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Abstract

Cellular automata, being an apparatus for the implementation of discrete dynamic
models, play a special role in mathematical biology and in silico studies of microorganisms.
The study was undertaken to design 3D hybrid cellular automata-based model of bacterial
biofilm taking into account the surface spreading mechanism. The model formalization is
based on the cellular automaton algorithm of biofilm evolution, a discrete analogy for the
diffusion model of nutrient consumption, and an additional inoculation mechanism. The
proposed computational procedure allows to conduct simulations under variations of key
model parameters: the initial nutrient level, the probability of additional inoculation, and
the radius of random inoculation transfer. A series of in silico experiments was conducted
to investigate biofilm formation with a focus on ensuring two key factors: maximum space
occupation with minimal resource consumption.

1 Introduction

The in silico study of major groups of microorganisms has recently gained high importance
due to modern challenges from viruses and pathogen bacteria. Biofilms are the predominant
life-form of bacteria (estimates suggest that 99% of all bacteria exist in biofilm communities),
which provides for this survival. The formation of biofilms is a sophisticated and meticulously
controlled process where bacteria attach to surfaces and create organized, multicellular commu-
nities. These biofilms can emerge on a wide range of surfaces, including medical devices, natural
habitats, and human tissues. Bacterial biofilms possess a complex structure. Approximately
20% of the biofilm’s volume is encased within an extracellular matrix that fills up to 80% of the
structure. This matrix contains channels for the transport of nutrients and oxygen, as well as
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for the removal of waste products [5]. For certain bacteria, such as those belonging to the genus
Pseudomonas, the development of stable macrostructures is initiated or influenced by “quorum
sensing” as a relevant mechanism of bacterial communication [20, 33]. The formation of biofilms
provides for the enhancement of virulence factors in many bacteria, as well as the development
of resistance to antibacterial medicine. The significance of studying biofilm evolution arises
from the need to control the population of pathogenic bacteria, predict the level of resistance to
antimicrobial agents and disinfectants, and establish standards for the maintenance of medical
equipment to reduce the risk of nosocomial infections. Hence, comprehending the mechanisms
of biofilm formation is essential for identifying effective strategies for treating infections caused
by pathogens.

When investigating bacterial behavior and aiming to control infections, two fundamental
challenges emerge. Modeling bacterial growth: We must create accurate representations of
how bacteria multiply and consume nutrients in their surroundings. This involves develop-
ing mathematical models that simulate bacterial biomass increase in different nutrient media.
[15, 19, 25]. Unraveling quorum sensing: bacterial communities often communicate and coordi-
nate their actions through a process called “quorum sensing”. We need to fully understand the
mechanisms of this communication system, as it significantly influences how bacteria behave,
including their ability to form biofilms, produce toxins, and develop resistance to antibiotics
[8, 22, 23, 28, 32, 35], and the development of biofilm structures. The latter, in turn, can be
based on a variety of model concepts provided by deterministic, stochastic, and agent-based
approaches [17]. Deterministic time-dependent continuous models of microorganism growth are
mostly formalized with the use of partial differential equations and allow simulating evolution of
biofilm structure, in particular under the influence of external conditions, such as temperature,
pH, oxygen, and nutrient factors, or antimicrobial agents [3, 7, 12, 13]. The stochastic approach
to modeling bacterial biofilm evolution is based on Monte-Carlo simulation of microbial popu-
lations and randomness in behavior such as the probability of mutations (as an example, the
Gillespie algorithm and the Markov chain Monte-Carlo method are noted in [14]). In general,
agent-oriented models presume the use of individual-based simulation or cellular automaton
algorithms. Individual-based models permit one to simulate the individual behavior and wide
range of interactions between microorganisms [1, 21].

As an alternative methodology for biofilm modeling, the theory of cellular automata can be
applied. Cellular automata have become a powerful tool for modern simulations, serving as a
fundamental building block for a wide array of discrete-dynamical models across various fields.
This popularity can be attributed to advancements in information technology, the availability
of high-performance computing, the rise of interactive 3D modeling systems, and the clarity
and visual interpretability they offer in solving real-world problems. Cellular automata models
have proven particularly useful in understanding biological systems, including disease spread,
tissue and cell growth in organisms, and microbial community interactions [10, 18].

In the context of microbial systems, each cell in a cellular automaton model represents an
individual organism or element within a biofilm. The interaction rules within these models
determine how cells behave and interact with each other and their environment. This en-
ables researchers to analyze various aspects of biofilm growth, such as morphology, thickness,
growth rate, response to environmental changes, and dynamics of nutrient and oxygen con-
sumption. Cellular automata for biofilms find applications in biomedical and biotechnological
research, facilitating the development of strategies to control and manage biofilm evolution
[4, 11]. Various research groups have developed cellular automaton-based models for these
purposes [13, 21, 27, 30, 31]. A hybrid approach to modeling biofilm structure, combining a
continuous model for nutrient transport with a discrete cellular automaton model for individual
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cell behavior, has been proposed [27]. This approach offers a powerful way to capture both the
macroscopic and microscopic aspects of biofilm dynamics.

An original algorithm assumes a numerical solution of a differential problem to estimate the
evolution of nutrition for a discretized region, each element of which represents a fragment of
the biofilm structure. This model includes control parameters of the biosystem that determine
the adequacy of the model to observed processes. The study [13] highlights how fluid flow
patterns (hydrodynamics) significantly influence the distribution of nutrients and the resulting
spatial structure of biofilms. The model proposed in [21] demonstrates the importance of
individual cell behavior in the formation of biofilm structure and dynamics, emphasizing the
need for individual-based approaches in understanding biofilm formation. In [29], a classical
cellular automaton has been introduced to simulate the formation of a bacterial film from the
point of view of formalizing the rules of “life” of a discrete structure. Numerous processes that
accompany the formation of bacterial structures (nucleation, division, erosion, death) have been
formalized to create realistic scenarios for the evolution of the biosystem. As a consequence, the
complex formalization of the algorithm involves consideration of lattices of small dimensions.
However, the process of creating a unified concept of cellular automata modeling of the evolution
of biological films is far from complete. This is due to the fact that the simulated systems
belong to classes that are difficult to formalize and are distinguished by the heterogeneity of
their biocomposition, the diversity of genetic material, and the composition of self-organization
factors, the consequence of which is the formation of this dense structure.

In our previous studies, we designed and implemented 2D and 3D cellular automaton models
of bacterial biofilm formation [31]. The proposed algorithms have been based on simple rules
for modeling the spatial self-similar evolution in bacterial biofilm populations and specifying
geometric characteristics of porosity for visualized fractal aggregates. However, bacterial inoc-
ulation during the formation of a biofilm plays a potent role in the process of occupying the
available area containing the resource that supports the vital activity of these microorganisms.
In this regard, the relevant problem with the functionality of the model includes the special
procedure for bacterial surface spread during the evolution of biofilm.

This research focuses on enhancing a 3D cellular automaton model for simulating bacte-
rial biofilm formation. The model incorporates a surface spreading mechanism, capturing how
bacteria expand across surfaces. The key innovation is a hybrid algorithm that introduces
rules for simulating biofilm evolution realistically. These rules prioritize two crucial factors.
Maximum space occupation: the model incorporates an additional inoculation mechanism that
ensures bacteria effectively occupy available space. Minimal resource consumption: the model
minimizes the amount of resources required by the bacteria, reflecting their need for efficient
survival. By integrating these factors, the model provides a more accurate and realistic repre-
sentation of biofilm development, contributing to a deeper understanding of bacterial behavior
and the potential for controlling biofilm formation in various applications.

2 The conceptualization of microbiological system

Many bacteria, when living freely in their environment, have the ability to attach to surfaces,
whether these are living (biotic) or non-living (abiotic). If the conditions are right, this at-
tachment can lead to the formation of organized, complex, three-dimensional communities of
bacteria, known as biofilms. Biofilms are held together by special substances called organic
microbial polymers. These polymers act like glue, helping the bacterial cells stick together and
to their surroundings. The formation of a biofilm occurs in a series of stages [34]. The most
important ones are shown in Fig. 1.
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Figure 1: The typical development stages of a biofilm community.

The first stage of biofilm formation involves individual bacteria, known as planktonic cells,
moving around and attaching to a surface. This initial attachment is weak and reversible,
meaning the bacteria can easily detach again. These initial attachments are often facilitated
by forces like Van der Waals forces and hydrophobic effects [9].

After the initial contact, bacteria produce an extracellular polymeric matrix (EPS), which
anchors them more securely to the surface, making the attachment irreversible. Immersion of
bacteria in secreted EPS provides the necessary conditions for biofilm maturation and progress.
As the biofilm matures, the bacteria multiply and produce more EPS, creating a complex,
three-dimensional structure. This stage is marked by the formation of water channels that
allow nutrients and waste to be transported within the biofilm [6, 16, 26]. Finally, the fully
mature biofilm reaches its maximum cell density and can release microcolonies and single cells
to colonize new environments or new locations.

In the present study, the main focus was on the dispersal mechanism of biofilm formation.
The dispersal mechanism in bacterial biofilms is critically important because it facilitates the
spread of bacteria from the established biofilm to new environments, thereby contributing to
the colonization of new surfaces, the initiation of new infections, the increase of resistance to
treatments, genetic diversity, and environmental adaptation and the persistence of bacterial
populations in dynamic environments [2, 24].

Based on previous studies [27, 31], we will develop here a hybrid model of bacterial biofilm
evolution, which includes the following two foremost approaches: discrete-dynamical simulation
of a biofilm evolution and discrete analogies of time-dependent deterministic-continuous models
for the nutrient distributions and the consumption of nutrients by biomass.

Let us assume that a computational domain is represented by a confined space, namely a
rectangular parallelepiped with defined dimensions. This space is filled with a nutrient solution
containing a specific, hypothetical nutrient. Initially, individual bacterial cells are randomly
dispersed onto the bottom surface of the simulated environment. As time progresses, these
bacteria interact with each other and begin to grow, forming a larger mass. This growth process
consumes nutrients from the environment. The total nutrient concentration can be unlimited as
well as limited and controlled. The concentration of nutrients is numerically estimated during
the system dynamics. Also, we suppose the absence of inhibitory factors.

In this study, we used a combination of approaches to model bacterial behavior and growth.
3D Cellular automata: we represent individual bacterial cells and their interactions using 3D
cellular automata, a powerful tool for simulating complex systems at the cellular level.

Discrete analogies of the Monod equation: we employ discrete versions of the Monod equa-

196



3D Cellular Automata Model of Bacterial Biofilm Formation Maslovskaya, Sarukhanian, and Kuttler

tion, a well-established model for bacterial growth, to define how the growth rate of bacteria
depends on the availability of nutrients. Diffusion equation: we use the diffusion equation to
simulate how nutrients spread and become available to the bacteria in the simulated environ-
ment. This combined approach allows us to capture the dynamics of bacterial growth and
nutrient consumption realistically.

The process is observed for a fixed time, after which we measure the density of the bottom
surface coverage, the quantity and concentration of biomass, the remaining nutrient level, and
the fractal dimension of the resulting structure.

3 Model description

Let’s delve into the specifics of our designed cellular automaton-based hybrid model for simu-
lating biofilm-forming bacterial populations. This section will outline the core principles of how
the cellular automaton operates, including defining the fundamental elements and structure of
the model and setting up the initial arrangement of cells in the 3D space by establishing the
rules that determine how cells change state and interact within the model.

3.1 Grid geometry

Basically, models based on cellular automaton algorithms are discrete-dynamical models, which
permit us to formalize various biological systems. Following the cellular automaton approach,
each discrete element can be defined using states and all states are discrete and finite. A cell
of a cellular automaton grid can change state due to rules of local interaction. In this matter,
truncated octahedra can be applied to define the shape of the basic cells of the constructed 3D
cellular automaton. The truncated octahedron is a polyhedron with 14 faces (6 squares and
8 hexagons), which offers a unique and powerful approach for modeling 3D phenomena using
cellular automata (CA). The truncated octahedron exhibits isotropic behavior, meaning it has
equal properties in all directions. This is crucial for ensuring that the CA model does not favor
any particular direction, leading to more realistic and unbiased simulations. Truncated octa-
hedra perfectly fill 3D space, eliminating gaps and ensuring smooth transitions between cells,
unlike simpler shapes like cubes. This contributes to a more accurate representation of spatial
dynamics in simulations. The truncated octahedron has 14 neighbors, which can be categorized
into different layers (direct neighbors, second-layer neighbors, etc.). This complexity enables
one to implement sophisticated interaction rules between cells, capturing realistic interactions
within a 3D environment. The structure of the truncated octahedron permits it to be readily
adjusted by altering the relative sizes of its square and hexagonal faces, offering flexibility in
adapting the model to specific physical constraints or complexities.

However, the use of the truncated octahedron brings some challenges, such as the increased
number of neighbors can lead to increased computational complexity, especially for large-scale
simulations and implementation complexity. In addition, we should stress that the truncated
octahedron offers a compelling alternative to traditional cubical cells in 3D cellular automata.
Its isotropic, space-filling nature and complex neighbor relationships provide a powerful tool
for accurately capturing realistic 3D phenomena in various fields like biofilm modeling, fluid
dynamics, and materials science. While implementing a 3D cellular automaton model presents
certain challenges, the benefits it offers in terms of realism and detail outweigh these complexi-
ties. This makes it a promising approach for developing sophisticated and insightful simulations
of 3D phenomena.
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Neighboring of node schematically illustrated in Fig. 2. We define the rules for transitioning
from an element with an index [i, j, k] to Cartesian space.
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Figure 2: Planes directions associated with the neighbors and corresponding basis vectors for
a truncated octahedron cell.

Figure 2 shows all neighbor directions for a truncated octahedron node (a) and basis vector
directions for the node (b). Neighboring vectors are used for division and interaction, while
basis vectors are used to calculate position.

The following expression can be used for calculating the position of a node defined by vector
v according to its indices ¢, j, and k and basis vectors a;:

i = (2,0,0),
v(i,j, k) = idy + jaz + kaz, where az = (1,1,1), (1)
@ = (0,0,2).

3.2 Identifying cellular automata rules

To formalize the rules of operation of the cellular automaton, let us introduce here several
preliminary remarks and do some assumptions. In the context of biology, the term “cell” has
two meanings. To avoid confusion, we will use the term “unit” to refer to the nodes in the
cellular automaton grid. The term “cell” will be applied concerning bacterial cells (specifically,
“cell” refers to a populated “unit”). For the sake of simplicity in our model setup and analysis,
we have chosen to not explicitly model the extracellular polymeric substance (EPS) matrix,
which is a key component of biofilms. Instead, we assume that bacterial cells are already
embedded within this matrix. We also don’t consider the secretion of EPS beyond this initial
assumption. To further simplify, we will treat a single unit within our cellular automaton model
as representing a specific amount of biomass, essentially a group of bacterial cells rather than a
single cell. This allows us to focus on the overall dynamics of bacterial growth and interaction
without getting bogged down in the complexities of individual cell behavior.
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Therefore, we will consider the dynamic finite cellular automaton, which is formalized by
the triple of objects:
<X,A,0 >, (2)

where X is the set of automaton units; A is a finite set of unit states; © is a set of operators of
transition for various unit states related to the unit configuration.
We define the set of units X as follows:

X = {[0,0,0],[1,0,0], ..., [1,0,0],[0,1,0], ... [[, w, h] }. (3)

In this way, the set of units is indexed along the basis axes: [ denotes the length of the
computational domain, w is the width, and A is the height. The finite set of unit states can be
specified as:

(4)

A Cp — the bacterial mass concenctration,
(s — the nutrient mass concentration.

Each unit of the grid is characterized by a bacterial biomass concentration Cj and a nutrient
concentration C;. At the initialization phase, the value of C}, is set to the initial value C jn;t
of a unit. From the beginning, the initial values of the bacterial concentration, C} equals zero
for each unit of the grid, apart from defined units at the bottom of the computation domain,
for which we inoculated bacterial cells with the initial value Cyg.

We assume that diffusion occurs uniformly in all directions. This assumption is made
because the units share faces, unlike the diagonal neighbors of a cube. While it would be more
realistic to model how the presence of bacterial biomass within cells affects nutrient diffusion,
this would significantly increase the complexity of our calculations. Therefore, for the sake of
simplicity, we’ve chosen to omit this aspect from our model.

The set of transition operators between different unit states can be defined as follows:

@([Z; jv kD = (gdzf [Z; jv kL econs [’L, ja k]» Gdiv; gsp'r‘ead; apush); (5)

where 04;7[i, 7, k] is the transition operator related to mass-balance operators to define nutrient
concentration; O.ons[i, J, k| is the transition operator for nutrient consumption by a bacterial
cell; 844, is the transition operator to specify border cell division; 04preqq is the transition oper-
ator attributed to the occupation of available space due to inoculation; 6,y is the transition
operator related to division mechanism due to inner cells.

To ensure that the amount of nutrients remains consistent throughout our simulation, we
utilize Fick’s law. This law helps us describe how the concentration of nutrients changes over
time and space. Specifically, we use a general diffusion equation to model the movement of each
nutrient component:

2 2 2
aCS:D(a Cs+305+808)7 (6)
ot Ox? oy? 022
where the general notation Cj is related to the nutrient concentration value; D is the diffusion
coefficient.
Further, we apply equation (6) to estimate the concentrations of nutrient components by
the following rules for the cellular automaton:

M
Ouislin okl s Clivgikyt+0t) = Culingo bt + D( Y Culm,t) = MCyfijkt]), (1)

m=1
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where Cs(m,t) is a nutrient concentration of m-th neighbor of the unit at the iteration which
corresponds to the time ¢; M is the total number of neighbors around the unit.
The recalculation of biomass and nutrient concentrations is given using the following rules:

J[Zv jv k] = Mmaz e
B K+Cs[i,5,k]
econs[’L’j’k] ’ Cs[iaja k] = Cs[i7j7 k] _J[i’j’ k]’ (8)

Cb[i7ja k] = Cb[i7.ja k] + J[Zm]v k]a

where J is the uptake rate of nutrient concentration by bacteria; pmq. (known as the Michaelis
constant) is the maximum specific growth rate of the microorganism and K is the “half-velocity
constant” , which represents saturation constant of considered nutrient type.

In addition, the rule used to define the biomass division is followed by:

Cb[i,j, k] = Cb[ivjv k]/27

9
Cb[inewajnew’ knew] = Cb[i,j, k]/Qa ( )

Hdiv[iaj7 k] : {

where inew, Jnew, knew are coordinates for the new populated cell, which is neighboring to the
considered cell 4, j, k (the position of a new cell is selected randomly from the available set of
positions).
This rule is implemented only for cells, which meet the following conditions:
{Cb[l:ne.wa jneun knew] = 07 (10)
Cb[l,], k] > Claiv-

This implementation is possible for cells with a sufficiently high biomass concentration Cy[i, j, k]
and if it has a free neighbor Chlinew, jnews knew]. The transition operator €p,sp is related to
the pushing mechanism implemented when all neighboring units are occupied, and there is no
possibility of dividing into neighboring units. In this case, for simplicity, we assume that a unit
(to realize the division process) is chosen randomly from the set of all unoccupied neighbors of
cells located on the biofilm boundary.

The transition operator Ogp,,cqq corresponds to the spreading mechanism, which proceeds
as follows. First, we check the condition that the randomly selected number is less than the
probability parameter of the spread, and there is at least one unpopulated unit amongst the
units at the bottom of the region in the vicinity of an inoculating cell. This implies that
a random unit is selected amongst available units at the bottom of the area to realize the
inoculation process. By assumption, the vicinity of the region is a linearly dependent parameter
on the height of the inoculating cell.

In our model setup, we have assumed that the boundaries of our computational domain are
far enough away from the active areas where bacteria are growing that they don’t significantly
influence the processes happening within the model. Therefore, we’ve simplified our calculations
by not taking boundary effects into account. Furthermore, we update all the grid units in our
model simultaneously during each step of the simulation. This approach means that all changes
within the grid are applied at the same time, rather than sequentially.

4 Computational experiment results and discussion

The following section collects the procedure and the outcome of the algorithms.
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4.1 Algorithmization and software implementation aspects

By this statement, let us formalize the designed algorithm and determine the main processes
controlling the dynamics of the biosystem. Figure 3 illustrates the flowchart of the algorithm.

Main block of the program

Ve ™ L .
‘\ START/,“ Main cycle among all the units Block of processing control
I VCs[ijklEQs
[ Py . ) )
Initialization / Computing diffusion / F<0.05 yes
/ of nutrient /
o L J
/ Grid generation / e
/ / L J
[ | — Co>1 = iter<iterMax
_ Is there free unit
o) around the cell?
/| Setting inital parameters |
/ /
Main cycle among all the cells
no no
VChiijKIEQD ¥ yes 17
e N ] [ ) ]
a . Division /| Pushing | /' Inoculation / TN
[Calculation of nutrient consumption/ / [/ /] / [ END )
/ by the cells / - Jc = Jc__J \ )
J L \ J

Figure 3: The flowchart of the algorithm.

In the initial step, we initialize all parameters and generate the cellular automaton lattice.
Further, the main computation cycle is performed which includes two subcycles. The first sub-
cycle calculates the nutrient distribution for all units in the lattice according to (7). The second
subcycle is intended for all populated units (cells). In this case, the amount of nutrient con-
sumption is calculated for each cell. After that, the nutrient concentration in the cell decreases
while the bacterial mass concentration rises (8). Furthermore, if the biomass concentration of
a cell has reached the value necessary for division, one of the possible mechanisms of division is
selected. Primarily, we specify the possibility of inoculation by drawing a random number and
placing it within the confidence interval with an a priori established probability. If inoculation
is impossible due to probability, then, depending on the presence of free space, the division
mechanism is carried out (there is the possibility of division with relocation to an adjacent
unit) or the pushing mechanism is applied otherwise. After the implementation of the main
cycle, we increment the iteration index related to the time in simulations and check if it has
reached the maximum value (144000 in the computational experiments).

In the present study, we apply Unity and C# to perform simulation due to Unity’s 3D ren-
dering engine, which allows to visualize complex scientific data. The 3D model of biofilm growth
involves a large amount of data and its processing. Here is a breakdown of the key aspects of
the implementation. Independent computational modules: cellular automata algorithms are
well-suited for parallelization because each unit operates independently, relying only on its im-
mediate neighbors.The C# language provides built-in features like “Parallel” for implementing
parallel algorithms. This allows for efficient execution by utilizing multiple processor cores. The
model uses “Parallel.For” and “Parallel.Foreach” loops to execute tasks in parallel, speeding
up the simulation process. To prevent conflicts when multiple threads access the same data
simultaneously, the model incorporates lock objects, ensuring data integrity. This paralleliza-
tion approach significantly improves performance, specifically for simulating diffusion processes,
resulting in a 30-40% reduction in execution time. Biomass concentration threshold: each cell
in the model tracks its biomass concentration. When a cell reaches a sufficient level, it searches
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for a neighboring cell to divide into. If multiple available neighbors exist, the cell randomly
chooses one for division. The dividing cell increases the biomass concentration in the designated
neighbor cell, effectively creating a new cell. Newly created cells are added to a separate list.
After iterating through all cells, the new cells are rendered visually and incorporated into the
master list, while the temporary new cell list is cleared. This approach effectively prevents con-
tinuous recalculation of new cells, avoiding unnecessary looping and improving efficiency. The
simulation system effectively predicts the spatial and temporal distribution of bacterial popu-
lations within biofilms. The model can analyze and evaluate the geometrical characteristics of
surface roughness, providing insights into biofilm formation. The software implementation is
enhanced with a user interface, making it more user-friendly and accessible.

4.2 Simulation of biofilm growth

As part of computational experiments, we will set the goal of identifying patterns of biofilm
growth depending on the spreading process and conditions of nutrition limitation. Thus, when
conducting computational experiments, it is necessary to vary the control parameters of the
model, such as the level of initial nutrition, the probability of inoculation, and the initial
localization of the colony that affect the spatial-temporal distributions of bacterial biomass.
To assess the level of complexity and porosity of the structure, we will use the calculation of
the fractal dimension of the biofilm boundaries. In the computational experiments, we use
dimensional parameters to estimate spatial nutrient distribution and nutrient consumption by
bacteria. At the same time, we apply relative units to discrete-dynamical simulations of the
processes of biomass spreading due to inoculation, division, and pushing mechanisms. The
“real” time unit is associated with the iteration number Iter and the space unit is related to
the specific cellular automaton non-dimensional normalized unit (named as “CA unit”). Table 1
lists the set of key simulation parameters. We stress that most parameters rely on the conditions
of experiments and the surrounding environment, such as bacterial strain, temperature, liquid
viscosity, pH level, oxygen, etc.

Parameter Symbol Value Units
CA length L 100 CA units
CA width w 100 CA units
CA height H 100 CA units
Initial nutrient concentration Cs init 27 x 1073 kg -m™3
Initial number of cells no 1-100 CA units
Maximum biomass growth rate pimas 4.2 x 1072 h-!
Diffusion coefficient D 21 x 1072 m? s7!
Half-saturation constant K, 3.1 x107% kg -m™3
Spreading probability Pspread 0-5 %

Table 1: Simulation parameters.

To initialize the three-dimensional computational domain, we generated an area bounded by
a parallelepiped with linear dimensions L, W, H. Within the framework of the cellular automata
model, a corresponding lattice was generated based on the cell of a truncated octahedron. We
assumed that at the initial moment of time, bacterial seeding was carried out at the bottom of
the area in places with a certain location.
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The implementation of a hybrid cell-automaton-based model with support for software im-
plementation allows one to visualize the dynamics of spatial evolution of biomass, and two-
dimensional sections, as well as evaluate the characteristics of biomass and the fractal dimension
of structure boundaries.

Figures 4 — 5 illustrate the 3D simulation results of bacterial biofilm formation under a
variation of key parameters: initial nutrient concentration, spreading probability, number, and
location of initial cells. Specifically, Fig. 4(a) demonstrates the effect of the spreading mecha-
nism. Here we set only one bacterial colony at the central position of the computational domain
and assume the situation when we have rather rich nutrient conditions. We can observe that
the colony actively reproduces when nutrients are available, forming a fairly dense dendrite
structure. Turning on the spreading mechanism (possibility of inoculation) leads to the occu-
pation of the entire accessible area. We can indicate a more uniform structure that completely
covered the bottom of the area.

Real time: -1368m:-43s
Simul time: 39h:59m

Real time: 01h:14m
Simul time: 39h:59m

(b)

Figure 4: Spatial biofilm structures: the simulation results at Cj ;,;+ = 70 and one colony
initially for pspread = 0 — (), Dspread = 5% — (b). Color distributions correspond to different
heights: from the lowest (green) to the highest (red).

Figure 5 is related to the analysis of spreading mechanism effects under the condition of
low initial nutrients. In this case, we initially placed 100 colonies randomly distributed in a
geometric region representing a circle with a radius equal to a quarter of the linear size of the
region. Simulation results suggest that saving nutrition is a limiting factor for biofilm growth
even in the presence of an inoculation process. The formed structures also have a dendrite-like
structure, but the colonies are more scattered and the porosity of the biomass is quite high.
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Real time: 01h:09m
Simul time: 39h:59m

Real time: 01h:10m
Simul time: 39h:59m

(b)

Figure 5: Spatial representation of biofilm: simulation results at Cs ;n;: = 30 and 100 colonies
at start moment for pspread = 0 — (), Pspread = 1% — (b). Color distributions correspond to
different heights: from the lowest (green) to the highest (red).

In the aspect of studying the numerical characteristics of the biofilm structure, we will take
as a basis two integral values, namely the surface density and the fractal dimension of the biofilm
boundaries. The numerical estimation of surface density (as shown in Fig. 6) is performed as
the sum of all cells located at the bottom plane divided by the sum of all units located at the
bottom. To calculate the fractal dimension of biofilm structures, we apply the classical “box-
counting” method. Here we will perform computations for the case of one initially generated
colony placed at the central position of the computational domain. The presented data indicate
the relationship between the key factors that determine the film’s occupation of possible space.
It is important to note that only a sufficient level of inoculation and increased nutrition give
the combined effect of the formation of dense structures.

Figure 7 shows the dependence of the fractal dimension of the three-dimensional biofilm
structure on the probability of spreading for different values of the initial nutrient concentration.
The initial nutrient level plays a significant role in the complexity of the biofilm geometry. As
it increases, the structure forms more complex patterns in terms of fractal dimension. With an
increasing probability of spreading, the value of the fractal dimension decreases, which can be
explained by more uniform coverage of the area.
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Figure 6: Surface density as a function of spreading probability for different initial nutrient
levels: Cs,init = 100% - (1), Cs,init = 70% - (2), Cs,init = 50% - (3), Cs,init = 30% - (4)
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Figure 7: Fractal dimension as a function of spreading probability for different values of initial
nutrient concentrations: Cs jnit = 30% — (1), Cs init = 50% — (2), Cs init = 70% — (3),
Cs.init = 100% — (4).

Figure 8 depicts changes in the surface density over time-related to iterations in the program
application. We can observe that the surface is completely covered by 35000 iterations in case
of the high initial nutrient concentration (100%) and the value of spreading probability p = 5%
while “turning off” the inoculation mechanism at maximum nutrient level results in only a
30% level of bacterial surface density. Furthermore, our findings suggest that over time, the
inoculation mechanism, even with a low nutrient level, can lead to more overgrowth of the
surface than with a high nutrient level without a spreading mechanism.
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Figure 8: The dynamics of surface density as a function of program iterations for different
values of the initial nutrient concentration and spreading probability: Cs jnit = 30%,
Pspread = 0% - (1)a Cs,init = 30%3 Pspread = 5% - (2)7 Cs,init = 100%7 Pspread = O% - (3)3
Cs,init = 100%7 DPspread = 5% - (4)

5 Conclusion

Taken together, the current study summarizes the result of design of the hybrid 3D cellular
automata-based model for biofilm evolution in the view of the surface spreading mechanism.
Using the Unity software environment, we implemented the algorithm for modeling biofilm
growth under the conditions of limited nutrient supply with the ability to control the inoculation
process. Our findings confirm that the relevant parameters are presented by the initial nutrient
concentration and the probability of spreading. The initial nutrient level is the primary factor
affecting the size and structure of the biofilm. Nevertheless, a long-term effect is observed in
the priority of the contribution of control parameters to the processes of surface overgrowth
changes. The results of this study can be relevant for the optimization of the growth and spread
of bacterial colonies in a variety of applications, such as bioremediation and the production of
biofuels. The prospect of future research is the formalization of bacterial quorum sensing, which
is a trigger for the processes of inoculation and the formation of dense resistant biofilms.
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