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Abstract

Leo-II cooperates with other theorem-provers to prove theorems in classical higher-
order logic. It returns hybrid proofs, which contain inferences made by Leo-II as well as
the backend provers with which it cooperates. This article describes recent improvements
made to Leo-II.

1 Introduction

Leo-II [9] is an automatic theorem-prover for classical higher-order logic, more precisely for
Church’s type theory with Choice, under Henkin semantics [1, 2]. Its cooperation with backend
provers is one of its distinguishing characteristics. These provers are regularly invoked by Leo-
II for help with finding a refutation. In this article we outline the current system and describe
recent improvements. Further details on Leo-II’s hybrid proofs are reported in [16].

2 System overview

Leo-II’s calculus [16] is a higher-order adaptation of RUE (Resolution by Unification and
Equality) [4]. RUE is an approach for extending a resolution calculus to interpret equality, and
which allows equality literals to be processed by both resolution and unification. Furthermore,
Leo-II’s calculus relies on a ‘Boolean aware’ (or, more generally, ‘theory aware’) extensional
preunification engine (extensional preunification is discussed in [5]). In recent versions, Leo-II’s
unification algorithm also interprets logical constants — for example, the algorithm in version
1.5 treats disjunction as a commutative function.

Leo-II accepts problems encoded in the CNF (clausal first-order form) and FOF (first-
order form) languages from the TPTP [18], but its principal input language is THF0, core
typed higher-order form [19].

The logical organisation of the prover is illustrated in Figure 1, and corresponds to the
modular organisation of the code. It is structured into four layers, as the figure shows:

Operating mode. The prover can be operated in two ways: (i) Leo-II can be used as a proof
assistant when run in interactive mode. It provides a command interface through which
the user can inspect and manipulate the prover’s state, making calls to the calculus’ rules
as needed. This mode is very valuable for exploring logical problems and for debugging
the prover’s automatic mode. (ii) The prover is usually run in automatic mode: this
comprises a set of strategy schedules, and a main loop which drives applications of the
calculus’ rules.

Prover interface. Both modes use a common infrastructure: they parse a problem and load
it into the prover’s state, then further manipulate the state by executing commands. A
command might involve carrying out an inference, inspecting the state, switching flags,
calling external provers, etc. Each command makes calls to lower levels of the prover.
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Figure 1: Leo-II’s architecture

Logic. The main component in this level consists of the calculus: a collection of functions
which accept and return clauses. This level also contains Leo-II’s main loop, and an
interface to external ATPs (which also translates problems to other formats).

Basis. The lowest level of Leo-II defines the representation of terms and types, and associated
operations (e.g. substitution, unification, matching, etc).

3 Improvements

The TPTP problem set [18] is the canonical benchmark by which theorem provers are evaluated.
The improvements described in this section are often accompanied by TPTP problem names
whose solution is affected by the improvement. These problems consist of THF problems (more
precisely, THF0 problems) drawn from TPTP 5.4.0. We have used E version 1.6 as the backend
ATP. Our tests were run on a 2GHz AMD Opteron with 4GB RAM, and given 60-second
timeout. Leo-II was compiled with OCaml 3.11.2.

3.1 ATP interface

Leo-II cooperates with other provers in order to maximise its potential. Recall that Leo-II
proves a theorem by refuting a set of clauses. It gradually accumulates a set of clauses, some
of which are first-order; a refutation in these first-order clauses will refute the overall problem.
Instead of attempting to refute first-order clauses itself, Leo-II invokes external first-order
ATPs to do this, since they are likely to do a far better job than Leo-II on such problems. This
leaves Leo-II to focus on higher-order reasoning.

We improved Leo-II’s translation to FOL in recognition of this benefit. Version 1.5 includes
a better translation into FOF, and added an experimental translation into TFF [20] (a TPTP
syntax for sorted first-order logic). We also improved the system interface with backend ATPs,
and experimented with additional backends.
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3.1.1 Translation into FOL.

It benefits Leo-II to use a translation into FOL which returns the strongest set of clauses, as
long as that translation is sound.

Alongside the old translations which were previously implemented in Leo-II, version 1.5
features a new translation module which was written from scratch. This module contains an
intermediate language to which problems are first translated, before being transformed further
and printed into a specific target syntax. HOL-to-FOL translations consist of a pipeline of
functions which bring HOL formulas into this intermediate language, applying analyses and
transformations along the way.

Leo-II’s old and new FOF encodings can be used through the command-line arguments
--translation fully-typed and --translation fof full respectively. In version 1.5, the
translation fof full is now set as default. The old translation had some undesirable qualities
which harmed the performance of the FOL ATPs with which Leo-II cooperated:

1. For some examples, the old translation did omit certain necessary information in its output
to the ATP. This information is of two kinds: the first relates to proxy terms, and the
second relates to λ-terms.

Here is a trivial example: when Leo-II is asked to prove

thf(goal, conjecture, ((=) = (=))).

and use the old translation, it would send a single clause to the ATP (after transforming
the negated conjecture in its input processing into ~($true)):

fof(7,axiom,((~ leoLit(leoTi(true,o))))).

In both the old and new translations used by Leo-II, leoTi is used to assign types to
terms — here it is saying that the term true is of type o (i.e., propositions), where ‘o’
itself is a term in the language. That is, the translation encodes types as first-order terms.
The constant leoTi is used to lift propositional terms (i.e., those typed ‘o’) into formulas.
Unfortunately, Leo-II did not include an axiom to give semantics to true; such as

fof(true, axiom, leoLit(leoTi(true,o))).

Had such an axiom been included, the FOL ATP would have been able to find a refutation.

Given the same THF problem, the new translation sends the following output to the ATP:

fof(7, axiom, ~($true)).

That is, it notices that instead of using leoLit to encode “true”, it can simply use the
FOF constant with that denotation. When it becomes necessary to use a proxy term such
as true, then it includes an axiom giving its semantics. For instance, while attempting
to prove

thf(conj_0,conjecture,(

? [F: $o > $o] :

! [P: $o > $o,Q: $o] :

( ~ ( P @ ( => @ ( F @ $true ) @ Q ) )

| ~ ( F @ ( => @ Q @ ( F @ $false ) ) )

| ( F @ Q ) ) )).
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Leo-II’s output to the ATP will include the axiom

fof(prox_true1, plain, ($true <=> leoLit(leoTi(true, o)))).

Note that Leo-II’s current behaviour is not perfect either: Leo-II should be able to spot
trivial refutations (as the first one above), and avoid invoking the FOL ATP and instead
use its own refutation mechanism only.

The second kind of information relates to the reduction of λ-terms into first-order form:
the previous translation simply created fresh constants for λ-terms, and did not char-
acterise these constants further. For example, while trying to prove the THF problem
mentioned earlier, the output of the previous translation includes axioms such as

fof(44,axiom,(

~ leoLit(leoTi(leoAt(leoTi(sK2_SY3,leoFt(leoFt(o,o),o)),

leoTi(abstrSX0SX0,leoFt(o,o))),o)) )).

The encoded type leoFt(o,o) indicates that the constant abstrSX0SX0 is of type o→ o.
The name abstrSX0SX0 is derived from serialising the term λSX0.SX0, but no further
definition of this constant is given by the translation. The new translation λ-lifts such
terms fully, yielding the pair of axioms

fof(ll1,axiom,(

! [SX0] :

( leoLit(leoTi(leoAt(leoTi(ll1,leoFt(o,o)),

leoTi(SX0,o)),o))

<=> leoLit(leoTi(SX0,o)) ) )).

fof(44,axiom,(

~ leoLit(leoTi(leoAt(leoTi(csK2_SY3,leoFt(leoFt(o,o),o)),

leoTi(ll1,leoFt(o,o))),o)) )).

2. The old translation was verbose, and its use potentially resulted in fairly large first-
order formulas due to the encoding of type information. This verbosity causes additional
overhead to the ATPs, and this contributes to ATPs missing their timeout to find a
refutation. Arguably, the new translation is more verbose, since it tends to include more
information. To address this problem we are experimenting with lighter encoding of type
information. We have closely followed Claessen et al [11] to implement their monotonicity
analysis by producing a SAT encoding, which we send to MiniSat using an interface
adapted from Satallax [10, 3]. This translation can be used by giving Leo-II the argument
--translation fof experiment.

Problems which become provable in LEO-II using the new fof full translation include
NUM636ˆ1.p and LCL631ˆ1.p.

3.1.2 Backend ATPs.

Leo-II is mainly used in combination with E [15], and Leo-II version 1.5 features small improve-
ments in how it interacts with E. Support for SPASS [21] was added during past experiments
[8]. In version 1.5 we improved Leo-II’s ATP interface and added support for various other
backend ATPs, including remote provers on SystemOnTPTP [18].
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3.2 Support for Axiom of Choice

The default semantics for THF0 is Henkin semantics with choice. Until version 1.5, Leo-II
did not support reasoning with choice, unless näıve Skolemization was used—that is, first-order
Skolemization without employing further restrictions (as investigated by Miller [12]). This
enables limited reasoning with choice, and succeeds in some example cases, but it fails in many
others [6, Section 3.2].

In order to extend Leo-II to support the axiom (scheme) of choice (AC), instances of AC
could be automatically added to the input problem. An example is the following instance of
AC for type (ι → o) → ι (where o is the type of propositions as before, and ι is the type of
individuals):

∃E(ι→o)→ι∀P(ι→o). ∃Xι(P X)⇒ P (E P ) (1)

However, such kinds of impredicative axioms should generally be avoided in automated proof
search since they allow for simulation of the cut rule in any Henkin-complete THF prover [7].

Our approach involves adding two new rules to Leo-II: detectChoiceFn and choice. The first
rule detects and removes instances of AC, such as (1) above, and keeps a register of choice
functions CFs. CFs always contains at least one choice function symbol for each choice type.
The second rule gives the semantics to choice functions. Taken together, these rules allow
AC-valid reasoning without the risk of cut-simulation.

In more detail, rule detectChoiceFn removes choice-axiom clauses from the search space and
registers the corresponding choice function symbols f in CFs.

[PX]ff ∨ [P (f(α→o)→αP )]tt

detectChoiceFn
CFs←− CFs ∪ {f(α→o)→α}

In the notation used above, α is a metavariable ranging over types. Pα→o is a set variable.
Literals are enclosed in square brackets, and ff and tt indicate negative and position polarity
respectively. The rule abuses standard notation: the rule does not describe a logical inference,
since the conclusion of the rule indicates a side-effect which extends the set CFs of choice
functions.

Rule choice investigates whether a term ε(α→o)→αBα→o (where ε ∈ CFs is a registered choice
function or a free variable) is contained as a subterm of a literal [A]p in a clause C. In this case
it adds the instantiation of AC at type (α→ o)→ α, and with term Bα→o to the search space.
Side-conditions guard against unsound reasoning, such as the ‘uncapturing’ of free variables in
B:

C := C′ ∨ [A[E(α→o)→αB]]p
ε ∈ CFs, E = ε or E ∈ freeVars(C),
freeVars(B) ⊆ freeVars(C), Y fresh

choice
[B Y ]ff ∨ [B (ε(α→o)→αB)]tt

Rules detectChoiceFn and choice are obviously sound: detectChoiceFn simply removes clauses from
the search space, and for any choice function f , the rule choice only introduces new instances
of the corresponding choice axiom.

There is a correspondence with the handling of choice in Satallax. Satallax too considers
only selective instantiations of AC in order to avoid cut-simulation. For instance, when (1) is
assumed, the terms T which Satallax considers to be eligible instantiations for variable P are
those occurring in formulas of the following forms in a tableau branch (and where ε is a choice
function): (ε T) S1 . . . Sn or ¬((ε T) S1 . . . Sn), or the disequations (ε T) S1 . . . Sn 6= S or
S 6= (ε T) S1 . . . Sn. It is easy to see that our rule choice, which is less restrictive, subsumes
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these cases. We also experimented with Satallax’s approach in Leo-II but this led to worse
results. Our choice rule is more closely related to that of Mints [13]. Use of the choice rules can
be disabled using the -nuc command-line switch. A completeness proof for LEO-II’s improved
handling of choice remains future work.

Problems which become provable in LEO-II using our improved support for choice include
SYO517ˆ1.p, SYO534ˆ1.p–SYO537ˆ1.p, and SYO555ˆ1.p.

3.3 Detection of defined equality

Primitive equality in HOL refers to the use of the interpreted constant ‘=’. Equality can also
be defined in HOL—for example, as

λXαλYα∀Pα→o. P X ⇒ P Y

or

λXαλYα∀Qα→α→o. ∀Zα(Q Z Z)⇒ Q X Y

The former is known as Leibniz equality and the latter we call Andrews equality (cf. [1], Exercise
X5303). Both Leibniz and Andrews equality support cut-simulation due to their impredicative
nature [7], and should thus be avoided in proof automation. In fact, using primitive, rather
than defined, equality may save many primitive substitution steps in proofs. Such steps involve
instantiations of set variables, and this generally involves blind guessing. Examples of the
benefit of using primitive, rather than defined, equality have been given in the literature [6,
Sections 5.1 and 5.2]. In order to address this issue we added the following two rules to Leo-II’s
calculus; they instantiate the variable P with primitive equality:

C ∨ [P A]ff ∨ [P B]tt

LeibEQ
C{λX. A = X/P} ∨ [A = B]tt

C ∨ [P A A]ff

AndrEQ
C{λXλY. X = Y/P}

Soundness of LeibEQ and AndrEQ is obvious, since both rules simply realise specific instances
of primitive substitution. For improved configurability, either rule can be individually disabled
from the command-line by using the switches -nrleq and -nraeq respectively. If LeibEQ is
used in combination with the new FOF translations (see Section 3.1) several TPTP problems
whose previous SZS [17] status was ‘Unknown’ can now be solved by Leo-II. Examples include
SYO246ˆ5.p, SYO244ˆ5.p, NUM817ˆ5.p, NUM816ˆ5.p and NUM814ˆ5.p. There are also many
problems that can now be solved with primitive substitution (blind guessing) disabled when
LeibEQ and AndrEQ are available. Examples include SEV081ˆ5.p, SEV158ˆ5.p, SEV992ˆ1.p,
and SYO276ˆ5.p. Overall, these two new rules lead to significantly better coverage using the
lighter primitive-substitution search modes -ps 0 or -ps 1.

3.4 Strategy scheduling

Strategy schedules were added to Leo-II in version 1.2 and the catalogue of schedules has slowly
increased in the versions that followed. In version 1.5 we recoded the strategy-scheduling feature
to facilitate the encoding of new strategies, to improve code reuse with other parts of Leo-
II, and to have greater flexibility when encoding strategies. The new setup affords greater
flexibility: for example, the new setup can schedule varying number of strategies (depending on
the problem being processed) and each schedule could be of varying duration. This has opened
up many opportunities for experimentation and tuning.
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We are also interested in computing strategies on-the-fly based on problem characteristics,
and version 1.5 carries out some small initial checks (e.g. size of the problem, and whether it
contains instances of AC), and schedules strategies based on that limited analysis. Optimising
this further remains as future work.

3.5 Other improvements

Numerous other additions were made to Leo-II. Previously, Leo-II was entirely focused on
refutation: that is, until version 1.5, in terms of the SZS classification, Leo-II would judge a
problem to be a Theorem (if a refutation exists), Unsatisfiable (if the problem’s axioms them-
selves can be refuted), or diverge (by extending the preunification depth and reattempting a
refutation). It can now classify Satisfiable problems and detect CounterSatisfiable problems,
thus improving both Leo-II’s precision and termination behaviour. The added support for
choice was very relevant for achieving this. Leo-II decides that a problem is Satisfiable when
the problem consists of a collection of axioms (lacking a conjecture) and Leo-II succeeds in sat-
urating a set of clauses (without finding a refutation, otherwise the problem would be classified
as Unsatisfiable).

Leo-II’s unification algorithm has been redone, and can be set (from the command-line) to
disregard Boolean and functional extensionality. This has strengthened Leo-II’s behaviour in
non-extensional problems, since disabling the extensional behaviour shrinks the search space.

Numerous other improvements and fixes have been made: these range from system features
(such as the parser, status reporting, avoiding redundant computations, etc) to deeper areas in
the calculus and main loop (including factorisation, subsumption, and clause selection).

4 Future work

We have started experimenting with using term orderings to influence literal selection. We
also plan to revise Leo-II’s internals to make full use of the potential benefit they offer. For
instance, the shared term graph is currently underutilised.

More work is needed to compute better schedules, paired with better problem analyses.
Such analyses can determine the scheduling of specific strategies, which can be better tuned to
the problem.

The ATP interface can be improved further to call multiple backend ATPs in parallel.
Experiments comparing 30-second invocations of Leo-II on all THF problems, supported by
provers E (version 1.6), SPASS (version 3.5) [21] and Vampire (version 2.6) [14] showed us that
there were 37, 5 and 20 theorems that were proved exclusively by Leo-II(E), Leo-II(SPASS)
and Leo-II(Vampire), respectively. And there were 31, 95 and 98 theorems that Leo-II(E),
Leo-II(SPASS) and Leo-II(Vampire) missed, but which one of the others could prove.

Supporting various ATP backends increases the scope for peephole optimisation; we have not
yet investigated this. The translation module can be optimised further, and extended to target
more formats. Table 1 one shows how the new HOL-to-FOL translation (fof full) and its
lighter variant (fof experiment) are superior to Leo-II’s preexisting encoding (fully typed).
In future work we plan to improve fof experiment further and make it the default translation.
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SZS Status fully-typed fof full fof experiment

Thm 64.8 64.9 65.3
All 60.9 61 61.3

Table 1: Comparing FOL encodings in Leo-II 1.5 (30s timeout). Table shows the percentage
of matches between Leo-II’s SZS output and the ‘Status’ field of problems.

Timeout (s) v1.2 v1.4.3 v1.5
Thm All Thm All Thm All

30 58.4 51.1 62.1 54.4 64.3 61.3
60 58.7 51.3 65 56.9 67.1 62.9

Table 2: Percentage match between different versions of Leo-II and the Status field of TPTP
problems. Leo-II version 1.2 was the winner of the CASC competition in 2010, and version
1.4.3 was the last public release. Version 1.5 was run with the fof experiment encoding.

5 Conclusion

Version 1.5 of Leo-II includes various improvements which affect its performance and coverage.
To obtain a broader picture, we compared the results of using Leo-II version 1.5 with earlier
versions, and the results are shown in Table 2. In this experiment we counted the matches
between Leo-II’s SZS output and the TPTP problem’s SZS status (included in its header).1

All the net gains are positive, but a more thorough evaluation (on different benchmarks, and
considering various parameters) remains as future work. Within a 30s timeout, Leo-II version
1.5 can classify 196 more problems than its predecessor. The main boost ( 125

196 problems) in
this version is provided by the detection of non-theorems (i.e. satisfiable or countersatisfiable
problems).
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