and em do not interact in a dynamic way. Move selection is based on
e(·,·)|m because this is the information obtainable upfront. After a move is executed em provides
feedback from the search space informing the searcher roughly whether the move was overvalued.
Unfortunately, in order to maintain a consistent view of the search state, that feedback cannot
be directly used to update e(·,·)|m. That is, in the absence of any manipulation of the move
selection process, if the current solution were visited many times, the probability with which a
particular move is executed in this state would remain unchanged. In this section we introduce a
surrogate evaluation function to be used for exploration in the search process instead of e(·,·)|m.
Because the surrogate does not directly depend on the global state, it can be updated with
feedback from em.
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3.1 Reinforcement Learning

Those familiar with RL may have already spotted how the above description can be transformed
into an RL model. In general RL has to do with learning by reinforcement [22, Chap. 3]; given
a set S of states of the world, for each s ∈ S, a set As of actions that an agent can take in state
s, and for each legal state-action pair (s, a) a set of observations, called rewards, that the agent
makes upon executing an action a in state s, the RL problem is the problem of maximizing
expected returns of the form

Qπ(st, at) = E

[ ∞∑
k=0

γkrt+k+1|st+1, at+1

]
(1)

where at is the action taken in state st, rt+1 is the reward observed after performing action
at in state st, and γ is the discount rate indicating the extent to which future rewards are
taken into account. E returns the expected value of the expression within the square brackets.
Actions are chosen according to a policy π which can be understood as specifying transition
probabilities between states. The function Qπ(st, at) which gives the expected return at time
t when following policy π is called an action value function for the policy π. In RL one often
seeks to find the optimal value function for the optimal policy [22]. In our case we only seek to
adjust the values so that any subsequent visit to a state-action pair takes into account previous
visits in order to encourage moves that are likely to lead to an optimal solution.

Many algorithms have been designed to solve different variants of RL. The SARSA algorithm
for on-policy reinforcement learning updates the state-action value function at iteration t with
the temporal difference (TD) error computed at iteration t+ 1 which depends on the action at
that time:

Q(st, at)← Q(st, at) + α (rt+1 + γQ(st+1, at+1)−Q(st, at)) (2)

The important fact for our work is that because SARSA is on-policy, we can use the same
values that we are updating for exploration. For our search problem the learning agent is the
searcher, the states are individual solutions, and the actions are the DROP or ADD moves. We
will denote by at(p) the action taken at iteration t involving pair p = (i, i′) where at ∈ {ADD,
DROP}.

Value function initialization. State-action values at state m can be optimistically ini-
tialised to ep|m for move ADD(p) and em−{p} for move DROP(p). In this initialization strategy
emt−{p} is only readily available if at−1 = ADD(p). For any other pair p′ ∈ mt the move
DROP(p′) would have to be executed in order to obtain emt−{p′}. As shown in Section 2 this
is expensive.

We obtain a much cheaper approximation for the initial values for DROP moves by in-
troducing LCM(m), an aggregate LCM for the current match m, and for each pair p ∈ m,
LCMc(p), the complement LCM for p with respect m. LCM(m) is given by

LCM(m) =
∧
p∈m

LCM(p) (3)

For a pair p′ /∈ m we will say that oneInconsistent(p′) = p ∈ m if the entry corresponding to
p′ is empty in LCM(m) and non-empty when LCM(m− {p}). We say p′ is profitably usable if
any of the following hold

1. the row containing p′ in LCM(m) is empty and rows(LCM(m)) < cols(LCM(m)), or
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Figure 2: Main algorithm overview

2. the column containing p′ in LCM(m) is empty and cols(LCM(m)) < rows(LCM(m))

We then define LCMc(p) as an LCM that has as non-empty entries cells corresponding to
profitably usable pairs p′ such that oneInconsistent(p′) = p. The new LCMs are used to compute
the potential ρ(p) of p which is the amount by which min {rows(LCM(m)), cols(LCM(m))}
would increase if p were to be removed from m. For the sake of readability let us denote
rows(LCM(m)) by rowsm, rows(LCMc(p)) by rowscp and likewise for cols. Then we have

ρ(p) = min {rowscp + rowsm, cols
c
p + colsm} −min {rowsm, colsm} (4)

Thus the initial value for move DROP(p) in state mt is set to be

Q(mt,DROP(p)) = emt
+ ρ(p) (5)

Equation 5 is applied to every member of every solution at the first encounter - i.e. state-
action values for DROP moves are only initialised after the state is visited.

Reward function. Let e∅ be the heuristic evaluation at the empty solution. Then the basic
reward at iteration t is computed by

rt = emt −Q(mt, at)− 1 +
1

1 + e∅ − |mt|
(6)

3.2 Searching with the RL based heuristic

In our implementation the RL update is embedded into our prohibition based metaheuristic
algorithm as shown in the flowchart in Figure 2. Initially the procedure bestMove picks a pair
p to add to the current solution m based on Q(m,ADD(p)). Then after executing the move
all data structures are updated in updateSearchState if the stopping conditions have not been
met the procedure updateEvals which performs the learning updates is called with the reward
value computed as above. The stopping conditions are that either a solution of size e∅ has been
found or a preset number of iterations of this main loop have been executed.

The implementation described above does not, however, account for the curse of curse of
dimensionality. That is, the size of the state-action space prohibits us from storing the value
function directly [17]. Convergence of the Q-values is guaranteed only if each state-action pair
are visited an infinite number of times [22, Chap. 6]. Only visited state-action pairs will have
their values updated which, in general, means that a large number of state-action pairs will
have to be visited multiple times before an optimal ordering of Q-values that drives the search
to the optimal solution is found.

To alleviate the memory challenge and to accelerate learning we introduce a method for
approximating Q-values for moves at a solution using the Q-values of those moves at selected

272



QCN Matching with Reinforcement Learning M. Chipofya

prototype solutions. Our approximations are based values attached to individual pairs in a
solution.

Prototypes and value function approximation. For state value functions we may assume
the pairs at a specific state (i.e. solution) contribute equally to the value of that state since a
solution is completely determined by the set of pairs it contains. So a move a(p) at state m,
can be evaluated with respect to the pairs p′ ∈ m. Let

Qp′(m, a(p)) =
Q(m, a(p))

|m|
then

Q(m, a(p)) =
∑
p′∈m

Qp′(m, a(p))

and for any two pairs p′, p′′ ∈ m we have Qp′(m, a(p)) = Qp′′(m, a(p)). The pairs p′ and p′′

are witnesses of p’s moves at m. The SARSA update is then performed locally on the Q-value

component at each pair. That is, for the sequence m
a−→ m′

a′−→ m′′ we apply the update

Q(m, a)←
∑
p′∈m

[
Qp′(m, a) + α

(
r

|m|
+ γQp′(m

′, a′)−Qp′(m, a)

)]
+ αγQp(m

′, a′) (7)

where arg(a) = p is the pair being moved. The term Qp(m
′, a′) is 0 if a =DROP(p) and it

equals Q(m′,a′)
|m|+1 if a =ADD(p).

Let S be a subset of the state space. Updates for state m can be backed up to each state
s ∈ S by updating the value at s in the direction of the Temporal Difference (TD) error at m
by the proportion of s that is in m:

Q̄p′(m, a) = α

[
r

|m|
+ γ

(
Q̂p′(m

′, a′) +
Q̂p(m

′, a′)

|m|

)
− Q̂p′(m, a)

]
(8)

where Q̂(m, a) is the approximation of Q(m, a) computed from the prototypes in S. The
update at pair p′ of s is then obtained by scaling the TD error from m to s and applying
equation (2)

Qp′(s, at)← Qp′(s, at) +
|m|
|s|

Q̄p′(m, a) (9)

Combining equations (7) and (9) the full update to prototype s is

Q(s, at)← Q(s, at) +
|m ∩ s|
|s|

Q̄(mt, at) (10)

Notice that no reference to the individual pairs is used in the update. To read out the
approximate value for action at(p) at state m, the individual values at each prototype containing
each pair p′ ∈ m are scaled, normalized to the number of prototypes containing p′, and then
aggregated. Let S(p′) be the set of prototypes containing p′. Then

Q̂(m, at(p)) =
∑
p′∈m

 1

|S(p′)|
∑

s∈S(p′)

Q(s, at(p))

|m|

 (11)

The scaling of values between prototypes and solutions is necessary to account for differences
in the sizes of the solutions. Next we describe a simple strategy for selecting which states serve
as prototypes.
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Maintaining prototypes. Prototypes are states that are chosen to represent other states
that are similar to them in some way. For QCN matching, we would like the prototypes to
coincide with legal solutions of the problem. Meaning that we should create prototypes only
from solutions that have been visited either directly or by proxy (e.g. a neighbour of a visited
solution can be determined by simply checking the moves out of that solution).

Prototypes for solutions encountered during search are determined using the idea of a set
cover, a distance function, and a single constraint. The distance function we use is based on set
intersection and union. Let m,m′ be two solutions. The distance between m and m′ is given
by the Jaccard distance [13]

d(m,m′) = 1− |m ∩m
′|

|m ∪m′|
.

Given a set X, a collection S of subsets of X is said to cover X if ∪S = X. We remove
the requirement that S need be subsets of X and demand only that ∪S ⊇ X. We consider a
minimal cover S′ ⊆ S for X to be a cover for X that is minimal in the sense that given any
other cover S′′ ⊆ S for X, |S′| ≤ |S′′|.

A solution, m, in our algorithm must have two sets of prototypes denoted Sm and S′m
satisfying

1. Sm is a minimal cover for m and ∀s ∈ Sm, d(s,m) ≥ minDist, and

2. ∀s′ ∈ S′m, s′\m 6= ∅ and d(s′,m) < minDist and |S′m| = |Sm|.

minDist is a function of m decided at initialization that returns a threshold in the interval
(0, 1). The sets Sm and S′m are generated dynamically for each solution m and may be regener-
ated since excess prototypes at a solution may be removed randomly during the course of search.
If |S′m| < |Sm| then |Sm| − |S′m| prototypes are created by first taking prototypes s satisfying
d(s′,m) < minDist but not s′\m 6= ∅ (or vice-versa) and extending them by a pair consistent
with but not contained in m (or in the alternate case adding pairs in m to s′ until d(s′,m) <
minDist). If no such prototypes exist then a copy of m is taken from which are removed the
maximum number of pairs that can be removed without violating the second condition before
the resulting solution is extended by a pair not in m. This is repeated until |S′m| = |Sm|.

For Sm, we first check if S\Sm 6= ∅. If so then solutions from S\Sm are taken one at a time
until either condition 1 is met or S\Sm is exhausted. With each solution taken from S\Sm that
intersects m a new solution is created by removing from the former pairs in m until the result s
satisfies the distance constraint d(s,m) ≥ minDist. When no more solutions in S\Sm intersect
m, then m is used instead of s′ ∈ S\Sm. These steps are repeated until a cover is achieved.

Prototypes are deleted in two situations. If |S′m| > |Sm| then |S′m| − |Sm| prototypes are
deleted from S′m. When the memory is full prototypes are randomly deleted. The size of
the memory is set at initialization. In implementation the sets |Sm| and |S′m| are updated
incrementally since only prototypes containing the pair p′ which was moved in the transition
from solution mt to mt+1 may introduce inconsistencies.

Summary. The SARSA based algorithm presented in this section encapsulates the main
aspects of our solution to the QCN matching problem (QMP). The generalization accelerates
learning but a small computation cost. In the next section we give details of how the overall
computation is made more feasible by employing efficient data structures for the LCMs.
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Figure 3: The indicator-set array Figure 4: Sketch map corresponding to re-
sults in Figure 5

4 Efficient Implementation of LCMs

To compute em for each m may require O(|N×N ′|3) iterations of an iterative update algorithm
such as path-consistency as done in [23]. But considering the large number of possible moves
that must be considered at each iteration of the main algorithm it is necessary to find more
efficient ways to update the search state.

Candidate lists. We represent the pairs available for adding to the current match by a list
of subsets of N ×N ′ where each node i ∈ N indexes exactly one subset in the list. We define
these subsets by

candm,i = {(i, i′) | ∀(j, j′) ∈ m, l(i, j) ∩ l′(i′, j′) 6= ∅}

and build on the indicator set data structure introduced by Battiti and Protasi in [1] to come
up with an efficient data structure for maintaining them. An indicator set, is an array of records
formed by three components: a pointer to a previous entry, some application data called the
info component, and a pointer to a next entry. The previous and next pointers are integer
indexes into the array and impose an ordering on the cells that is possibly different from the
natural ordering imposed by the array indexing. The advantage of such a structure is that the
info in each cell can be accessed in constant time provided we know which cell it resides in. For
each i, there is an additional initial record pointer that identifies the initial record in the linked
list.

Indicator set array. An indicator set array, as the name suggests, is an array of indicator
sets indexed by some attribute of the data stored in the set (see Figure 3). In our case each of
the sets candm,i is implemented as one portion of an indicator set and the indicator set array
is indexed by the input nodes i ∈ N . The other portion of the indicator set (the portion that
does not contain candm,i) consists of records whose info components contain pairs (i, j) that
are not compatible with at least one pair in the current solution.

The i′th cell of the indicator set at index i in the indicator set array corresponds to the pair
(i, i′). For each i and each match m, there is a cell headi such that for all (i, i′) ∈ candm,i,
e(i,i′)|m ≤ eheadi|m. In particular, headi ∈ candm,i.

The records of an indicator set whose pairs belong to candm,i are ordered by their values
of e(i,i′)|m with headi always taking the last place. When a pair is moved out of candm,i it is
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placed immediately after headi. This operation involves six value assignments to update the
next and previous pointers of the pair being moved all pointers pointing to it before and after
the move. To move a pair into candm,i one simply searches candm,i for the appropriate position
to install the pair and updates the pointers as above. This takes at most |N ′| comparisons plus
the six pointer updates.

During an add move all pairs (i, i′) that are not compatible with the pair just added to m
are moved out of candm,i. If the move being executed is a drop move, steps that reverse the
steps taken during add moves are performed. That is, pairs (i, i′) such that (i, i′) /∈ candm,i and
(i, i′) is not compatible with the pair that was just removed from m (but is compatible with all
pairs remaining in m) are placed into candm,i.

Updating e(i,i′)|m implies updating the dimensions of the corresponding LCM. The dimen-
sion pairs (height and width) for the entire set of LCMs are implemented using a pair of
2-dimensional arrays:

labelRows(i,i′),R=|{j∈N | ∃j′∈N ′, (j,j′)∈L(i,i′),R}| ,

labelCols(i,i′),R=|{j′∈N ′ | ∃j∈N,(j,j′)∈L(i,i′),R}| .

We update the two arrays above by counting for a pair (i, i′) and each input node j the
number of pairs (j, j′) in candm,j that are compatible with (i, i′) and for each ι′ ∈ N ′ the number
of nodes ι ∈ N such that (ι, ι′) ∈ candm,ι and (ι, ι′) is compatible with (i, i′). If moving a pair
(j, j′) out of candm,j results in the smaller of the values labelRows(i,i′),R or labelCols(i,i′),R being
decremented, e(i,i′)|m is also decremented. Here R is the intersection of labels l(i, j) ∩ l′(i′, j′).

Updating em involves maintaining a threshold evalCounter which is the number of nodes
i ∈ N for which eheadi|m > em. The essence of this number is that if it is itself greater than
em then the current match m is under-valued and that its value must be incremented. To
decrement em we must know when the number of nodes i ∈ N such that em ≤ eheadi|m falls
below the value em itself. This would mean that no match from that point on could be extended
to a match containing at least em pairs. So the global evaluation must be decremented. The
record of these numbers is stored in an array of size N . The (in/de)crementing is done in steps
of size 1 because each time at most one item at the head of a candidate list can change. The
following results derive directly from the foregoing discussion and the tacit assumption that the
number of labels used |l(N ]N ′)| = O(1).

Theorem 1. In each iteration of local search, the state space including the Local Compatibility
Matrices consume O(|N | · |N ′|) space and require O(|N |2 · |N ′|2) steps to update.

The actual number of computation steps per iteration is in fact much smaller since the
candidate lists and the LCMs are most of the time below their initial sizes. In the next section
we show representative results of an evaluation of the present algorithm against a version that
does not incorporate learning. We also compare our results with results obtained in our previous
work [3].

5 Evaluation

We performed an evaluation of our matching algorithm with and without learning on the
sketch-to-metric map alignment problem. The experiment was run on a desktop workstation
computer with an IntelTMCore i5 processor, (2.60 GHz) and 12 GB RAM. The operating system
was Windows 7, 64-bit and algorithms are implemented in Java and executed on the Oracle
Java JVM 1.7.0 71b14.
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(a) (b)

Figure 5: A comparison of the first 1000 iteration of two the tabu search based metaheuristic
with periodic restarts:(a) with learning (b) without learning.

Here we discuss a summary of the results of our evaluation for the example sketch map
shown in Figure 4. Figure 5 shows the progress of one run each for the algorithm with learning
and one without learning. Looking at the two graphs one observes that in graph (b) there is a
separation between the curve representing the current match size and the predicted best match
from that point on (as given by em). In the graph above however the match size always reaches
its optimal value in regions of the search space where the heuristic evaluation has stabilized. In
all experiments, the version with learning performed better than its counterpart which did not
include a learning component.

6 Conclusion

Learning is powerful way to enhance search algorithms for computationally hard problems. We
have outlined an approach that uses an online RL component to dynamically update heuris-
tic evaluations on solutions encountered along search paths. The interesting outcome is that
matching performance actually improves. Following a standard approach we have been able to
solve an example that we were unable to do with previous methods of [23], [16], or our previous
work [4, 3].

Learning in our algorithm was implemented using SARSA with a novel generalization ap-
proach. SARSA is well known and extensively studied RL algorithm that has been shown to
perform well with generalizations based on Kanerva’s distributed sparse memories (SDM) [18].
Like [18] we use a single parameter minDist to control the number of prototypes that a par-
ticular state backs up its value to and generate these prototypes dynamically. But unlike that
work we do not use an activation radius to select which prototypes a state is backed up to. All
prototypes sharing a node with the current solution receive a portion of the signal emitted by
the SARSA update at that state.

In this paper we were interested in the practical aspects of the QCN matching problem. The
LCMs presented in Section 2 can handle non-atomic constraints which is one way of performing
inexact matching for spatial configurations. In addition several spatial calculi could be used to
describe the input data in the LCM framework.

The icing on the pudding is the ability to dynamically adapt the LCM structure which
supports incorporating spatial aggregation and splitting into the matching process. This is a
difficult problem considering that aggregations by themselves introduce another combinatorial
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explosion on top of the exponential search space of the basic QMP. In this regard, learning to
associate potential aggregations with profitable regions of the search space might help mitigate
the adverse effects of this exponential expansion of the search space. This is the ultimate
challenge that we intend to overcome going forward.
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