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Abstract

We introduce HQCS-R, a novel Hamming-metric code-based signature scheme over Zq.
The security of the proposed scheme is based on the hardness of Hamming-metric restricted
syndrome decoding problem for quasi-cyclic codes, where the error vectors are restricted
to a proper subset of Zn

q . Assuming the hardness of this problem, we prove that HQCS-R
is EUF-CMA secure in the classical random oracle model. Furthermore, we thoroughly
analyze the security of the scheme, as well as compute a lower bound for the acceptance
rate of signature generation. Based on these analyses, we present some concrete parameters
for HQCS-R. In particular, for 128-bit security level, the public key and signature sizes of
HQCS-R are 5888 bytes and 6265 bytes respectively.

1 Introduction

Since the Hamming-metric syndrome decoding problem (HSDP) was proved to be NP-complete
[14], the first code-based cryptosystem [27] (McEliece system) based on HSDP was proposed.
Since then, many code-based cryptographic schemes have been proposed. Furthermore, as
solving the NP-hard syndrome decoding problem is believed to be hard even for quantum com-
puters, code-based cryptography is considered as a branch of post-quantum cryptography. In
2017, NIST called for post-quantum cryptography standardization. Unfortunately, none of the
code-based signatures submitted to the NIST PQC Standardization were selected. Therefore,
designing code-based signatures is still a challenging task.

Two common approaches to construct signature schemes are the hash-and-sign framework
and the Fiat-Shamir framework. The hash-and-sign framework uses some trapdoor functions.
However, signatures using this framework (such as CFS [20] and Wave [22]) tend to be inefficient
and have large key sizes. On the other hand, the Fiat-Shamir framework constructs a signature
by transforming an identification scheme into a signature scheme via the Fiat-Shamir trans-
formation [23], without necessarily using trapdoor functions. Examples of signature schemes
constructed via the Fiat-Shamir framework are cRVDC [12], SHMWW [37], BBCHPSW [7],
BCS [8], MPT [31], etc. However, most of them have large signature sizes. Recently, there
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is a new technique called the MPC (multiparty computation) in the head, which combines
identification schemes and multiparty computation with the purpose of reducing the signature
size. However, most of the signature sizes of the schemes constructed via the MPC in the head
paradigm (such as CCJ [16], SDitH [28], RYDE [2], etc.) are still in the order of a few kilobytes.

Furthermore, some code-based signatures in the literature were even found to be insecure.
For example, CVE [13] and MPT [31] are shown to be insecure in [26] and [32] respectively.
Similarly, SHMWW [37] is proven to be insecure in [1] and [41] independently. In addition, the
analysis in [15] reduces the security of BBCHPSW [7] and BCS [8] to almost half of the claimed
security level. Thus, designing secure and practical code-based signatures remains a challenge.

In 2020, Baldi et al. [7] showed that the Hamming-metric restricted syndrome decoding
problem (HRSDP) is also an NP-complete problem for error vectors restricted to {−1, 0, 1}n
and proposed a signature scheme based on it. But, its security was later shown to be much lower
than claimed [15]. In this paper, we propose a new technique to construct a signature scheme
(the resulting signature scheme is called HQCS-R) based on quasi-cyclic codes (QC-Codes) and
the HRSDP (where the error vectors are restricted vectors, i.e. they are restricted to a proper
subset of Fn

q ). We also give concrete parameters for the proposed HQCS-R signature scheme,
taking into account numerous possible attacks, including the analysis given in [15].

The organization of this paper is as follows. In Section 2, we give some notations and some
statistical properties. We also provide a brief review on the properties of linear codes and quasi-
cyclic codes, as well as define the Hamming-metric restricted syndrome decoding problem, etc.
In Section 3, we propose a new signature scheme (called HQCS-R) which is based on 2-quasi-
cyclic codes and the NP-complete Hamming-metric restricted syndrome decoding problem. In
Section 4, we provide a security proof of the proposed HQCS-R signature scheme under the
random oracle model. In Section 5, we give detailed analyses of various possible attacks on
the proposed signature scheme HQCS-R. In Section 6, we examine the public/secret key size
and signature size for various parameters achieving 128-bit security level. Finally, the paper is
concluded in Section 7.

2 Preliminaries

2.1 Notations

In this paper, let k be a positive integer and p, q be prime numbers such that 2 < p < q.
Let Fq be the finite field of q elements. Let Rq := Fq[x]/(x

k − 1) be the quotient ring of
polynomials over Fq of degree less than k. Given a = a0 + a1x + . . . + ak−1x

k−1 ∈ Rq, we
denote a := (a0, a1, . . . , ak−1) ∈ Fk

q . Let R∗
q = {a ∈ Rq | a is invertible inRq}. We sometimes

abuse the notation by interchanging a with a ∈ Rq.
Let r be a positive integer. Define [r]p := ⌊ r

p⌋ and for a vector r = (r0, . . . , rk−1),

we define [r]p := ([r0]p, . . . , [rk−1]p). For positive integers l̂, ω such that l̂ ≪ q−1
2

and ω < k, we define Ul̂ :=
{
a =

∑k−1
i=0 aix

i ∈ Rq | min{ai, q − ai} ≤ l̂
}

and Vl̂,ω :={∑k−1
i=0 aix

i ∈ Ul̂ | |{ai ̸= 0 | 0 ≤ i ≤ k − 1}| = ω
}
.

2.2 Some Statistical Properties

In this section, we briefly review some useful statistical results. Denote the normal distribution
with mean 0 and standard deviation σ by N (0, σ2). Its probability density function is given by

ρσ(x) := ( 1√
2πσ2

)e−
x2

2σ2 for x ∈ R.
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Theorem 1 ( [29] Theorem 2.23 (Central Limit Theorem)). Let X1, . . . , Xn be indepen-
dent and identically distributed random variables with E(Xi) = µ and Var(Xi) = σ2. Let
X̄ = 1

n

∑n
i=1 Xi. Then X̄ − µ approximates to the normal distribution N (0, σ2/n). Thus,

lim
n→∞

Pr

(
X̄ − µ

σ/
√
n

≤ Z

)
= Φ(Z), where Φ(Z) := 1√

2π

∫ Z

−∞
e−t2/2dt.

Lemma 1 ( [40] Lemma 3). Let u,v ∈ Rq such that each coordinate ui of u is an independently
distributed random variable with mean 0 and variance σ2

u. Suppose that each coordinate vi of
v is an independently distributed random variable with mean µv and variance σ2

v. Then each
coordinate of uv approximates to N (0, σ2), where σ =

√
kσu

√
σ2
v + µ2

v

2.3 Linear Codes

In this section, we give a brief review on linear codes and a discussion on the Hamming-metric
restricted syndrome decoding problem.

Definition 1. Let q be a prime and a = (a1, . . . , an) ∈ Fn
q . The Hamming weight of a is defined

as wt(a) := | {i | 1 ≤ i ≤ n, ai ̸= 0} |. The Hamming distance between a and b is defined as
wt(a− b), i.e., the number of coordinates a and b differs on.

Lemma 2. Let n and q be primes and τ ∈ (0, 1). The probability that a vector chosen uniformly
from Fn

q has Hamming weight ω := ⌊τn⌋ is
(
n
ω

)
(q − 1)ω/qn. In particular, the probability is at

most qω−n(1− 1
log2 q ).

Proof. The probability that a randomly chosen vector in Fn
q has Hamming weight ω is

(
n
ω

)
(q−

1)ω/qn. Moreover, we have(
n
ω

)
(q − 1)ω

qn
< 2n

(q − 1

q

)ω 1

qn−ω
<

2n

qn−ω
= 2n−(n−ω) log2 q

= 2(log2 q)(ω−n(1− 1
log2 q )) = qω−n(1− 1

log2 q ).

Definition 2. Let k and n be two positive integers with k ≤ n. An [n, k]-linear code C of length
n and dimension k is a linear subspace of dimension k of the vector space Fn

q .

Definition 3. Let C be an [n, k]-linear code of length n and dimension k. We call its minimum
distance δ the minimum Hamming weight of a non-zero codeword in C, i.e., δ = min{wt(a) |
a ∈ C,a ̸= 0} = min{wt(a− b) | a,b ∈ C,a ̸= b}.

Definition 4. A matrix G ∈ Fk×n
q is a generator matrix of an [n, k]-linear code C if C =

{uG | u ∈ Fk
q}. A matrix H ∈ F(n−k)×n

q is a parity-check matrix of C if cHT = 0 for
all c ∈ C. Furthermore, G and H are said to be in systematic form if they are written as

G = [Ik A] andH = [In−k B] respectively, where A ∈ Fk×(n−k)
q , B ∈ F(n−k)×k

q , Ik and In−k

are the identity matrices of size k and (n− k) respectively.

Problem 1. (Hamming-metric Syndrome Decoding Problem (HSDP)) Given a matrix H ∈
F(n−k)×n
q , a vector s = eHT ∈ Fn−k

q and an integer w > 0 as input, the Hamming-metric

Syndrome Decoding problem is to determine a vector e ∈ Fn
q such that wt(e) ≤ w and s = eHT .
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The SDP problem over F2 was first proved to be NP-complete by Berlekamp, McEliece and
van Tilborg in [14] in 1978. Later, Barg [9, 10] also proved that the SDP problem over Fq is
NP-complete in 1994. In 2020, Baldi, et. al. [7] showed that the Hamming-metric restricted
syndrome decoding problem is also NP-complete for errors restricted to {−1, 0, 1}n. We state
a more general Hamming-metric restricted syndrome decoding problem as follows.

Problem 2. (Hamming-metric Restricted Syndrome Decoding Problem (HRSDP)) Let q > 2

be a prime, b ≪ q−1
2 and S = ([−b, b] ∩ Z) \ {0}. Given a matrix H ∈ F(n−k)×n

q , a vector
s = eHT ∈ Fn−k

q and an integer w > 0 as input, the Hamming-metric Restricted Syndrome

Decoding problem is to determine a vector e ∈ (S ∪ {0})n such that wt(e) ≤ w and s = eHT .

In 2023, Baldi et al. provide methods to compute the computational complexity of solving
the Hamming-metric restricted syndrome decoding problem, where S is certain proper subset
of Fq. Baldi et al’s method [15] extended the Prange’s algorithm [33] and generalized Stern’s
algorithm [38] and BJMM12 algorithm [11] to the Hamming-metric restricted syndrome decod-
ing problem. We first define some notations. Let z = |S| be a positive even integer, where S is
a proper subset of Fq; and let v be the weight of a smaller instance.

Q := log2 q, Z = log2 z, R = lim
n→∞

k(n)

n
, W = lim

n→∞

w(n)

n
,

L = lim
n→∞

l(n)

n
≤ 1−R, V = lim

n→∞

v(n)

n
≤ min{W,R+ L},

Vi = lim
n→∞

vi(n)

n
, Ei = lim

n→∞

ϵi(n)

n
, Ui = Q · lim

n→∞

ui(n)

n
, lim

n→∞

1

n
log2

(
u

v

)
= Uh

(
V

U

)
,

where h(x) := −x log2 x− (1− x) log2(1− x).

Theorem 2. [15] The time complexity of solving the Hamming-metric restricted syndrome de-
coding problem is 2F (R,W )n, with F (R,W ) = N(R,W,L, V )+C(R,L, V ), where N(R,W,L, V )

denotes the number of iterations, i.e., h(W )− (R + L)h
(

V
R+L

)
− (1−R − L)h

(
W−V
1−R−L

)
and

C(R,L, V ) denotes the time complexity of solving the smaller instance under the assumed weight
distribution.
(1) For the restricted Stern/Dumer approach, C(R,L, V ) = max

{
Σ
2 ,Σ−QL

}
, where Σ =

(R+ L)h( V
R+L ) + ZV is the asymptotic size of the search space.

(2) For the BJMM(2) approach, C(R,L, V ) = max
{

Σ2

2 ,Σ2−U1, 2Σ2−U1−U0, 2Σ1−U0−QL
}
,

where optimizing Vi, Ei under the constraints that

Vi =
Vi−1

2
+ Ei, and Σi = (R+ L)h

(
Vi

R+ L

)
+ ZVi,

Ui = Vi + (R+ L− Vi)h

(
Ei+1

R+ L− Vi

)
+ ZEi+1.

From the proof of Theorem 2 given in [15], in fact, it is trivial to extend the proof of the
above theorem to any restricted set S = ([−b, b]∩Z) \ {0}, where b ≪ q−1

2 . Therefore, we may
apply the above theorem for S = ([−b, b] ∩ Z) \ {0}.

Another method to solve the Hamming-metric restricted syndrome decoding problem is via a
lattice-based attack using BKZ algorithm [17]. This algorithm finds a short vector of a lattice L.
Its complexity is 20.292β and 20.265β for classical and quantum computers respectively, where β is
the block size. We can determine the minimum block size β by setting the 2-norm of the shortest

vector to be δd · Vol(L)1/d, where d is the dimension of the lattice L, δ = ((πβ)
1
β · β

2πe )
1

2(β−1)

and Vol(L) is the volume of the lattice.
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2.4 Quasi-Cyclic Codes

In this section, we define the notion of quasi-cyclic codes and present some related problems.
We keep the notations as given in Section 2.1.

Definition 5 (Circulant Matrix). Let v = (v0, . . . , vk−1) ∈ Fk
q , the circulant matrix defined by

v is

V :=


v0 v1 . . . vk−1

vk−1 v0 . . . vk−2

...
...

. . .
...

v1 v2 . . . v0

 ∈ Fk×k
q .

For u,v ∈ Rq, the product w = uv can be computed as w = uV = vU , and wl =∑
i+j=l mod k uivj for l = 0, . . . , k − 1, where w = (w0, . . . , wk−1).

Definition 6 (Quasi-Cyclic Codes). A linear block code C of length ln over Fq is called a
quasi-cyclic code of index l if for any c = (c0, . . . , cl−1) ∈ C, the vector obtained after applying
a simultaneous circular shift in each block ci, for i = 0, . . . , l − 1, is also a codeword.

Definition 7 (Systematic 2-Quasi-Cyclic Codes, 2-QC Codes). A systematic 2-quasi-cyclic
[2k, k] code has generator matrix of the form [H Ik] ∈ Fk×2k

q and parity check matrix [Ik −HT ] ∈
Fk×2k
q , where Ik is the identity matrix of size k.

Definition 8 (Hamming-metric Restricted Syndrome Decoding Problem for 2-Quasi-Cyclic
Code (2QC-HRSDP)). Let q > 2 be a prime, n, k, z, w be positive integers such that n = 2k,
b ≪ q−1

2 and w < 2k. Let S = ([−b, b] ∩ Z) \ {0} so that |S| = 2b. Given a parity check
matrix H of a 2-quasi-cyclic code over Fq, a vector s = eHT ∈ Fn−k

q , w, S as input, where
e ∈ (S ∪ {0})n, the Hamming-metric Restricted Syndrome Decoding problem for 2-quasi-cyclic
code is to find a vector e ∈ (S ∪ {0})n such that s = eHT and wt(e) ≤ w.

Definition 9 (Decisional Hamming-metric Restricted Syndrome Decoding Problem for
2-Quasi-Cyclic Code (2QC-DHRSDP)). Let q > 2 be a prime, n, k, b, w be positive integers such
that n = 2k and b ≪ q−1

2 ; and S = ([−b, b] ∩ Z) \ {0} so that | S | = 2b. Given a parity check
matrix H of a 2-quasi-cyclic code over Fq, a vector s ∈ Fn−k

q , w, S as input, the Decisional
Hamming-metric Restricted Syndrome Decoding problem for 2-quasi-cyclic code is to determine
whether s is random or s is of the form s = eHT for some e ∈ (S ∪ {0})n with wt(e) ≤ w.

Due to the quasi-cyclic structure of a code, any blockwise circular shift of a codeword is also
a codeword. So, any circular shift of a syndrome will correspond to a blockwise circular shift
of the error pattern. It has been shown in [35] that the complexity of the ISD algorithm for
solving the syndrome decoding problem for 2-quasi-cyclic codes with n = 2k can be sped-up by
a factor of

√
k, i.e. in our case, the complexity is

2F (R,W )n/
√
k, (1)

where F (R,W ) is as given in Theorem 2.

3 HQCS-R Signature Scheme

In this section, we present HQCS-R, a new code-based digital signature scheme from quasi-
cyclic codes based on the Hamming-metric restricted syndrome decoding problem for quasi-
cyclic codes. Before we describe the proposed HQCS-R signature scheme, we first define the
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required parameters. Let λ be the security level. The public parameters are k, ℓ, le, ωc, p, q,
where k, ℓ, le, ωc, are positive integers and p, q are primes such that 2p < q − 1 ≤ ℓp. The
HQCS-R signature scheme is described in the following Algorithm 1, 2, 3.

Algorithm 1: Key Generation of HQCS-R Signature Scheme

Input : k, ℓ, le, ωc are integers and p, q are primes such that 2p < q − 1 ≤ ℓp, security
parameter λ

Output: pk = (h,b)
1 Choose random h ∈ Rq and random e1, e2 ∈ Ule

2 Compute b = (e1, e2)

[
h
Ik

]
in Rq

3 The public key is pk = (h,b) and the secret key is sk = e1

Algorithm 2: Signing of HQCS-R Signature Scheme

Input : public parameters (k, ωc, p, q), message m, pk = (h,b) and sk = e1
Output: signature S

1 Choose random u ∈ Rq and random v ∈ R∗
q

2 Compute c := H(m, v, [vu]p, [vuh]p, pk) ∈ V1,ωc

3 Compute s := u+ v−1ce1 in Rq

4 if [vs]p ̸= [vu]p or [vsh− cb]p ̸= [vuh]p then
5 go to 1
6 else
7 accept the signature
8 end if
9 The signature is S = (c, s,v)

Algorithm 3: Verification of HQCS-R Signature Scheme

Input : message m, public key pk, signature S = (c, s,v)
Output: the validity of the signature

1 Compute t := vsh− cb
2 Compute c′ := H(m, v, [vs]p, [t]p, pk)
3 if c′ = c then
4 S is a valid signature
5 else
6 S is an invalid signature
7 end if

Correctness:

vs = vu+ ce1 mod q = (vu mod q) + (ce1 mod q),

t = vsh− cb = (vuh+ ce1h)− c(e1h+ e2)

= vuh− ce2 mod q = (vuh mod q)− (ce2 mod q).
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If [vs]p = [vu]p and [t]p = [vuh]p, then c′ := H(m,v, [vs]p, [t]p, pk) = H(m,v, [vu]p, [vuh]p, pk)
= c.

In the following, we will give a lower bound of the acceptance rate of a signature during the
signature generation.

Lemma 3. Let ℓ = ⌊ q
p⌋, ω := le · ωc, and (cel)i be the i-th coordinate of cel for l = 1, 2, where

i = 0, . . . , k − 1. Define ρj = Pr(j ≤ (cel)i ≤ ω) = Pr(−ω ≤ (cel)i ≤ −j) for 1 ≤ j ≤ ω,
l = 1, 2.

(i) Let w := vu+ ce1 mod q and w = (w0, . . . , wk−1). Let (vu)i be the i-th coordinate of vu

for i = 0, . . . , k − 1. Then Pr([wi]p ̸= [(vu)i]p) ≤
2(ℓ+1)

∑ω
j=1 ρj

q .

(ii) Let t = vuh− ce2 mod q and t = (t0, . . . , tk−1). Let (vuh)i be the i-th coordinate of vuh

for i = 0, . . . , k − 1. Then Pr([ti]p ̸= [(vuh)i]p) ≤
2(ℓ+1)

∑ω
j=1 ρj

q .

Proof. Let Br := [rp, (r + 1)p− 1] for r = 0, . . . , ℓ− 1 and Bℓ := [ℓp, q − 1].

(i) Note that (vu)i ∈ Br for some r ∈ [0, ℓ], and wi = (vu)i + (ce1)i mod q. Moreover,
since c ∈ V1,ωc and e1 ∈ Ule , then (ce1)i ∈ {−ω,−(ω − 1), . . . , 0, 1, . . . , ω}k in modq for
0 ≤ i ≤ k−1, where (ce1)i is the i-th coordinate of ce1. Then, {[wi]p ̸= [(vu)i]p} is contained in
ℓ⋃

r=0

ω−1⋃
j=0

{(vu)i = rp+ j ∧ (ce1)i ≤ −(j + 1)}∪
ℓ−1⋃
r=0

ω−1⋃
j=0

{(vu)i = rp+ p− j − 1 ∧ (ce1)i ≥ j + 1}

∪
ω−1⋃
j=0

{(vu)i = q − j − 1 ∧ (ce1)i ≥ j + 1}. Therefore,

Pr ([wi]p ̸= [(vu)i]p) ≤
ℓ∑

r=0

ω−1∑
j=0

Pr ((vu)i = rp+ j ∧ (ce1)i ≤ −(j + 1))

+

ℓ−1∑
r=0

ω−1∑
j=0

Pr ((vu)i = rp+ p− j − 1 ∧ (ce1)i ≥ j + 1)

+

ω−1∑
j=0

Pr ((vu)i = q − j − 1 ∧ (ce1)i ≥ j + 1)

=

ℓ∑
r=0

ω−1∑
j=0

ρj+1

q
+

ℓ−1∑
r=0

ω−1∑
j=0

ρj+1

q
+

ω−1∑
j=0

ρj+1

q

= 2(ℓ+ 1)

ω−1∑
j=0

ρj+1

q
= 2(ℓ+ 1)

ω∑
j=1

ρj
q
.

(ii) The proof of (ii) is similar to that of (i).

Theorem 3. Let ρ :=
∑ω

j=1 ρj, where ρj = Pr(j ≤ (cel)i ≤ w) for l = 1, 2.

(i) The probability that [vs]p = [vu]p is at least (1− 2(ℓ+1)ρ
q )k.

(ii) The probability that [vsh− cb]p = [vuh]p is at least (1− 2(ℓ+1)ρ
q )k.

Proof. (i) Let w = vs = vu + ce1 mod q and w = (w0, . . . , wk−1). For 0 ≤ i ≤ k − 1,

by Lemma 3 (i), we have Pr([wi]p ̸= [(vu)i]p) ≤ 2(ℓ+1)
∑ω

j=1 ρj

q = 2(ℓ+1)ρ
q . Then, Pr([wi]p =
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[(vu)i]p) ≥ 1− 2(ℓ+1)ρ
q . In other words, Pr([(vs)i]p = [(vu)i]p) ≥ 1− 2(ℓ+1)ρ

q . Hence, Pr([vs]p =

[vu]p) ≥ (1− 2(ℓ+1)ρ
q )k.

(ii) The proof of (ii) is similar to that of (i).

Theorem 4. The acceptance rate of a signature in the signature generation is at least (1 −
2(ℓ+1)ρ

q )2k.

Proof. This is a direct consequence of Theorem 3 (i) and (ii).

Proposition 1. Let Z = (cel)i ∼ N (0, σ2), for l = 1, 2 where σ is the standard deviation of

(cel)i. Then, ρ ≤
∑3

j=0 nj · p̂j, where p̂j = Pr(Z ≥ jσ), nj−1 = ⌈σj⌉−⌈σ(j−1)⌉ for j = 1, 2, 3,

n3 = ω −
∑2

j=0 nj and p̂0 = 0.5. It is noted that p̂1 = 0.15865, p̂2 = 0.02275 and p̂3 = 0.00135.

Proof. Recall that ρ :=
∑ω

j=1 ρj . So, ρ =
∑n0

j=1 ρj +
∑n0+n1

j=n0+1 ρj +
∑n0+n1+n2

j=n0+n1+1 ρj +∑ω
j=n0+n1+n2+1 ρj ≤

∑n0

j=1 p̂0 +
∑n1

j=1 p̂1 +
∑n2

j=1 p̂2 +
∑n3

j=1 p̂3 =
∑3

j=0 nj · p̂j .

Corollary 1. The acceptance rate of a signature in the signature generation is at least (1 −
2(ℓ+1)

∑3
j=0 nj ·p̂j

q )2k, where p̂0 = 0.5, p̂1 = 0.15865, p̂2 = 0.02275 and p̂3 = 0.00135; and nj−1 =

⌈σj⌉ − ⌈σ(j − 1)⌉ for j = 1, 2, 3, n3 = ω −
∑2

j=0 nj and assume n3 > 0.

Proof. By applying Proposition 1 to Theorem 4, we obtain the result.

4 Security Proof

In this section, we prove that the proposed HQCS-R signature scheme is existential unforgeable
under adaptive chosen message attack (EUF-CMA), assuming the hardness of Hamming-metric
restricted syndrome decoding problem for quasi-cyclic codes.

Definition 10 (EUF-CMA Security). A signature scheme is existential unforgeable under adap-
tive chosen message attack (EUF-CMA) if given a public key pk to any polynomial-time adver-
sary A who can access the signing oracle Sign(sk, ·) and query a number of signatures, then the
success probability (denoted as Pr[Forge]) of the adversary A in producing a valid signature σ
for a message m which has not been previously queried to the signing oracle is negligible.

The advantage of an adversary A in solving a problem B, denoted as Adv(B), is the prob-
ability that A successfully solves problem B. We now define the following assumptions which
are used to prove the security of the proposed signature scheme.

Assumption 1 (2QC-HRSDP, Hamming-metric Restricted Syndrome Decoding Assumption For
2-Quasi-Cyclic Code). The Hamming-metric restricted syndrome decoding assumption for 2-
quasi-cyclic code is the assumption that the advantage of an adversary A in solving 2QC-HRSDP
is negligible, i.e. Adv(2QC-HRSDP) < ϵ2QC-HRSDP.

Assumption 2 (2QC-DHRSDP, Decisional Hamming-metric Restricted Syndrome Decoding As-
sumption For 2-Quasi-Cyclic Codes). The decisional Hamming-metric restricted syndrome de-
coding assumption for 2-quasi-cyclic codes is the assumption that the advantage of an adversary
A in solving 2QC-DHRSDP is negligible, i.e. Adv(2QC-DHRSDP) < ϵ2QC-DHRSDP.

Theorem 5. Under the 2QC-HRSDP, 2QC-DHRSDP assumptions, the HQCS-R signature scheme
with parameters (k, ℓ, le, ωc, p, q) is secure under the EUF-CMA model in the classical random
oracle model.
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Proof. In this security proof, we consider an EUF-CMA adversary A interacting with the real
signature scheme, and we will define a sequence of games Gi for i ≥ 0. The game G0 is
the original EUF-CMA game, where the adversary A is first given a public key (h,b) and is
allowed to make qs signing queries and qH hash (Hash) queries; in the end, A outputs a message-
signature pair with the condition that the message has not been queried to the signing oracle. It
is noted that when the hash (Hash) oracle is queried, it also queries the signing oracle to ensure
it produces a correct signature. Then, the hash oracle outputs the value c. Let Pri[Forge]
be the probability of an event in game Gi that A produces a valid signature of a message
not previously queried to the signing oracle. Then Pr0[Forge] is the success probability of an
adversary A and we shall show that Pr0[Forge] is negligible.
• Game G0: This is the standard game of EUF-CMA for the signature scheme HQCS-R. The
adversary A can access the signing oracle and obtain valid signatures with success probability
Pr0[Forge].
• Game G1: In this game, if there is a collision in Hash, then we abort the game. The number
of queries to the hash oracle or the signing oracle throughout the game is at most qs + qH. Let
η =

(
k
ωc

)
2ωc and µ =

(
qs+qH

2

)
. Thus,

| Pr0[Forge]− Pr1[Forge] | = 1−
(
η − 1

η

)µ

≈ µ

η
≈ (qs + qH)2

2
(
k
ωc

)
2ωc

≤ (qs + qH)2(
k
ωc

)
2ωc

.

• Game G2: In Game G1, we have s = u+ v−1ce1, now we replace s by a random s̄ in Rq.
As u and v−1ce1 are random in Rq, then s looks random in Rq and the adversary is unable to
distinguish between s and the randomly-generated s̄. Then, choose v̄ and the hash oracle sets
c̄ = H(m, v̄, [v̄s̄]p, [v̄s̄h− c̄b]p, pk) and we have

Pr2[Forge] = Pr1[Forge].

• Game G3: In this game, the public key b is replaced by a random b′ ∈ R. Distinguishing
between these two games G3 and G2 is the same as distinguishing between a well-formed
public key b and a randomly-generated one b′. To distinguish Game G3 from Game G2, the

adversary is in fact distinguishing (e1, e2)

[
h
Ik

]
from a random element of Rq. Thus, we have

| Pr2[Forge]− Pr3[Forge] | ≤ ϵ2QC-DHRSDP.

Furthermore, in this game, an adversary A has no signature information on b′ and needs to
solve a Hamming-metric restricted syndrome decoding problem for 2-quasi-cyclic codes in order
to forge a signature. Thus,

| Pr3[Forge] | ≤ ϵ2QC-HRSDP.

Combining the above, the success probability of an adversary A is

|Pr0[Forge]| ≤
2∑

i=0

|Pri[Forge]− Pri+1[Forge]|+ |Pr3[Forge]| ≤
(qs + qH)2(

k
ωc

)
2ωc

+ ϵ2QC-DHRSDP + ϵ2QC-HRSDP.

5 Security Analysis

In this section, we analyze the security of the proposed HQCS-R signature scheme against
both key recovery attacks and signature forgeries. Throughout this section, let λ be the target
security level.
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5.1 Key Recovery Attack

Finding the secret key (e1, e2) from the public key (h,b) is equivalent to solving the syndrome

decoding problem with syndrome b and parity check matrix [h Ik] as b = (e1, e2)

[
h
Ik

]
. Since

e1, e2 ∈ Ule and le ≪ q−1
2 , then we may apply Theorem 2 and Equation (1) to choose the

parameters such that the complexity of solving this is at least 2λ.
One may also recover the secret key (e1, e2) by finding a shortest vector on a related lattice

using the BKZ algorithm [17]. The complexity of this lattice-based attack is 20.292β and 20.265β

for classical and quantum computer respectively, where β is the block size used in the BKZ
algorithm. We then set the parameters so that 0.292β > λ for λ-bit classical security level.

5.2 Signature Forgery

5.2.1 Collision

For a signature scheme based on the Schnorr scheme, we must prevent collisions of hash values
among different messages. In order to avoid such collisions, we may use a collision-free hash
function or a secure hash function that minimizes collisions, i.e. it satisfies ωc + log2

(
k
ωc

)
≥ 2λ.

5.2.2 Forgery From Known Public Key

From a given public key b = e1h + e2, one may try to forge a signature as follows. Choose
random ē2 ∈ Ule for some le > 0 and compute ē1 as ē1 := (b−ē2)h

−1 ∈ Rq. Then, we construct
a signature s̄ = u + v−1cē1, for some u ∈ Rq and v ∈ R∗

q . In the following proposition, we

show that the probability that [vs̄]p = [vu]p is less than 2−λ, where λ is the security level.

Lemma 4. For 0 ≤ i ≤ k − 1, the probability Pr([(vs̄)i]p = [(vu)i]p) <
p
q .

Proof. Since the forged signature is s̄ = u + v−1cē1, then we have vs̄ = vu + cē1 ∈ Rq.
Let (cē1)i, (vs̄)i and (vu)i be the i-th coordinate of cē1, vs̄ and vu respectively, where
i = 0, . . . , k − 1. Since the value of (z)i is evaluated modulo q, where z = cē1,vs̄,vu, then
(z)i ranges from 0 to q − 1. Let ℓ = ⌊ q

p⌋ and q ≡ rp mod p, that is, q = ℓp + rp with

0 < rp < p. Then, {[(vs̄)i]p = [(vu)i]p} =
⋃ℓ−1

r=0

⋃p−1
j=0 {(vu)i = rp+ j ∧ (cē1)i < p− j} ∪⋃rp−1

j=0 {(vu)i = ℓp+ j ∧ (cē1)i < p− j} . Therefore,

Pr ([(vs̄)i]p = [(vu)i]p) =

ℓ−1∑
r=0

p−1∑
j=0

Pr ((vu)i = rp+ j ∧ (cē1)i < p− j)

+

rp−1∑
j=0

Pr ((vu)i = ℓp+ j ∧ (cē1)i < p− j)

=

ℓ−1∑
r=0

p−1∑
j=0

1

q
· p− j

q
+

rp−1∑
j=0

1

q
· p− j

q

=
ℓ

q2
· p(p+ 1)

2
+

1

q2
· (2p− rp + 1)rp

2

=
1

2q2

(
ℓp(p+ 1) + rp(2p− rp + 1)

)
.
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Note that (ℓp(p+ 1) + rp(2p− rp + 1)) = ℓp(p+ 1) + (q − ℓp)(2p− rp + 1) = ℓp(p+ 1) + 2pq −
(rp − 1)q − ℓp(2p− rp + 1) = 2pq − (rp − 1)q − ℓp(p− rp) < 2pq as (rp − 1)q + ℓp(p− rp) > 0.
Hence, Pr ([(vs̄)i]p = [(vu)i]p) <

p
q .

Proposition 2. The probability that [vs̄]p = [vu]p is less than (pq )
k.

Proof. By Lemma 4, Pr ([(vs̄)i]p = [(vu)i]p) <
p
q . So, Pr ([vs̄]p = [vu]p) < (pq )

k.

By Proposition 2, we conclude that it is not possible to perform forgery of signature using
this method as (pq )

k < 2−λ, where λ is the security level.

6 Parameters Selections

Based on the above security analysis, the parameters (k, q, p, ωc) of the signature scheme must
be chosen properly in order to achieve λ-bit computational security. We first compute a lower

bound for the acceptance rate τ of the signature. By Corollary 1, τ = (1 − 2(ℓ+1)ρ
q )2k. By

Lemma 1, the standard deviation of cei (for i = 1, 2) is σ =
√
kσcσe, where σc and σe are the

standard deviation of c and ei respectively.
The parameters (called HQCS-R-i for i ∈ {1, 2, 3}) for various acceptance rates achieving

128-bit security level are given in Table 1. In this table, ρ and τ are from Corollary 1 and
”Experi.” is the experiment result obtained from the simulations. It shows that Corollary 1
provides a good lower bound of the acceptance rate.

Table 1: Parameters and acceptance rate of the HQCS-R signature
Name k q p ℓ le ωc σ ρ τ Experi.

HQCS-R-1 1511 2,131,128,193 16,780,537 126 2 73 12.0830 8.7240 0.99683 0.99823
HQCS-R-2 1511 2,147,446,991 16,518,823 130 3 71 16.8522 11.4321 0.99566 0.99763
HQCS-R-3 1619 32,230,149,377 125,899,021 256 4 91 24.6306 16.8779 0.99910 0.99955

We now compute the key sizes of the HQCS-R signature scheme. The public key h and v
of the signature S can be generated via a pseudorandom function with seed input of length 2λ.
Then, the public key size is ⌈(k⌈log2 q⌉+2λ)/8⌉ bytes, the secret key size is ⌈k⌈log2(2le+1)⌉/8⌉
bytes, and the signature size is ⌈(k⌈log2 q⌉ + 2λ + k⌈log2(3)⌉)/8⌉ bytes. We list the key sizes
for various parameters of 128-bit security level in Table 2.

We restrict the number of signatures to be at most 264. Assume that the number of sig-
natures generated is 109 per second, then it will take 584.94 years to generate 264 signatures.
Hence, we can restrict the number of signatures generated to be at most 264.

Table 2: Key sizes of the HQCS-R signature
Name Size (in Bytes)

PK SK Sg

HQCS-R-1 5,888 567 6,265

HQCS-R-2 5,888 567 6,265

HQCS-R-3 7,520 810 7,520

In Table 2, PK, SK and Sg denote the public key, secret key and signature sizes respectively.
The proposed parameters are based on the complexity of solving the BKZ algorithm [17] as the
BKZ algorithm [17] gives much lower complexity than that of Equation (1). From Table 2, the
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public key size, secret key size and signature size of the proposed signature scheme HQCS-R-1
are 5888 bytes, 567 bytes and 6265 bytes respectively for 128-bit classical security level.

Table 3: Comparison of various code-based signature schemes (at certain classical security
levels)

Scheme PK size SK size Sg size C.Sec
HQCS-R-1 5.888 KB 0.567 KB 6.265 KB 128

MURAVE-C1 [25] 5.33 KB 1.24 KB 9.69 KB 128
RYDE [2] 69 B 32 B 2.988 KB 128
CROSS [6] 77 B 32 B 12.432 KB 128
LESS [5] 13.940 KB 32 B 2.625 KB 128

MEDS [19] 9.923 KB 1.828 KB 9.896 KB 128
WAVE23 [36] 3.60 MB 2.27 MB 737 B 128
CCJ23 [16] 90 B 231 B 12.52 KB 128
SDitH25 [28] 70 B 163 B 3.705 KB 128
BCS21 [8] 38.15 MB 21.8 KB 720 B 128

HWQCS-I [39] 2.645 KB 754 B 7.935 KB 128
cRVDC19 [12] 0.152 KB 0.151 KB 22.480 KB 125

Note: The parameter of HWQCS-I [39] is revised after the attack found in [30].

Table 3 provides a comparison of key sizes and signature sizes for various code-based signa-
ture schemes. We do not include the FuLeeca [34], Durandal-I19 [3], and enhanced pqsigRM [18]
signature schemes in the comparison as they have been attacked in [24], [4], [21] respectively.
From Table 3, we observe that the proposed HQCS-R-1 has a smaller signature size than most
other schemes, with only WAVE23 [36], BCS21 [8], LESS [5], SDitH25 [28], and RYDE [2]
being smaller. Among these, WAVE23 [36], BCS21 [8], and LESS [5] have much larger public
key sizes (ranging from about 14 KB to 38 MB), while SDitH25 [28] and RYDE [2] have both
smaller signature and public key sizes. Overall, HQCS-R-1 achieves a competitive balance in
public key and signature size compared to other existing code-based signature schemes. We
remark that SDitH25 [28] and RYDE [2] are constructed using the MPC-in-the-head paradigm,
while the proposed HQCS-R uses a fundamentally different construction technique.

7 Conclusion

In this work, we introduced HQCS-R, a novel Hamming-metric code-based signature scheme.
A formal security proof for this scheme was provided, showing that the proposed HQCS-R
signature scheme is EUF-CMA secure in the random oracle model, assuming the hardness of the
Hamming-metric restricted syndrome decoding problem for 2-quasi-cyclic codes. Additionally,
a lower bound for the acceptance rate of the signature scheme was computed. Based on these
analyses, we proposed some concrete parameters for the HQCS-R signature scheme. We remark
that HQCS-R-1 achieves competitive key and signature sizes compared to other existing code-
based signature schemes, with only SDitH25 [28] and RYDE [2] (which are constructed using a
completely different approach called the MPC-in-the-head method) having smaller public key
and signature sizes. In particular, HQCS-R-1 achieves 128-bit security level with a public key
size of 5888 bytes, a secret key size of 567 bytes, and a signature size of 6265 bytes.
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