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Abstract

This paper explores how a rules based scheduling system can be integrated with a
traditional workload manager such as slurm. This integration will be done with as minimal
additional setup by a user as is feasible, while maintaining security of the network, as well as
any machines involved. To this effect the processing component known as the Conductor in
the rules-based scheduling system MEOW, has been extended with a remote option. This
will enable MEOW to transmit jobs to a remote system, with the option of using slurm to
orchestrate them. The new option is evaluated by comparing the execution time of using
the remote solution without slurm, with that of existing components. Furthermore, the
overhead of using various slurm methods for scheduling jobs with that of running the jobs
remotely without using slurm is compared. It is shown that the remote solution adds a
flat overhead to the execution time as both the number of jobs and size of the transmitted
data increases, and that the overhead associated with using slurm on top of it is largely
insignificant. This is considered to be an acceptable result given the test environment that
was used.

1 Introduction

Scientific analysis has a recognised need to be dynamic, and this is not well met by existing
static workflow systems[17]. Such systems, as typified by Apache Airflow [10], Pegasus[7] or
Kepler[3] used Directed Acyclic Graphs (DAGs) to structure and schedule analysis in a robust,
but difficult to adapt manner. Alternatives to this do exist, with one prominent possibility
being a rules-based processing. This is a system where events are matched against user-defined
rules, with matches resulting in some effect. Exactly what events, rules and effects are differs by
system, with examples including Ripple[5], SPADE[1], SPOT[8] and Triggerflow[12]. Though
these examples differ in nature, they typically do not schedule complete workflows and are
instead limited to trivial tasks such as moving files around or cleaning data files. Where more
complex analysis is triggered, it is done by starting a complete linear workflow.

A more complex rules based systems is Managing Event Oriented Workflows(MEOW)[15].
This is a structure for defining rules which can match broad categories of events and can schedule
arbitrary analysis in response. This analysis is completed in isolation to any other, and may
trigger further analysis. It is this potential chain of analysis which will form a workflow that
is both robust to errors, can form novel analysis structures such as branches and loops, and
can easily accommodate human-in-the-loop interactions. MEOW implementations have relied
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on multi-process system to receive events, schedule jobs, and complete analysis, but have been
shown to not add unreasonable overhead to scientific analysis[13]. However, the system has been
limited by a lack of integration with existing scheduling systems. This may act as a barrier to
adoption, but also means that optimisations made within those systems would need to be re-
implemented within MEOW, taking up time and resources that could be better spent elsewhere.
This paper will describe an extension to meow base, a Python implementation of MEOW[6].
The extension consists of a remote option for the conductor, to enable the transmission of jobs
to a remote resource for processing.

1.1 MEOW

MEOW is a work-in-progress dynamic scheduler that utilizes events as a means of dynamically
creating a workflow. The core of MEOW are the concepts of recipes, patterns and rules. A
recipe is a block of code that is used for defining job processing. A pattern is the conditions
under which a recipe is processed and defines when to schedule the potential job. In other words
it determines which events should produce jobs. Apart from a criteria for events, a pattern also
points to the recipe that should form the job, as well as paths for input and output files. One
can think of this as an if-then relationship, with the if statement being the pattern and the then
statement being the recipe. Both recipes and patterns are defined by the user. This means
that a user could define a pattern for a recipe which is never defined, in which case nothing
happens. This is by design such that we never try to match events against a pattern for which
no recipe exists, which is a waste of time. If a pattern matches an existing recipe it will form
a rule. A rule is simply put the amalgamation of an existing pattern and existing recipe, and
this is then checked against incoming events. If an event matches the conditions of the rule,
one or more jobs are scheduled.

Initially MEOW was developed to run on the MiGrid(Minimum intrusion Grid)[2], Univer-
sity of Copenhagen’s grid solution, in a project called mig meow[14]. A more generic version
has since been created called meow base[6], that is not tied to using the MiGrid when running
workflows. This was to allow for future implementations, as the MiGrid does not reflect the
setup of all possible HPC grids.

In meow base a so called WorkflowRunner handles the complete lifetime of any and all event
handling and job processing. It is comprised of several components, each running as a separate
thread or process. These are conductors, handlers and monitors, which will each manage a
particular point in MEOW job lifetime. A monitor is created to check for any events, and to
match them against any user defined rules. Currently only FileEvents and NetworkEvents
are supported ie. a file has appeared in the directory, or data has been sent from a remote
network location. When the monitor detects an event, and it matches a rule, it will send it
to the handler queue. Any handlers will poll this queue, and then examine a given event to
determine if it can handle the job. If this is the case it will create a job script and submit the
job to a job-queue. A job-script is a bash script that is primarily is used to execute the recipe,
as well as check if the input data has changed, but more on this later. The conductor will poll
this queue, and determine if the job in the queue is of a type it can process. If so, then it will
proceed to execute it. This is where the extension has been implemented, through the addition
of an additional argument passed to the conductor that determines if the job is to be executed
on a remote resource running slurm. Additionally the slurm-specific arguments can be passed
as a second additional argument to the conductor. An illustration of the workflow runner can
be seen in Figure1

This structure for the WorkflowRunner uses multiple processes in order to efficiently run all
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Figure 1: The MEOW WorkflowRunner. Some parts have been left out for simplicity. Note
that the named conductors, ie. python and bash, are started as instances of the conductor.

components. A reliable system cannot miss events, and should be able to process them as quickly
as possible. Therefore, it has been separated out from other system components into its own
process so that events can be processed without job creation and processing getting in the way.
Each monitor, handler and conductor is its own process, and so can fail, be delayed, or added
at runtime as is necessary, without compromising the system as a whole. This is in keeping
with MEOWs adaptive design philosophy, though adds a danger of concurrency problems.
To address this, the design was created according to the principles of CSP(Communicating
Sequential Processes)[11]. According to this, as no loop of reader/writer dependencies exist, no
deadlock can occur. Similarly, no data is shared between processes and so no race-conditions
can occur. We can therefore conclude that the system is concurrency safe.

1.2 Remote Processing Systems

Existing HPC grids usually have an existing solution installed for scheduling and processing
tasks. These solutions have many desired features that could be of use if MEOW where to
be integrated into these, instead of having to re-implement them into MEOWs conductor.
Therefore this project will integrate MEOW into one of these solutions, namely slurm.

Slurm is an open-source cluster-management and job scheduling system for Linux clusters,
in other words a workload manager. The relevant parts of slurm in the context of this paper
will be the controller daemon slurmctld and the compute daemon slurmd. In its most basic
form a single centralized controller(with the possibility of a backup controller), will oversee a
various number of compute nodes, each with the slurmd daemon running on each compute
node. Setups with multiple controllers are possible, but for the duration of this paper, the
controller with be referred to as a singular entity. There is also a login-node which acts as an
intermediate between the user and controller. The controller monitors the compute nodes and
their available resources as well as the work being executed on them. Each compute node is
grouped into a partition, of which a job can be granted a subset of this partition. A job can then
be split into a step and allocated on a node, which can run in parallel if needed. The compute
nodes simply waits for work, executes it and returns a status after which it awaits more jobs. A
simplified diagram with the relevant parts is shown in Figure2. Since the hardware available for
testing was limited we decided to have a single node acting as the login, controller and compute
node with the option of an additional separate compute node. This setup was abstracted as
the Remote as is illustrated on Figure3. Slurm has a variety of methods for executing jobs,
of which two are relevant to this paper; srun and sbatch. Srun is used to execute a task in
parallel and is blocking. It will create a resource allocation if necessary and executes the task
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Figure 2: Basic setup of slurm[20]. Any entities not mentioned in this section, like munge-
perimeter and slurmstepd, can be ignored, as they are not relevant for the content of this
report.

as soon as possible. Sbatch is used to submit a batch script for later execution, and is therefore
not blocking.

Figure 3: The test setup used for evaluation of performance. The controller- and compute
daemon is running on the login node. The separate compute node is absent for simplicity

MEOW is intended to be used for exploratory scientific research, where the workflow cannot
be determined before run-time. Since scientific research of this kind can be computationally
demanding the processing is usually relegated to HPC(High-performance computing) grids.
Therefore it will be easier to integrate MEOW with existing setups, if it can interact with one
or more of these solutions. This project therefore aims to integrate slurm into MEOW. These
clusters are not always available for direct in-house access, and thus the analysis data and sub-
sequent results must be transferred to and from these clusters. The COVID-19 pandemic only
increased the need for remote access to this infrastructure, and even though reliable statistics on
the frequency and size of cybercrime are scarce[21], the need for remote users to follow security
guidelines has only grown in importance[19]. In addition to moving the processing to a remote
resource, this implementation will also attempt to protect both endpoints by using containers
on the remote host and limiting the remote host’s access to the users private directories with
sand-boxing.

2 Implementation

In this section the sequence of events from the time the conductor receives a job from the local
job queue, to the job being received in a finished state on the local machine will be outlined.
The approach is to use prebuilt containers and then mount a local chroot sandbox through an
sftp server(running on the local machine) inside this container(running on the remote resource).
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Initially Docker was used, but was soon replaced with rootless-Podman as it was assumed to
be more secure engine. Later a thesis was discovered that compared the attack surface between
the two container engines[9], and it appears that the question is more complex than it initially
seemed. Although rootless-Podman still wins on most parameters, the attack surface is reduced
significantly more by using local images instead of downloaded ones. This implementation only
uses locally built images, but for this implementation to be used at scale this is an issue worth
considering, however that is out of scope of this paper. A Github page for hosting a copy of
The meow base code with our additions is hosted on Github[16]

2.1 Methodology

In order to make the final design easy to use, the system will be built so that as much as
possible, it can all be operable from the users machine. Moreover we want the additions to
make MEOW as portable and easy so integrate with minimal remote setup. Therefore the
setup on the remote is as basic as possible ie. we only have slurm 23.02 installed, an open ssh-
server with key-based authentication and a pre-built podman image. Rootless-Podman is also
assumed to be installed and configured, and public keys are shared between the two machines.
Though this may initially seem a lot, it is worth noting that this is all a one-time setup and
that any subsequent user of the system could so do without having to do anything.

Another reason we want to make as few assumptions about the remote resource as is feasible,
is that it is assumed that the remote is an untrusted system. This might be considered an
unrealistic assumption, but we will use it as a guideline to limit what is shared between the
local and remote machine. This is because we will aim to prevent the user from being able to
use the system in an insecure way. Additionally we will aim to protect the remote resource by
only executing the job inside containers. Given that the potential data transfer can be very
large, we will not copy data back and forth directly, but instead use mounting for this purpose.

2.2 The conductor

The conductor has been modified such that we can choose weather to do the processing locally
or on a remote resource. If remote processing is chosen the conductor will translate the job
into a slurm job-script, such that it can executed by slurm on a remote resource. It does
this translation on the basis of the metafile. Each job has one such metafile: a YAML-file
that contains information about the job eg. the job-type and relevant timestamps like time of
creation, start of execution and completion. An illustration of whole implementation can be
seen in Figure 4.

Figure 4: Structure of sending and executing a job on a remote resource using slurm
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This diagram represents the sequential execution each time a conductor receives a job from
the job queue. It is possible to not use slurm for testing purposes, and this will be used for
some of the overhead tests.

When the conductor is set to execute the job remotely it will incorporate an additional
optional arguments in the form of a string list containing the relevant slurm arguments. This
is supposed to emulate what should be user defined, but isn’t supported by MEOW at time of
writing. They will be used to assemble connect.sh and startcontainer.sh if we want to use
slurm methods for processing. If this argument is not set, the conductor will execute directly
instead.

Firstly it updates the metafiles tmp script command entry to execute the connect.sh
script instead of the standard job.sh created by MEOW. It then assembles(ie. not executes)
connect.sh.

The purpose of this script is to connect to the remote SSH-server via key-based authentication
and execute startcontainer.sh with either srun or sbatch. To assemble this it uses 3 arguments;
the job directory for jobs it is supposed to process, the output directory for where it is supposed
to store the output, and the aforementioned slurm arguments. The reason for this is that it
needs to know if the user has specified sbatch, which will slightly alter the command we want
to execute through our ssh-connection. Since sbatch is supposed to be used on a batch-script it
accepts input from standard input, so it made the most sense to use sbatch here and then add
the #SBATCH-arguments in startconinter.sh, instead of passing the arguments as options to
sbatch.

If srun is present in the slurm arguments, or if we are executing it without slurm, we execute
startcontainer.sh over ssh by redirecting the script to bash on the remote resource.

Then it assembles the startcontainer.sh script which contains the podman run command.
In order to assemble, it needs to know the job id, the job directory and slurm arguments, if
specified. Depending on what is given in the arguments it will write an appropriate call that
will run our container with the arguments provided. In all cases the container is passed the
current job id as an environment variable. The conductor will then execute connect.sh which
will send the job to the slurm job queue. When the job has been submitted to slurm, the
conductor will update the job status and at time of writing, as far as MEOW is concerned the
job is completed. Ideally we would update the metafile inside the container when the recipe is
done, but this has yet to be developed.

The slurm controller daemon will put the job in its own job queue and handle getting it to
an appropriate execution node running the slurmd service. As mentioned this part has been
simplified greatly as we have used a single node for login, controller and computation, but in
reality these should be separate.

2.3 The Dockerfile

An image based on a Dockerfile has been created and is assumed prebuilt on the remote resource.
The image installs the required dependencies, takes a copy of the required private key for the
local sftp-server, configures fuse.conf, creates a directory structure that resembles the chroot
sandbox on the local machine. Finally it uses ENTRYPOINT to run docker-entrypoint.sh
which is also assumed to be pre-written and located on the remote. This docker-entrypoint.sh
uses sshfs to mount a directory from the local machine, using key-based authentication. The
reason for using key-based authentication is that we want the process to be automated, and
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even though having both password- and key-based authentication is considered more secure,
it is too impractical to write ones password for each job. As mentioned the container will be
run in rootless-mode, but since FUSE requires some access to the kernel it currently cannot be
avoided to add –cap-add SYS ADMIN –device /dev/fuse as arguments to podman run.
This has some security implications even for rootless-podman, as it might add attack vectors for
privilege escalation within the container. A solution to this is to mount outside the container
and pass the mount point as an argument to the container on startup, but we ideally only want
to be mounted while a job is running.

The reason we want to mount/unmount on a per job basis, is that we can’t be sure if more
jobs will appear in the job queue even if it is empty, and would therefore have to be mounted
even if no jobs were present.

The local machine is then running an ssh-server that only allows sftp connections such that
the remote theoretically cannot get a shell on the local machine, and we can create a user
account with limited permissions for only this purpose as well.

2.3.1 Executing the job

Once the sandbox is mounted we execute the job.sh from the job directory, which we can identify
by the environment variable passed to the container when startcontainer.sh was assembled.

Finally job.sh will call the recipe. The path to the recipe and redirection of the output is
determined by MEOW when its assembled. Once the recipe is done with its task, job.sh will
return, and docker-entrypoint.sh will create an empty file called done” in the same directory as
the other files for that job id, ie. the job-directory for that job. This file can then be checked by
a local monitor. We do this as we only have a file-transfer protocol available for communication.
At some point the monitor of MEOW should be updated such that it can listen for these files
and report back when the workflow is done.The monitor in MEOW already uses inotify which
adds insignificant overhead, but at time of writing this has yet to be developed. As for now we
have timed it using UNIX’s watch command, which is expected to have added some overhead
to the execution times of the remote solution. This marks the end of a single job execution.

3 Test Results

Our test environment consists of a Lenovo Thinkpad E15 Gen2 which we will refer to as the
local machine, and a desktop running one or more virtual machines, all of which we will refer
to as the remote. Both are running Ubuntu 23.04 LTS. The virtual machine is running with
6 cores and 8 GB of memory, where the native system has an Intel Core i5-8400 @ 2.80GHz
and 16 GB of DDR4 RAM. The local machine has an AMD Ryzen 5 4500U @ 2.3 Ghz and 8
GB of DDR4 RAM. While these specs vary slightly we will demonstrate in the following tests,
that this difference does not significantly impact the test result. This setup runs on a local
network with 1000/100Mbit, and both machines connected via Wi-fi. This is obviously not an
ideal setup, as in practice the remote machine would not be on the same local network, and
the desktop running the virtual machines does not reflect the hardware of an HPC. Therefore
the transfer times will be significantly less than what is realistic, and the execution times will
be significantly slower than is realistic. Moreover the recipes used in the tests will contain
trivial computational work, thereby attempting to minimize the impact of the difference in
the processors. Despite this it is still possible to demonstrate that we do not add significant
overhead.
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3.1 Overhead tests

The remote solution was tested for a variety of number of jobs, using the test for Swept-
PythonExecution found in meow base/tests/test runner.py as a baseline. Each job will read
1MB of transferred data and write 1 byte back. Each parameter is tested 5 times. This tests
executes the container directly and therefore does not use slurm, but as will become apparant
later this does not significantly impact the result for a single compute node. Table values as
well as average overhead in percent per parameter can be found on the Github page under
testresults, Table 3 and 4 and the recipe as Listing 1[16]. As is illustrated in the above figure

Figure 5: Comparison between remote and local processing for a variety of number of jobs with
total execution time. Each job reads 1MB and writes 1 byte. The overhead scales linearly with
the number of jobs

Figure 6: Comparison between remote and local processing for a variety of number of jobs with
per-job execution time. Each job reads 1MB and writes 1 byte. The overhead scales linearly
with the number of jobs

the execution times of the remote solution has a linear relationship to the number of executed
jobs. Since the linear regression has an R-squared value of 0,99 for the remote example and
0,98 for the local, we will proceed with this as a good model for 10 or more jobs. Although
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it is good practice to use more metrics in this scenario it is considered sufficient. The reason
one should only use it on 10 jobs or more, is that it will not predict correct value below this
threshold, certainly not for 1 job as it will claim 7,5956 even for 0 jobs. Using this model for at
least 10 jobs we predict the per-job running time of around 1,4x+7,6s, where x is the number
of jobs. Comparatively the local solution can also be modelled by a linear relationship with a
per-job running time of around 0,08x+5,37. We can observe that the per-job execution time is
slightly decreasing as the number of jobs increase. This means there is a flat overhead in the
scheduling of jobs. There are a few suspected reasons for the overhead.

Before we get to that we will briefly touch on a small anomaly in the data. Although not
immediately apparent from the figure, the table values show that the remote solution is faster
than the local up to and including 5 jobs. The reason for this is suspected to be the faster
clock speed of the remote machines CPU, which makes reading the 1MB faster. This is easily
checked having the recipe sleep 1 second instead of reading. Again this recipe can be found on
the Github as Listing 2[16]. For an average of 5 tests each it is clear from Table1 that the local
solution is faster for 1 job, if we simply let it sleep 1 second.

1 job w. sleep 1 Execution time in seconds
Remote 7,32s
Local 6,022s

Table 1: Remote vs Local for 1 job that just sleeps 1 second and write 1 byte to output file

Therefore the main contributor for overhead is likely setting up the connection and connec-
tion retries, since ssh uses the TCP protocol and subsequent overhead associated with that.
More over if the call to sshfs in the container fails because of connection reset, it takes a few
seconds to retry. Usually 1 is sufficient, but 2 retries has been observed. This is fairly rare, but
adds to the variance in results. In much the same way if the ssh command from the connect.sh
fails because of a connection timeout, this adds a few seconds as well though this is a very rare
occurrence. These occurrences were not timed, as we had no immediate solution for reducing
or eliminating them, and they were hard to accurately time, without adding non-insignificant
overhead. Starting the container also adds some overhead though this is probably minimal. In
an real scenario we would expect the growth of the linear model to differ as distance between
the local and remote machine will be greater and the remote will have more processing power,
but we do not expect another model class to fit better than the linear one applied here.

3.2 File transfer test

Since the transfer of data files is suspected to add a lot of additional overhead a test was
conducted that read the entire inputfile for various sizes for a single job. The recipe used for
Figure5 is used for this test as well. Again these tests does not use slurm. The values used
are averages, but a table for all datapoints can be found on the Github, as well as a table with
averages and associated overhead in percent in Table5 and Table6.
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Figure 7: Comparison between remote(blue) and local(orange) for a single job with varying
inputsizes. The model should only be used for file sizes at least 1GB or more.

Figure 8: Comparison between my implementation(blue) and meow base locally(orange) for a
single job with varying inputsizes. The model should only be used for file sizes at least 1GB or
more.

The entire input-file was read in chunks of 100MB at a time. It appears that there is also a
linear relationship between the file size and execution time, which yields and execution time of
0,075x+5,06s where x is the number of megabytes. Again this is considered a good result, as it
is linearly increasing. One anomaly can be seen for the local model, where the execution time
drops slightly for 1GB. Since the remote solution is the focus here, we did not investigate this
further, but it is assumed to be some optimization done by the local system.

3.3 Scaling with increasing jobs and inputsize

Since MEOW is supposed to be used for both multiple jobs and multiple inputsizes a test was
conducted in order to determine how well my implementation scales for both a large input size
and a high amount of jobs. Given the time these tests takes only a single test was made for
each. The predicted values are calculated by plotting in the file size in the model obtained
when using file sizes, and then just multiplying the number of jobs, without using the model
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Implementation 25Job 1GB 100Jobs 1GB

Remote Actual 2025,1s 7550,89s
Remote Prediction 2011,45s 8045,8s

Local Actual 31,66s 114,38

Table 2: The actual execution time compared with a rough prediction. The actual values are
very close to the prediction though.

associated with that. For example (0,0754 ∗ 1000+ 5,058) ∗ 25 = 2011,45s. The reason for
this is that both of the models contains some of the same setup, and so this rough estimation
is used. However the actual values are slightly better than the predicted values. Even for a
rough estimate we conclude from this that the implementations performance is in tune with
the models and the execution time is predictable.

3.4 Slurm tests

Both srun and sbatch was compared with the direct solution for increasing number of jobs
scheduled on a single compute node. To better demonstrate the benefits of using slurm over
of the direct solution, an additional compute node was added. This is because slurm can
manage work across multiple nodes, whereas the direct solution can only use a single node
for computation. Moreover the conductor was changed such that connect.sh didn’t wait for
the done-file to appear, but simply executed the slurm-method, and updated the job status as
soon as the command returned. Additionally rootless Podman was used for these dual-node
tests, however they use the same Dockerfile as the previous tests. The same recipe used in
Figure5 was used for all the tests and all file transfers are 1MB with 1 byte written back. No
slurm arguments were used in these tests. As expected sbatch performs the worst for a single

Figure 9: Comparison between srun, sbatch and running without slurm(bash). file size trans-
ferred is 1MB read and 1 byte write. Note both slurm methods were tested on a single and
dual-node setup.

node setup, as it will background the job for later execution, but since this setup only runs
sequentially this is just unnecessary busy work. The overhead of using srun is insignificant
compared to running directly. On the other hand, using just one more compute node we get
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the same scheduling time as running directly on a single node. Therefore it seems reasonable to
assume that with just 3 compute nodes we will see sbatch outperform the direct solution. The
dual-node test for srun was only ran once, as it became apparent that the controller daemon
favored the newly added remote compute node, as opposed to the compute daemon running on
the same machine as the controller. Therefore the performance of srun was slightly worse than
when we only had 1 compute node. However we do observe a flat increase in the overhead,
which the per-job execution time decreasing slightly as the jobs increase. The table values for
each datapoint can be found on the Github as Table7 and an average in Table8[16].

3.5 Actual Scientific Work Test

A final test was conducted using the scientific analysis first presented in [15]. This is an example
of a real-world scientific workflow, and is tested here to show that our results above still apply
to actual analysis. As this workflow and its analysis is unchanged since that first benchmark, it
will not be explained in detail here. A short summary is that the workflow analyses 2d scans of
3d foam structures. A variety of foams are taken as input, some which have too many bubbles,
some which have too few and some which are just right. As this analysis is computationally
expensive, we only wish to do it on the acceptable data and so the first workflow step is to
pre-process the input data into acceptable or not. Unacceptable data is discarded and no
further analysis is carried out, but acceptable data is segmented, analysed and a final report is
assembled. The key part of this is that we do not know ahead of time which data is acceptable
or not, or how much of it there is and so the workflow structure is adapted at runtime.

1st run, cold start 2nd run, warm start

Remote(Idle=45): Remote(Idle=45):
722,01 604,2

Local(Idle=45): Local(Idle=45):
641,22 640,49

Table 3: Execution times for actual scientific work.

As can be seen from Table3 we do in fact get a better performance for scientific work with
the remote solution.

4 Discussion

As mentioned we need a monitor to keep track of how many done-files are present in the job
directory. Additionally when this file exists it should move the contents to a dedicated output
directory, as is MEOW behaviour locally. However, since we consider the job to be completed
when it enters the slurm job queue, we can’t put this behaviour inside the conductor. On
top of that the monitor should determine when all ”done-files” are present, such that it can
communicate when the entire workflow is completed, given that we know how many jobs should
be scheduled in the workflow. If we cannot be sure of how many jobs are to be scheduled, we
cannot reliably tell the user when the workflow is complete, but most of these cases are suspected
to be continuous workflows anyway.
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4.1 srun vs sbatch

There are several things to consider when choosing a slurm method to run a job. On the one
hand srun is ill-suited when used alone, because it is a blocking operation and thus doesn’t
allow for MEOW to simply submit the jobs and let the remote worry about the processing.
Still for just one compute node we see srun outperform sbatch in the tests on Figure3, because
with sbatch we background the job for later execution. However by adding just 1 more compute
node we see sbatch run about as fast as using srun for 1 compute node and therefore it stands
to reason that using sbatch to submit jobs to slurm will scale well as the number of compute
nodes increases. Additionally we see that srun and is almost identical to running the container
directly, and therefore using srun adds insignificant overhead for 1 compute node as opposed
to running directly. Since they are all linearly increasing this adds largely insignificant overhead.

An immediate problem with running the workflow in parallel is race-conditions when read-
ing the input data. Some solution could be explored for this issue, although this could be
regarded as a feature, as some workflows continuously monitor the same input data and are
meant to run endlessly[4].

4.2 Overhead test results

The test results shows a fairly linear relationship between the execution time and number of
jobs. It also shows a linear relationship between the amount of data transferred and execution
time. Therefore the implementation is best used with as few read/write commands to data files
as possible, and instead utilize the HPC’s hardware for computationally heavy tasks instead.
We even see the remote solution outperform the local one slightly for just 2 compute nodes.
This is somewhat the expected results, but the important thing to note is that the overhead
increases more less linearly. Some anomalies exist, where the execution time is larger than
expected, but these are mostly caused by connection timeouts and resets when mounting and
using ssh to call startcontainer.sh from the local machine.

4.3 Alternative design

An alternative to this design is to drop the login-node and run the control daemon on the local
machine, and then have the remote execution nodes connected to that instead. A potential
problem with this design is that slurms compute daemons are controlled by a single controller,
so how this is going to work for multiple users is at this point unclear. Furthermore if the users
machine is compromised it will have local access to the controller daemon and through that all
the compute nodes. The upside is that we will not need to first connect to a login node and
through that connect to the controller, thereby eliminating more overhead. It will also make it
easier to use containers, as the user can write and build them locally, without assuming they
are prebuilt on the remote resource.

4.4 Future work

There are a lot of immediate additions that warrants further exploration. First of all we should
update the job status inside the container as soon as the recipe is complete. This would also
remove the need to create files for the monitor to look at, and instead make it read the metafile,
but this might add overhead when conducting tests as one would need to read the metafiles
for their status quite often. In a practical scenario one wouldn’t need to read the status in the
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Figure 10: Alternative design where the slurm controller daemon is running on the local machine

metafile particularly often, as the workflow will take many hours to complete anyway. In any
case the monitor in MEOW should be used for this purpose. The remote solution should also be
able to run both concurrently and in parallel by way of multiple conductors, such that we not
only have parallel job processing, but also parallel job scheduling. Multiple threads should also
be explored for concurrency. Another thing to add would be some way of enabling the user to
upload their own Docker images to a shared repository, instead of having them prebuilt on the
remote resource, as this will better enable custom jobs. Furthermore the local sandbox might
be hosted somewhere else, such that we don’t require the local machine to be active during
the entire workflow, but just during the initial scheduling. It will also better enable us to pass
the mount point as an argument to the container, thereby removing the need for sys admin
capabilities, while simultaneously making it less important to mount on a per-job basis.
One could also explore a better way of passing arguments to slurm methods, as currently it
is slightly janky to have them as entries in a string list. Allowing the user to better specify
what goes into connect.sh and startcontainer.sh will help with this, and these files will need
additional arguments anyway as the user, host and path to the private key are not arguments
to these at the moment.

In the long run the alternative design mentioned previously should be considered and the po-
tential security risk factors associated with it should be evaluated. The current design should
also not be considered as security proof, and needs more in-depth analysis to catch potential
vulnerabilities. More over it would be interesting to create a more realistic test environment,
in the sense of a faster remote machine running multiple compute nodes, and see how the im-
plementation scales. Since slurm is not the only workload manager used one could implement
additional conductor instances that adds support for other orchestrators or potentially add
support for a generic solution as a middleman as is being explored by the corc project[18]

5 Conclusion

This paper explored how a rules based scheduling system can be integrated with a traditional
workload manager such as slurm. Additions to the existing conductor have been made in
order to carry out processing on a remote resource. This was done using containers and sand-
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boxing both for convenience and security purposes. Tests have been conducted for both directly
running the containers and running them with slurm, where both demonstrated some, but linear
overhead compared with the local solution. Most of this overhead is caused by connection
retries, mount and un-mounting and some for file transfer, however file transfer overhead is
expected to increase for a more realistic setup. Additionally tests were done on actual scientific
analysis which showed less overhead for sufficient compute nodes. Our results show that no
unacceptable overhead has been added, and therefore conclude the integration was a success.
Thus we can recommend that this system is used for future work. Attempts were made to
make the transfer and processing of these jobs as secure as possible, by limiting the remotes
access to the local file system and limiting the privileges of the containers. However more
work is needed to make any definitive conclusions about whether or not the attack surface is
sufficiently reduced.
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