EPiC Series in Computing Sl
omputing

Volume 94, 2023, Pages 369-385

Proceedings of 24th International Conference on Logic

for Programming, Artificial Intelligence and Reasoning E ; EE

Representation, Verification, and Visualization of
Tarskian Interpretations for Typed First-order Logic

Alexander Steen', Geoff Sutcliffe?, Pascal Fontaine®, and Jack McKeown?

! University of Greifswald, Greifswald, Germany
alexander.steenQuni-greifswald.de
2 University of Miami, Miami, USA
geoff@cs.miami.edu, jam771@miami.edu
3 University of Liége, Licge, Belgium
Pascal.Fontaine@Quliege.be

Abstract
This paper describes a new format for representing Tarskian-style interpretations for
formulae in typed first-order logic, using the TPTP TFO0 language. It further describes a
technique and an implemented tool for verifying models using this representation, and a
tool for visualizing interpretations. The research contributes to the advancement of au-
tomated reasoning technology for model finding, which has several applications, including
verification.

1 Introduction

Historically, Automated Theorem Proving (ATP) has, as the name suggests, focused largely on
the task of proving theorems from axioms — the derivation of conclusions that follow inevitably
from known facts [28]. The axioms and conjecture to be proved (and hence become a theorem)
are written in an appropriately expressive logic, and the proofs are often similarly written
in logic [45]. In this work simply-typed first-order logic in the form of [52, 30, 12], whose
expressive power is sufficient for a wide range of topics [40], is used (This work is also applicable
to untyped first-order logic where terms have the type ¢ and formulae have the type o, and
can also be generalized to higher-order logics.) In the last two decades the converse task of
disproving conjectures, i.e., proving that a conjecture is not a theorem of the axioms, has become
increasingly important. This process depends on finding an interpretation, i.e., a structure that
maps terms to domain elements and formulae to truth values. An interpretation that maps a
formula to true is a model of the formula. A conjecture is disproved by finding an interpretation
that is a model of the axioms, but is not a model of the conjecture, aka a countermodel for the
conjecture. A salient application area that harnesses this form of ATP is verification [14], where
a countermodel is used to pinpoint the reason why a proof obligation fails, and correspondingly
points to the location of the fault in the system being verified. Other applications of model
finding include checking the consistency of an axiomatization [32], and finding a solution to a
problem that is coded as a model finding problem [53]. This work describes a (new) format for
representing interpretations using a TPTP language - Sections 2 and 3.

R. Piskac and A. Voronkov (eds.), LPAR 2023 (EPiC Series in Computing, vol. 94), pp. 369-385

Representation, Verification, and Visualization of Interpretations Steen, Sutcliffe, Fontaine, McKeown

In addition to ATP systems that produce interpretations (typically models), e.g., Paradox
[11], Vampire [22], and Nitpick [9], there is a need for tools that support examination and use
of interpretations. This paper considers the tasks of verifying models and visualizing interpre-
tations, and describes new tools for these tasks - Sections 4 and 5.

Related Work: In [45] a TPTP format for interpretations with finite domains was defined,
and it has been adopted by some ATP systems, e.g., Paradox and Vampire. The SMT-LIB
standard [6] defines a format for model output, and commands to inspect models. SAT solvers
generally output models as specified by the SAT competitions [20], in a simple format similar
to the DIMACS input format [4]. Some individual model finding systems have defined their
own formats for models, e.g., the output formats of Nitpick and Z3 [13].

Related work on model verification and interpretation visualization is sparse. In personal
communications with members of the Vampire team it was revealed that Vampire can internally
verify finite models in TPTP format by using the model formulae to evaluate the given formulae.
This approach is limited to finite models. In personal communications with the developer of
Paradox he explained his approach, which is to use a trusted model finder to show that the model
formulae and the given formulae are together satisfiable. This shows that the model formulae
are consistent with the given formulae, but does not verify the model — as the developer said,
it is a “poor-man’s model verifier!”.

For interpretation visualization, the Mace4 model finder [25] outputs textual information
about the models it finds, including the interpretation of constants as integers, and tables
for the function and predicate symbols’ interpretations. The tables are naturally limited to
symbols of arity up to two (which is just fine for algebras, where Mace4 is often applied). The
only graphical visualization tool that has been found is described in [29], which provided (past
tense — it is no longer available) a visualization of finite first-order interpretations as produced
by Paradox. The visualization had some nice features, e.g., showing functions as constructor
functions, and reducing the visual clutter when displaying relations with properties such as
symmetry, transitivity, etc. In other ways that work was quite different from the visualization
described in this work.

This paper is organized as follows: Section 2 introduces the TPTP World which provides
the framework and languages used in this research. Section 3 discusses the nature of inter-
pretations, and describes the new representation of interpretations using a TPTP language.
Section 4 provides the theory for verifying models, and describes the implementation of that
theory in a model verification tool. Section 5 introduces a novel way of visualizing interpre-
tations, and proposes a tool for automating the visualization of interpretations written in the
TPTP language. Section 6 concludes and discusses plans for future work.

2 The TPTP World and Languages

The TPTP World [40] is a well established infrastructure that supports research, development,
and deployment of ATP systems. The TPTP World includes the TPTP problem library [37], the
TSTP solution library [38], standards for writing ATP problems and reporting ATP solutions
[45, 36], tools and services for processing ATP problems and solutions [38], and it supports
the CADE ATP System Competition (CASC) [39]. Various parts of the TPTP World have
been deployed in a range of applications, in both academia and industry. Since the first release
of the TPTP problem library in 1993, many researchers have used the TPTP World as an

370

Representation, Verification, and Visualization of Interpretations Steen, Sutcliffe, Fontaine, McKeown

appropriate and convenient basis for ATP system research and development. Over the years
the TPTP World has provided a platform upon which ATP users have presented their needs to
ATP system developers, who have then adapted their ATP systems to the users’ needs. The
web page https://www.tptp.org provides access to all components.

The TPTP language [41] is one of the keys to the success of the TPTP World. The lan-
guage is used for writing both problems and solutions, which enables convenient communication
between systems. Originally the TPTP World supported only first-order clause normal form
(CNF) [46]. Over the years full first-order form (FOF) [37], typed first-order form (TFF)
[44, 10], typed extended first-order form (TXF) [43], typed higher-order form (THF) [42, 21],
and non-classical forms (NTF) ! [33] have been added. A general principle of the TPTP lan-
guage is “we provide the syntax, you provide the semantics”. As such, there is no a priori
commitment to any semantics for the languages, although in almost all cases the intended logic
and semantics are well known. All the typed forms include constructs for arithmetic. TFO [44],
the monomorphic subform of TFF, is used in this work (see Section 2.1).

The top level building blocks of the TPTP language are annotated formulae. An annotated
formula has the form:

language(name, role, formula, source, useful_info)

The languages supported are cnf (clause normal form), fof (first-order form), t£f (typed first-
order form), and thf (typed higher-order form). The role, e.g., axiom, lemma, conjecture, defines
the use of the formula in an ATP system. In a formula, terms and atoms follow Prolog con-
ventions — functions and predicates start with a lowercase letter or are ’single quoted’, and
variables start with an uppercase letter. The language also supports interpreted symbols,
which either start with a $, e.g., the truth constants $true and $false, or are composed of non-
alphabetic characters, e.g., integer/rational /real numbers such as 27, 43/92, -99.66. The logical
connectives in the TPTP language are !, 7, ~, |, &, =>, <=, <=>, and <~>, for the mathematical
connectives V, 3, =, V, A, =, <=, <, and @ respectively. Equality and inequality are expressed
as the infix operators = and '=. The source and useful_info are optional. Annotated formulae
(using TFO0) can be seen in Figures 1-5.

2.1 The TFO0 Language

TFO is a typed first-order language. The TFO types are (i) the predefined types $i for individuals
and $o for booleans; (ii) the predefined arithmetic types $int, $rat, and $real; (iii) user-defined
types declared to be of the kind $tType. Every symbol is declared with a type signature:
(i) individual types for variables; (ii) function types from non-boolean argument types to a
non-boolean result type; (iii) predicate types from non-boolean argument types to a boolean
result. The equality predicates = and != are ad hoc polymorphic over all types. Arithmetic
predicates and functions are ad hoc polymorphic over the arithmetic types. Figures 1 and 2
are examples of problems in TF0. Their associated (counter)models are discussed in Section 3.

3 Interpretations

A Tarskian-style interpretation [47] of formulae in typed first-order logic consists of a non-empty
domain of unequal elements for each type used in the formulae (just one domain for untyped
logic), and interpretations of the function and predicate symbols with respect to the domains

IThere are many “non-classical logics”, including multi-valued logics [3], paraconsistent logics [27], relevance
logics [2], etc. In this work we are interested in those that admit Kripke interpretation [23], e.g., modal logics

(8]-

371

https://www.tptp.org

Representation, Verification, and Visualization of Interpretations Steen, Sutcliffe, Fontaine, McKeown

%__ _ _ _ _

tff (human_type,type, human: $tType).

tff (cat_type,type, cat: $tType).
tff(jon_decl,type, jon: human).
tff(garfield_decl,type, garfield: cat).

tff (arlene_decl,type, arlene: cat).

tff (nermal_decl,type, nermal: cat).

tff (loves_decl,type, loves: cat > cat).

tff (owns_decl,type, owns: (human * cat) > $o).

tff(only_jon,axiom, ! [H: human] : H = jon).

tff(only_garfield_and_arlene_and_nermal,axiom,
! [C: cat] : (C = garfield | C = arlene | C = nermal)).

tff(distinct_cats,axiom,
(garfield != arlene & arlene != nermal & nermal != garfield)).

tff(jon_owns_garfield_not_arlene,axiom,
(owns(jon,garfield) & ~ owns(jon,arlemne))).

tff(all_cats_love_garfield,axiom,
! [C: cat] : (loves(C) = garfield)).

tff (jon_owns_garfields_lovers,conjecture,
! [C: cat]
((loves(C) = garfield & C != arlene) => owns(jon,C))).

%__ . _—— —_ ———————

Figure 1: A TFO problem (with a finite countermodel)
https://raw.githubusercontent.com/GeoffsPapers/ModelVerificationLPAR/master/TFF_Finite.p

tff (person_type,type, person: $tType).
tff (bob_decl,type, bob: person).
tff (child_of_decl,type, child_of: person > person).

tff(is_descendant_decl,type, is_descendant: (person * person) > $o).

tff (descendents_different,axiom,
! [A: person,D: person] : (is_descendant(A,D) => (A !=D))).

tff (descendent_transitive,axiom,
! [A: person,C: person,G: personl]
((is_descendant(A,C) & is_descendant(C,G)) => is_descendant(A,G))).

tff(child_is_descendant,axiom,
! [P: person] : is_descendant(P,child_of(P))).

tff(all_have_child,axiom,
! [P: person] : 7 [C: person] : (C = child_of(P))).

%__ _ _ _ _

Figure 2: A TFO problem (with an infinite model)
https://raw.githubusercontent.com/GeoffsPapers/ModelVerificationLPAR/master/TFF_Infinite.p

372

https://raw.githubusercontent.com/GeoffsPapers/ModelVerificationLPAR/master/TFF_Finite.p
https://raw.githubusercontent.com/GeoffsPapers/ModelVerificationLPAR/master/TFF_Infinite.p

Representation, Verification, and Visualization of Interpretations Steen, Sutcliffe, Fontaine, McKeown

[19, 16]. I+ ® means the interpretation I is a model of the formula ®. An interpretation can
normally interpret all expressions that can be written in the language of the formulae, but in
some circumstances an interpretation can interpret only (at least) the given formulae; such an
interpretation is a partial interpretation.

The domains of an interpretation may be finite or infinite. Interpretations with only finite
domains are called finite interpretations, and interpretations with one or more infinite domains
are called infinite interpretations. Finite domains are commonly explicitly enumerated, but
can also take other forms, e.g., the finite Herbrand Universe of a Herbrand interpretation [17].
Infinite domains can take several forms, including being implicitly specified (e.g., some set of
algebraic numbers, such as the integers), explicitly generated (e.g., terms representing Peano
numbers), and the infinite Herbrand Universe of a Herbrand interpretation.

In addition to Tarskian-style interpretations that provide explicit symbol interpretation, a
Herbrand interpretation can also be embodied in a saturation [5], i.e., a fixed point for a set of
clauses at which further application of a complete inference system does not generate any new
clauses. This approach is adopted in saturation-based ATP systems such as E [31], Prover9
[24], Vampire, and Zipperposition [51]. While the domain of a saturation is known to be the
Herbrand Universe, there is no explicit symbol interpretation that can be used constructively
by users. Saturations are thus a less useful form of interpretation. This work considers only
Tarskian-style interpretations.

The notions of interpretations, models, partial interpretations, finite interpretations, Her-
brand interpretations, etc., are captured in the SZS ontologies [36], as updated at https:
//www.tptp.org/cgi-bin/SeeTPTP?Category=Documents&File=SZS0ntology

3.1 Representing Interpretations in TFO0

As noted in Section 1, a TPTP format for interpretations with finite domains has previously
been defined, and was been adopted by some ATP systems. Recently the need for a format
for interpretations with infinite domains, and for a format for Kripke interpretations [23] of
formulae written in the NTF language [33], led to the development of a new TPTP format
for interpretations. The changes allow for multiple interpretations to be given in a single
file, which, in the case of typed logics, share type declarations. The underlying principle is
unchanged: interpretations are represented as formulae. This provides the basis for verification
of models, as explained in Section 4.

The new format uses an interpretation formula. Examples of interpretation formulae can be
seen in Figures 3 and 4, illustrating the components described next. An interpretation formula
is a conjunction of three components:

e a conjunction of the domain specifications for the types in the given formulae: for each
type a type-promotion function that converts domain elements to terms is used to keep
the interpretation formula well-typed; each domain specification is a conjunction of:

— the domain type, by a formula that makes the type-promotion function a surjection
(unless it is unnecessary because the type is defined and is the same as the type in
the given formulae, e.g., both are $int);

— the domain elements (unless implicit from their defined type): if the domain is finite
this is a universally quantified disjunction of equalities whose right-hand sides are the
terms; if the domain is infinite an existentially quantified formula that captures an
infinite disjunction of equalities is used, e.g., for terms representing Peano numbers
as the domain elements:

VI:peano ((I = zero) V IAP:peano (I = s(P)));

373

https://www.tptp.org/cgi-bin/SeeTPTP?Category=Documents&File=SZSOntology
https://www.tptp.org/cgi-bin/SeeTPTP?Category=Documents&File=SZSOntology

Representation, Verification, and Visualization of Interpretations Steen, Sutcliffe, Fontaine, McKeown

— specification of the distinctness of the domain elements (unless implicit from their
defined type);

— a formula making the type-promotion function an injection, which together with the
surjectivity makes it a bijection.

e interpretation of the function symbols, as equalities whose left-hand sides are formed
from symbols applied to type-promoted domain elements, and whose right-hand sides are
type-promoted domain elements;

e interpretation of the predicate symbols, as literals formed from symbols applied to type-
promoted domain elements; positive literals are true and negative literals are false.

The interpretation formula is preceded by the necessary type declarations:

e the types in the given formulae (except defined types, e.g., $int);
e the types of the domains (except defined types);

e the types of type-promotion functions;

e the types of the domain elements.

This representation is also directly usable for untyped first-order logic, where all terms in
the given formulae and the interpretation formula are of the same type — “individuals”. This
obviates the need for type considerations, in particular type-promotion functions are not needed.

Figure 3 is a TFO interpretation with finite domains — it is a countermodel for the problem
in Figure 1. The comments show which parts of the formula specify what aspects of the
interpretation. Figure 4 is a TFO0 interpretation with an infinite domain — it is a model for
the problem in Figure 2. Note that in Figure 4: the defined type $int is the domain type for
the formula type person, so that there is no specification of the domain elements and their
distinctness; universal quantification is used for the interpretation of function and predicate
symbols for an infinite number of argument tuples; the interpretations of function and predicate
symbols is not given for argument tuples with negative integers, i.e., this is an example of a
partial interpretation.

4 Model Verification

ATP systems are complex pieces of software, implementing complex calculi, with the end goal
being a sound implementation of a sound inference system whose output correctly corroborates
the result obtained. The reality is that the complexity leads to incorrectness, and as such
verification of ATP systems’ outputs is necessary. For theorem proving this means verifying the
proof output [34], and for model finding this means verifying the model output. In the context of
this work the model verification applies to the type declarations and the interpretation formula
that represent the model found by the ATP system, and has (at least) the following aspects:

1. Are the type declarations and interpretation formula syntactically well-formed and se-
mantically well-typed?

2. Is the interpretation formula satisfiable?

3. Does the interpretation formula correctly represent the interpretation found by the ATP
system?

4. Is the interpretation represented by the interpretation formula a model for the given
formulae?

These questions are answered as follows:

374

Representation, Verification, and Visualization of Interpretations Steen, Sutcliffe, Fontaine, McKeown

%__ e ————————————— e

tff (human_type,type, human: $tType).
tff(cat_type,type, cat: $tType).
tff(jon_decl,type, jon: human).
tff(garfield_decl,type, garfield: cat).

tff (arlene_decl,type, arlene: cat).

tff (nermal_decl,type, nermal: cat).

tff (loves_decl,type, loves: cat > cat).

tff (owns_decl,type, owns: (human * cat) > $o).

%----Types of the domains
tff (d_human_type,type, d_human: $tType).

tff(d_cat_type,type, d_cat: $tType).

%———--Types of the promotion functions

tff (d2human_decl,type, d2human: d_human > human).
tff(d2cat_decl,type, d2cat: d_cat > cat).
%———--Types of the domain elements
tff(d_jon_decl,type, d_jon: d_human).

tff(d_garfield_decl,type, d_garfield: d_cat).
tff(d_arlene_decl,type, d_arlene: d_cat).
tff (d_nermal,type, d_nermal: d_cat).

tff(garfield,interpretation,

%——--The domain for human is d_human
((! [H: human] : 7 [DH: d_human] : H = d2human(DH)
%—-—--The d_human elements are {d_jon}
& ! [DH: d_human] : (DH = d_jon)
%—-—--The type-promoter is a bijection

& ! [DH1: d_human,DH2: d_human]
(d2human(DH1) = d2human(DH2) => DH1 = DH2)

%----The domain for cat is d_cat
& ' [C: cat] : ? [DC: d_cat] : C = d2cat(DC)
%----The d_cat elements are {d_garfield,d_arlene,d_nermal}

& ! [DC: d_cat]: (DC = d_garfield | DC = d_arlene | DC = d_nermal)
& $distinct(d_garfield,d_arlene,d_nermal)

%—----The type-promoter is a bijection
& ' [DC1: d_cat,DC2: d_cat] : (d2cat(DC1) = d2cat(DC2) => DC1 = DC2))
%——--Interpret terms via the type-promoted domain

& (jon = d2human(d_jon)
garfield = d2cat(d_garfield)
arlene = d2cat(d_arlene)
nermal = d2cat(d_nermal)
loves(d2cat(d_garfield)) = d2cat(d_garfield)
loves(d2cat(d_arlene)) = d2cat(d_garfield)
loves(d2cat(d_nermal)) = d2cat(d_garfield))
%—-—--Interpret atoms as true or false
& (owns(d2human(d_jon) ,d2cat(d_garfield))
& ~ owns(d2human(d_jon) ,d2cat(d_arlene))
& ~ owns(d2human(d_jon) ,d2cat(d_nermal))))).

%__ _ _ —_

rrereee

Figure 3: A TFO interpretation with a finite domain
https://raw.githubusercontent.com/GeoffsPapers/ModelVerificationLPAR/master/TFF_Finite.s

375

https://raw.githubusercontent.com/GeoffsPapers/ModelVerificationLPAR/master/TFF_Finite.s

Representation, Verification, and Visualization of Interpretations Steen, Sutcliffe, Fontaine, McKeown

tff (person_type,type, person: $tType).
tff (bob_decl,type, bob: person).
tff (child_of_decl,type, child_of: person > person).

tff(is_descendant_decl,type, is_descendant: (person * person) > $o).

tff (int_to_person_decl,type, int_to_person: $int > person).

tff (people,interpretation,
%----Domain for type person is the integers

((! [P: person] : 7 [I: $int] : int_to_person(I) = P

%----The type promoter is a bijection (injective and surjective)

& ' [I1: $int,I2: $int]
(int_to_person(Il) = int_to_person(I2) => I1 = I2))

%—-—---Mapping people to integers. Note that Bob’s ancestors will be interpreted
%-—--as negative integers.

& (bob = int_to_person(0)
& ! [I: $int] : child_of (int_to_person(I)) = int_to_person($sum(I,1)))

%----Interpretation of descendancy

& ! [A: $int,D: $int]
(is_descendant (int_to_person(A),int_to_person(D)) <=> $less(A,D)))).

Figure 4: A TFO interpretation with an infinite domain
https://raw.githubusercontent.com/GeoffsPapers/ModelVerificationLPAR/master/TFF_Integer.s

. This can be confirmed using standard parsing and type checking tools, e.g., [50, 18].

. This can be empirically confirmed using a trusted model finder (in the same way the

GDV derivation verifier [34] uses the Otter system [20] as a trusted theorem prover).
Confirming that the interpretation formula is satisfiable is almost certainly much easier
than finding the model itself, so the system used to check the satisfiability can be weaker
and more trusted than the system that found the model.

. This cannot be confirmed, as that representation is internal to the ATP system that found

the model.

. In this work a “semantic” approach is taken, in which the given formulae ¢ are proved

from the interpretation formula ¢ using a trusted theorem prover; ¢ is supplied as an
axiom, and ® as the conjecture to be proved. This approach relies on the proof of
soundness below, which shows that if ® can be proved from ¢ (written ¢ = ®), then the
interpretation I represented by ¢ is a model of ®.

An implementation is available online as the AGMYV tool in the SystemOnTSTP [35] web
interface https://www.tptp.org/cgi-bin/SystemOnTSTP. The tool input is the concatena-
tion of the problem and the interpretation. Figure 5 shows the verification problem for
the problem in Figure 2 and its model in Figure 4. The input to verify the finite counter-
model in Figure 3, for the problem in Figure 1, is https://raw.githubusercontent.com/
GeoffsPapers/ModelVerificationLPAR/master/TFF_Finite.sp.AGMV.p.

The proof of soundness is given here for a finite interpretation in untyped first-order logic,

where (as explained in Section 3.1) there is no need for type considerations. The proof for
typed first-order logic follows exactly the same pattern, but is technically complicated due to

376

https://raw.githubusercontent.com/GeoffsPapers/ModelVerificationLPAR/master/TFF_Integer.s
https://www.tptp.org/cgi-bin/SystemOnTSTP
https://raw.githubusercontent.com/GeoffsPapers/ModelVerificationLPAR/master/TFF_Finite.sp.AGMV.p
https://raw.githubusercontent.com/GeoffsPapers/ModelVerificationLPAR/master/TFF_Finite.sp.AGMV.p

Representation, Verification, and Visualization of Interpretations Steen, Sutcliffe, Fontaine, McKeown

tff (person_type,type, person: $tType).

tff (bob_decl,type, bob: person).

tff (child_of_decl,type, child_of: person > person).
tff(is_descendant_decl,type, is_descendant: (person * person) > $o).
tff (int_to_person_decl,type, int_to_person: $int > person).

%----The interpretation as an axiom

tff (people,axiom,
((' [P: person] : 7 [I: $int] : int_to_person(I) = P
& ! [I1: $int,I2: $int]
(int_to_person(I1l) = int_to_person(I2) => Il = I2))

& (bob = int_to_person(0)
& ! [I: $int] : child_of (int_to_person(I)) = int_to_person($sum(I,1)))
& ' [A: $int,D: $int]
(is_descendant (int_to_person(A),int_to_person(D)) <=> $less(A,D)))).
%-—---The conjecture is to prove the axioms of the problem

tff (prove_formulae,conjecture,
(! [A: person,D: person] : (is_descendant(A,D) => A !=D)
& ! [A: person,C: person,G: person]
((is_descendant(A,C) & is_descendant(C,G)) => is_descendant(A,G))
[P: person] : is_descendant(P,child_of(P))
[P: person] : ? [C: person] : C = child_of(P))).

%__ _ _ _ _

& !
& !

Figure 5: The TFO verification problem for Figures 2 and 4
https://raw.githubusercontent.com/GeoffsPapers/ModelVerificationLPAR/master/TFF_Integer.s.p

the introduction of types and type promotion functions. The extension to infinite domains is
quite simple after that, following Section 3.1.

Proof
Let ¥ be an untyped first-order language:

e V5 - The variable symbols, starting in uppercase.
e [- The function symbols with arity, in the form f/n.
e Ps - The predicate symbols with arity, in the form p/n.

The formulae over ¥, F(X), are defined as usual.

Let I be an interpretation for X:

e D; - A finite set of unequal domain elements.
e Fr - For each f/n € Fx, a mapping fr : D} — Dy.
e P; - For each p/n € Py, a mapping py : D} — {true, false}.

377

https://raw.githubusercontent.com/GeoffsPapers/ModelVerificationLPAR/master/TFF_Integer.s.p

Representation, Verification, and Visualization of Interpretations Steen, Sutcliffe, Fontaine, McKeown

Recalling Section 3.1, an interpretation is represented by an interpretation formula, ¢. Let:

e D, be a set of fresh terms d, one for each d; € Dy
e D, 1 be the corresponding mapping from D, to D;
e X, be the untyped first-order language:

~ Ve, = Vh
- FEW:FX)UDW
~ P =Py

e ¢ € F(X,) = D) A D7 AF, A P), where:

Dl =vX \/ (X=d,)

du€D,
D?; = /\ (dy # €y)
{dp,e0}CDy
doZep
Fp= N (e =dy)
fEFs, freFy

(dr,i—=>dr)€fr
Dysr(dy,i)=dr,;
Dw—ﬂ(dcp):dl

AN .
Py = /\ p(dy,i)
pEPs, prePr
(dr,i—true)€pr
Dysr(dy,i)=dr i

/\ —p(dy.i)
PEPs, pr€Pr
(dl,inalse)Epz
Doyrs1(dy,i)=dr,i

>

Let I, be an interpretation for ¥,:

o D[‘p:D[
L FI¢:FIUDLP>—>I
o PI«p:PI

Lemma. I, - ¢

Proof. To prove I, &= ¢, prove I, = D/, I, I- Df, I, = F} and I, - P):

e For every d;, € Dy, or equivalently d; € Dy:

— There is a d, € D, such that Dy, ,7(d,) = d;
- (X =d,) e D}
— With X set to dj

I, (dr =dy,) iff

d; = Fy(d,) iff

dr = DwHI(dw)

which is ¢rue from the selection of d,

For every dj, € Dy, with X set to d;, a disjunct in D:,f is true, i.e., I, - Dg

378

Representation, Verification, and Visualization of Interpretations Steen, Sutcliffe, Fontaine, McKeown

e For every (d, # e,) in Djf:

— I, F (dy # ey) iff
Fi,(dy) # Fi,(ey) iff
Dyosi(dy) # Dymsi(ey) iff
dr #eg
which is true from the definition of Dy

Thus every inequality in DZfI is true, therefore DZf is true, i.e., I, - DZf

e For every (f(dy) = d,) in F):

Lo () = do)
Fi, (f(dy F,(dy) iff
fI(90’—”()) = Dwal(dw) iff

fr(drs) = dl
which is true from the use of Fr in FQ

Thus every equality in F) is true, therefore F) is true, i.e., I, F F)

e For every (positive) p(dy ;) in P):

-1, Fp(T) iff
PI (p(F1,(dy:))) i
PI(Dyrsi(dy,i)) iff
pr(dr;)

which is true from the use of P in PQ

Thus every (positive) p(d, ;) in P} is true. Analogously, every (negative) —p(dy ;) in P}
is false. Therefore P) is true, i.e., I, - P}

O

Theorem. Let ® € F(X), I an interpretation for X, and ¢ the interpretation formula for I.
If o l=® then I+ ®.

Proof.

o If o =& then I, - ®
because every model of ¢ is a model of ®, and I, is a model of ¢ by the Lemma.

o [, FQIfIF®
because ¢ contains no symbols from D, and I, is the same as I with respect to all other

symbols.

e Thus if ¢ = ® then I - ®.

379

Representation, Verification, and Visualization of Interpretations Steen, Sutcliffe, Fontaine, McKeown

5 Interpretation Visualization

Proof visualization is well-established, with several tools available, e.g., Evonne [1] is an inter-
active proof visualization software for description logics; ProofTree [48] is a proof visualization
tool focused on interactive theorem proving within Coq; Treehehe [7] was designed generically
to visualize any proof tree but currently it supports only a handful of pre-existing proofs and
does not allow users to visualize their own proofs; and the Interactive Derivation Viewer (IDV)
[49] is a tool for visualization of TPTP format proofs. Interpretation visualization, however,
has (to the knowledge of the authors) had minimal attention, as noted in Section 1. Visualiza-
tion of interpretations is useful in areas such as teaching logic, debugging ATP systems, and
understanding of a model.

A visualization for TFO interpretations has been designed in this work, and an initial imple-
mentation is available as the ITV tool in SystemOnTSTP. IIV is built on top of IDV, and has
benefited from the mature state of IDV. IDV was originally a Java applet, but has since been
ported to HTML/JavaScript using GraphViz [15] for the layout and rendering. ITV has bene-
fited from the mature state of IDV. The implementation is “initial” because it is fully automated
for only finite TFO and FOF interpretations; for infinite interpretations different components
of the interpretation formula have to be manually extracted into separate annotated formulae,
to mimic a derivation that IDV can render.

Figure 6 is the visualization of the finite countermodel in Figure 3. The top row of inverted
triangles are the types in the given formulae, while the bottom row of inverted triangles are
the types of the domains. The inverted houses are the function and predicate symbols, and
the successive rows of ovals are the successive domain element arguments used to specify the
symbols’ interpretations. Finally, the row of houses and boxes are the interpretations of the
symbols applied to those arguments; houses for domain elements and boxes for truth values.
Paths from leaf type nodes to root type nodes show the interpretation of symbols and the
domain elements. For example, in Figure 6 the result type of loves is cat, and loves(d_arlene)
is interpreted as d_garfield, which is of type d_cat in the interpretation formula.

IIV has interactive features: In Figure 6 the cursor is hovering over the d nermal node on
the path from owns to $false, showing that owns(d_jon,d nermal) is interpreted as $false. The
nodes above are increasingly darker red (grey if printed) up to the $o node that is the result
type of owns, and increasingly darker blue down to the $o node that is the type of $true.
This highlighting provides easy focus on the interpretation of chosen symbols, e.g., hovering
over inverted house nodes shows what symbols applied to what domain elements are inter-
preted as which domain elements and boolean values, and hovering over oval nodes shows how
different domain elements affect the interpretation of symbols. This visualization is available
in ITV using https://raw.githubusercontent.com/GeoffsPapers/ModelVerificationLPAR/master/
TFF_Finite.s as the “URL to fetch from”, selecting IIV 0.0 as the “System”, and clicking the
“Process Solution” button.

Figure 7 is the visualization of the infinite model in Figure 4. Here (universally quantified)
variables are used to represent an infinite number of domain elements, and built-in arithmetic
predicates are used to compute symbols’ mappings. The cursor is hovering over the X:$int
node, showing how child of (X) is interpreted as $sum(X,1).

6 Conclusion

This paper describes the new TPTP format for representing Tarskian-style interpretations for
formulae in typed first-order logic, using the TPTP TFO language. It further describes a

380

https://raw.githubusercontent.com/GeoffsPapers/ModelVerificationLPAR/master/TFF_Finite.s
https://raw.githubusercontent.com/GeoffsPapers/ModelVerificationLPAR/master/TFF_Finite.s

Representation, Verification, and Visualization of Interpretations Steen, Sutcliffe, Fontaine, McKeown

=

Figure 6: Visualization of the interpretation in Figure 3

technique and an implemented tool for verifying models using this representation, and a tool
for visualizing interpretations. The research contributes to the advancement of automated
reasoning technology for model finding, which has several applications, including verification.

Currently this work is being extended to Kripke interpretations for formulae in non-classical
typed first-order logic [33], using the TPTP NXO language [41]. The tool to translate interpre-
tation formulae to the format required for input to the IIV tool is being extended to infinite
interpretations. Further inspiration might also lead to improvements to IIV’s visualizations,
especially for more complex infinite interpretations.

References

[1] C. Alrabbaa, F. Baader, S. Borgwardt, R. Dachselt, P. Koopmann, and J. Méndez. Evonne:
Interactive Proof Visualization for Description Logics (System Description). In J. Blanchette,
L. Kovacs, and D. Pattinson, editors, Proceedings of the 11th International Joint Conference on
Automated Reasoning, number 13385 in Lecture Notes in Artificial Intelligence, pages 271-280,
2022.

[2] A.R. Anderson and N.D. Belnap. FEntailment: The Logic of Relevance and Necessity, Vol. 1.
Princton University Press, 1975.

[3] L. Augusto. Many-valued Logics: A Mathematical and Computational Introduction. College Pub-
lications, 2017.

[4] D. Babic. Satisfiability Suggested Format. https://www.domagoj-babic.com/uploads/
ResearchProjects/Spear/dimacs-cnf.pdf, 1993.

381

Representation, Verification, and Visualization of Interpretations Steen, Sutcliffe, Fontaine, McKeown

[5]

(11]

382

t

Figure 7: Visualization of the interpretation in Figure 4

L. Bachmair, H. Ganzinger, D. McAllester, and C. Lynch. Resolution Theorem Proving. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, pages 19-99. Elsevier
Science, 2001.

C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.6.
https://smtlib.cs.uiowa.edu, 2017.

C. Battel. Treehehe: An interactive visualization = of proof trees.
https://github.com/seachel /treechehe, 2018.

P. Blackburn, J. van Benthem, and F. Wolther. Handbook of Modal Logic. Number 3 in Studies
in Logic and Practical Reasoning. Elsevier Science, 2006.

J. Blanchette and T. Nipkow. Nitpick: A Counterexample Generator for Higher-Order Logic
Based on a Relational Model Finder. In M. Kaufmann and L. Paulson, editors, Proceedings of the
1st International Conference on Interactive Theorem Proving, number 6172 in Lecture Notes in
Computer Science, pages 131-146. Springer-Verlag, 2010.

J. Blanchette and A. Paskevich. TFF1: The TPTP Typed First-order Form with Rank-1 Polymor-
phism. In M.P. Bonacina, editor, Proceedings of the 24th International Conference on Automated
Deduction, number 7898 in Lecture Notes in Artificial Intelligence, pages 414-420. Springer-Verlag,
2013.

K. Claessen and N. Sorensson. New Techniques that Improve MACE-style Finite Model Finding.
In P. Baumgartner and C. Fermueller, editors, Proceedings of the CADE-19 Workshop: Model
Computation - Principles, Algorithms, Applications, 2003.

Representation, Verification, and Visualization of Interpretations Steen, Sutcliffe, Fontaine, McKeown

[12]

[13]

[14]

(15]

[16]
(17]

(18]

19]
[20]

21]

22]

23]
24]
[25]
[26]
27]

(28]
[29]

(30]

31]

A.G. Cohn. A More Expressive Formulation of Many Sorted Logic. Journal of Automated Rea-
soning, 3(2):113-200, 1987.

L. de Moura and N. Bjgrner. Z3: An Efficient SMT Solver. In C. Ramakrishnan and J. Rehof,
editors, Proceedings of the 14th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, number 4963 in Lecture Notes in Artificial Intelligence, pages
337-340. Springer-Verlag, 2008.

V. D’Silva, D. Kroening, and G. Weissenbacher. A Survey of Automated Techniques for Formal
Software Verification. IEEE Transactions on Computer-aided Design of Integrated Circuits and
Systems, 27(7):1165-1178, 2008.

J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull. Graphviz - Open Source Graph
Drawing Tools. In P. Mutzel, M. Junger, and S. Leipert, editors, Proceedings of the 9th Interna-
tional Symposium on Graph Drawing, number 2265 in Lecture Notes in Computer Science, pages
483-484. Springer-Verlag, 2002.

J. Gallier. Logic for Computer Science - Foundations of Automatic Theorem Proving. Dover
Publications, 2015.

J. Herbrand. Recherches sur la Théorie de la Démonstration. Traveux de la Société des Sciences
et des Lettres de Varsovie, Class III, Sciences Mathématiques et Physiques, 33, 1930.

F. Horozal and F. Rabe. Formal Logic Definitions for Interchange Languages. In M. Kerber,
J. Carette, C. Kaliszyk, F. Rabe, and V. Sorge, editors, Proceedings of the International Conference
on Intelligent Computer Mathematics, number 9150 in Lecture Notes in Computer Science, pages
171-186. Springer-Verlag, 2015.

G. Hunter. Metalogic: An Introduction to the Metatheory of Standard First Order Logic. University
of California Press, 1996.

M. Jarvisalo, D. Le Berre, O. Roussel, and L. Simon. The International SAT Solver Competitions.
Al Magazine, 33(1):89-92, 2012.

C. Kaliszyk, G. Sutcliffe, and F. Rabe. TH1: The TPTP Typed Higher-Order Form with Rank-1
Polymorphism. In P. Fontaine, S. Schulz, and J. Urban, editors, Proceedings of the 5th Workshop
on Practical Aspects of Automated Reasoming, number 1635 in CEUR Workshop Proceedings,
pages 41-55, 2016.

L. Kovacs and A. Voronkov. First-Order Theorem Proving and Vampire. In N. Sharygina and
H. Veith, editors, Proceedings of the 25th International Conference on Computer Aided Verification,
number 8044 in Lecture Notes in Artificial Intelligence, pages 1-35. Springer-Verlag, 2013.

S. Kripke. Semantical Considerations on Modal Logic. Acta Philosophica Fennica, 16:83-94, 1963.
W.W. McCune. Prover9. http://www.cs.unm.edu/ mccune/prover9/.

W.W. McCune. Mace4 Reference Manual and Guide. Technical Report ANL/MCS-TM-264,
Argonne National Laboratory, Argonne, USA, 2003.

W.W. McCune. Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-263, Argonne
National Laboratory, Argonne, USA, 2003.

G. Priest. Paraconsistent Logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosoph-
ical Logic, volume 6, pages 287—-393. Springer-Verlag, 2002.

A. Robinson and A. Voronkov. Handbook of Automated Reasoning. Elsevier Science, 2001.

C. Schlyter. Visualization of a Finite First Order Logic Model. Master’s thesis, Department of
Computer Science and Engineering, University of Gothenburg, Géteborg, Sweden, 2013.

M. Schmidt-Schauss. A Many-Sorted Calculus with Polymorphic Functions Based on Resolution
and Paramodulation. In Joshi A., editor, Proceedings of the 9th International Joint Conference
on Artificial Intelligence, pages 1162-1168. IJCAI Organization, 1985.

S. Schulz, S. Cruanes, and P. Vukmirovi¢. Faster, Higher, Stronger: E 2.3. In P. Fontaine,
editor, Proceedings of the 27th International Conference on Automated Deduction, number 11716
in Lecture Notes in Computer Science, pages 495-507. Springer-Verlag, 2019.

383

Representation, Verification, and Visualization of Interpretations Steen, Sutcliffe, Fontaine, McKeown

[32] S. Schulz, G. Sutcliffe, J. Urban, and A. Pease. Detecting Inconsistencies in Large First-Order
Knowledge Bases. In L. de Moura, editor, Proceedings of the 26th International Conference on Au-
tomated Deduction, number 10395 in Lecture Notes in Computer Science, pages 310-325. Springer-
Verlag, 2017.

[33] A. Steen, D. Fuenmayor, T. Gleifiner, G. Sutcliffe, and C. Benzmiiller. Automated Reasoning
in Non-classical Logics in the TPTP World. In B. Konev, C. Schon, and A. Steen, editors,
Proceedings of the 8th Workshop on Practical Aspects of Automated Reasoning, number 3201 in
CEUR Workshop Proceedings, page Online, 2022.

[34] G. Sutcliffe. Semantic Derivation Verification: Techniques and Implementation. International
Journal on Artificial Intelligence Tools, 15(6):1053-1070, 2006.

[35] G. Sutcliffe. TPTP, TSTP, CASC, etc. In V. Diekert, M. Volkov, and A. Voronkov, editors,
Proceedings of the 2nd International Symposium on Computer Science in Russia, number 4649 in
Lecture Notes in Computer Science, pages 6—22. Springer-Verlag, 2007.

[36] G. Sutcliffe. The SZS Ontologies for Automated Reasoning Software. In G. Sutcliffe, P. Rudnicki,
R. Schmidt, B. Konev, and S. Schulz, editors, Proceedings of the LPAR Workshops: Knowledge
Exchange: Automated Provers and Proof Assistants, and the 7th International Workshop on the
Implementation of Logics, number 418 in CEUR Workshop Proceedings, pages 3849, 2008.

[37] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. The FOF and CNF Parts,
v3.5.0. Journal of Automated Reasoning, 43(4):337-362, 2009.

[38] G. Sutcliffe. The TPTP World - Infrastructure for Automated Reasoning. In E. Clarke and
A. Voronkov, editors, Proceedings of the 16th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning, number 6355 in Lecture Notes in Artificial Intelligence,
pages 1-12. Springer-Verlag, 2010.

[39] G. Sutcliffe. The CADE ATP System Competition - CASC. AI Magazine, 37(2):99-101, 2016.

[40] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From CNF to THO,
TPTP v6.4.0. Journal of Automated Reasoning, 59(4):483-502, 2017.

[41] G. Sutcliffe. The Logic Languages of the TPTP World. Logic Journal of the IGPL, page
https://doi.org/10.1093/jigpal /jzac068, 2022.

[42] G. Sutcliffe and C. Benzmiiller. Automated Reasoning in Higher-Order Logic using the TPTP
THF Infrastructure. Journal of Formalized Reasoning, 3(1):1-27, 2010.

[43] G. Sutcliffe and E. Kotelnikov. TFX: The TPTP Extended Typed First-order Form. In B. Konev,
J. Urban, and S. Schulz, editors, Proceedings of the 6th Workshop on Practical Aspects of Auto-
mated Reasoning, number 2162 in CEUR Workshop Proceedings, pages 72-87, 2018.

[44] G. Sutcliffe, S. Schulz, K. Claessen, and P. Baumgartner. The TPTP Typed First-order Form
with Arithmetic. In N. Bjgrner and A. Voronkov, editors, Proceedings of the 18th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning, number 7180 in
Lecture Notes in Artificial Intelligence, pages 406-419. Springer-Verlag, 2012.

[45] G. Sutcliffe, S. Schulz, K. Claessen, and A. Van Gelder. Using the TPTP Language for Writing
Derivations and Finite Interpretations. In U. Furbach and N. Shankar, editors, Proceedings of the
3rd International Joint Conference on Automated Reasoning, number 4130 in Lecture Notes in
Artificial Intelligence, pages 67-81. Springer, 2006.

[46] G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release v1.2.1. Journal of
Automated Reasoning, 21(2):177-203, 1998.

[47] A. Tarski and R. Vaught. Arithmetical Extensions of Relational Systems. Compositio Mathematica,
13:81-102, 1956.

[48] H. Tews. Proof tree visualization for proof general. http://askra.de/software/prooftree/, 2017.

[49] S. Trac, Y. Puzis, and G. Sutcliffe. An Interactive Derivation Viewer. In S. Autexier and
C. Benzmiiller, editors, Proceedings of the 7th Workshop on User Interfaces for Theorem Provers,
volume 174 of Electronic Notes in Theoretical Computer Science, pages 109123, 2007.

384

Representation, Verification, and Visualization of Interpretations Steen, Sutcliffe, Fontaine, McKeown

[50]

[51]

[52]

53]

A. Van Gelder and G. Sutcliffe. Extending the TPTP Language to Higher-Order Logic with
Automated Parser Generation. In U. Furbach and N. Shankar, editors, Proceedings of the 3rd In-
ternational Joint Conference on Automated Reasoning, number 4130 in Lecture Notes in Artificial
Intelligence, pages 156-161. Springer-Verlag, 2006.

P. Vukmirovié¢, A. Bentkamp, J. Blanchette, S. Cruanes, V. Nummelin, and S. Tourret. Making
Higher-order Superposition Work. In A. Platzer and G. Sutcliffe, editors, Proceedings of the 28th
International Conference on Automated Deduction, number 12699 in Lecture Notes in Computer
Science, pages 415-432. Springer-Verlag, 2021.

C. Walther. A Many-Sorted Calculus Based on Resolution and Paramodulation. In Bundy A.,
editor, Proceedings of the 8th International Joint Conference on Artificial Intelligence, pages 882—
891, 1983.

S. Winker. Generation and Verification of Finite Models and Counterexamples Using an Auto-
mated Theorem Prover Answering Two Open Questions. Journal of the ACM, 29(2):273-284,
1982.

385

	Introduction
	The TPTP World and Languages
	The TF0 Language

	Interpretations
	Representing Interpretations in TF0

	Model Verification
	Interpretation Visualization
	Conclusion

