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Abstract

We introduce a notion of ultrametric automata and Turing machines using p-adic num-
bers to describe random branching of the process of computation. These automata have
properties similar to the properties of probabilistic automata but complexity of probabilis-
tic automata and complexity of ultrametric automata can differ very much.

1 Introduction

Pascal and Fermat believed that every event of indeterminism can be described by a real number
between 0 and 1 called probability. Quantum physics introduced a description in terms of com-
plex numbers called amplitude of probabilities and later in terms of probabilistic combinations
of amplitudes most conveniently described by density matrices.

String theory [18], chemistry [14] and molecular biology [3, 12] have introduced p-adic num-
bers to describe measures of indeterminism.

There were no difficulties to implement probabilistic automata and algorithms practically.
Quantum computation [10] has made a considerable theoretical progress but practical imple-
mentation has met considerable difficulties. However, prototypes of quantum computers ex-
ist, some quantum algorithms are implemented on these prototypes, quantum cryptography
is already practically used. Some people are skeptical concerning practicality of the initial
spectacular promises of quantum computation but nobody can deny the existence of quantum
computation.

We consider a new type of indeterministic algorithms called ultrametric algorithms. They
are very similar to probabilistic algorithms but while probabilistic algorithms use real numbers
r with 0 ≤ r ≤ 1 as parameters, ultrametric algorithms use p-adic numbers as the parameters.
Slightly simplifying the description of the definitions one can say that ultrametric algorithms
are the same probabilistic algorithms, only the interpretation of the probabilities is different.

Our choice of p-adic numbers instead of real numbers is not quite arbitrary. In 1916 Alexan-
der Ostrowski proved that any non-trivial absolute value on the rational numbersQ is equivalent
to either the usual real absolute value or a p-adic absolute value. This result shows that using p-
adic numbers is not merely one of many possibilities to generalize the definition of deterministic
algorithms but rather the only remaining possibility not yet explored.

Moreover, Helmut Hasse’s local-global principle states that certain types of equations have
a rational solution if and only if they have a solution in the real numbers and in the p-adic
numbers for each prime p.

There are many distinct p-adic absolute values corresponding to the many prime numbers p.
These absolute values are traditionally called ultrametric. Absolute values are needed to con-
sider distances among objects. We have used to rational and irrational numbers as measures
for distances, and there is a psychological difficulty to imagine that something else can be used
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instead of irrational numbers. However, there is an important feature that distinguishes p-adic
numbers from real numbers. Real numbers (both rational and irrational) are linearly ordered.
p-adic numbers cannot be linearly ordered. This is why valuations and norms of p-adic numbers
are considered.

The situation is similar in Quantum Computation. Quantum amplitudes are complex num-
bers which also cannot be linearly ordered. The counterpart of valuation for quantum algorithms
is measurement translating a complex number a+bi into a real number a2+b2. Norms of p-adic
numbers are rational numbers.

Ultrametric finite automata and ultrametric Turing machines are reasonably similar to prob-
abilistic finite automata and Turing machines.

Below we consider ultrametric versus deterministic Turing machines with one input tape
which can be read only 1-way and a work tape which is empty at the beginning of the work.

2 p-adic numbers

Let p be an arbitrary prime number. We will call p-adic digit a natural number between 0 and
p− 1 (inclusive). A p-adic integer is by definition a sequence (ai)i∈N of p-adic digits. We write
this conventionally as

· · · ai · · · a2a1a0
(that is, the ai are written from left to right).

If n is a natural number, and

n = ak−1ak−2 · · · a1a0

is its p-adic representation (in other words n =
∑k−1

i=0 aip
i with each ai a

p-adic digit) then we identify n with the p-adic integer (ai) with ai = 0 if i ≥ k. This means
that natural numbers are exactly the same thing as p-adic integer only a finite number of whose
digits are not 0. The number 0 is the p-adic integer all of whose digits are 0, and that 1 is the
p-adic integer all of whose digits are 0 except the right-most one (digit 0) which is 1.

To have p-adic representations of all rational numbers, 1
p
is represented as · · · 00.1, the

number 1
p2 as · · · 00.01, and so on. For any p-adic number it is allowed to have infinitely

many (!) digits to the left of the ”decimal” point but only a finite number of digits to the right
of it.

However, p-adic numbers is not merely one of generalizations of rational numbers. They are
related to the notion of absolute value of numbers.

If X is a nonempty set, a distance, or metric, on X is a function d from pairs of elements
(x, y) of X to the nonnegative real numbers such that

1. d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x),

3. d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X .

A set X together with a metric d is called a metric space. The same set X can give rise to
many different metric spaces.

The norm of an element x ∈ X is the distance from 0:

1. ‖ x ‖= 0 if and only if x = y,
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2. ‖ x.y ‖=‖ x ‖ . ‖ xy ‖,

3. ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖.

We know one metric on Q induced by the ordinary absolute value. However, there are other
norms as well.

A norm is called ultrametric if the third requirement can be replaced by the stronger state-
ment: ‖ x+ y ‖≤ max{‖ x ‖, ‖ y ‖}. Otherwise, the norm is called Archimedean.

Definition 1. Let p ∈ {2, 3, 5, 7, 11, 13, · · ·} be any prime number. For any nonzero integer a,
let the p-adic ordinal (or valuation) of a, denoted ordpa, be the highest power of p which divides
a, i.e., the greatest m such that a ≡ 0( mod pm). For any rational number x = a/b, denote
ordpx to be ordpa− ordpb. Additionally, ordpx = ∞ if and only if x = 0.

Definition 2. Let p ∈ {2, 3, 5, 7, 11, 13, · · ·} be any prime number. For arbitrary rational
number x, its p-norm is:

||x||p =

{

1
pordpx , if x 6= 0,

¬pi, if x = 0 ;

Rational numbers are p-adic integers for all prime numbers p. The nature of irrational
numbers is more complicated. For instance,

√
2 just does not exist as a p-adic number. On the

other hand, there is a continuum of p-adic numbers not being real numbers. Moreover, there is
a continuum of 3-adic numbers not being 5-adic numbers, and vice versa.

p-adic numbers are described in much more detail in [9, 13].

3 First examples

The notion of p-adic numbers widely used in mathematics but not so much in Computer Science.
The aim of our next sections is to show that the notion of ultrametric automata and ultrametric
Turing machines is natural.

In mathematics, a stochastic matrix is a matrix used to describe the transitions of a Markov
chain. A right stochastic matrix is a square matrix each of whose rows consists of nonnegative
real numbers, with each row summing to 1. A stochastic vector is a vector whose elements
consist of nonnegative real numbers which sum to 1. The finite probabilistic automaton is
defined as an extension of a non-deterministic finite automaton (Q,Σ, δ, q0, F ), with the initial
state q0 replaced by a stochastic vector giving the probability of the automaton being in a given
initial state, and with stochastic matrices corresponding to each symbol in the input alphabet
describing the state transition probabilities. It is important to note that if A is the stochastic
matrix corresponding to the input symbol a and B is the stochastic matrix corresponding to
the input symbol b, then the product AB describes the state transition probabilities when the
automaton reads the input word ab. Additionally, the probabilistic automaton has a threshold
λ being a real number between 0 and 1. If the probabilistic automaton has only one accepting
state then the input word x is said to be accepted if after reading x the probability of the
accepting state has a probability exceeding λ. If there are several accepting states, the word x
is said to be accepted the total of probabilities of the accepting states exceeds λ.

Ultrametric automata are defined exactly in the same way as probabilistic automata, only
the parameters called probabilities of transition from one state to another one are real numbers
between 0 and 1 in probabilistic automata, and they are p-adic numbers called amplitudes
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in the ultrametric automata. Formulas to calculate the amplitudes after one, two, three, · · ·
steps of computation are exactly the same as the formulas to calculate the probabilities in
the probabilistic automata. Following the example of finite quantum automata, we demand
that the input word x is followed by a special end-marker. At the beginning of the work, the
states of the automaton get initial amplitudes being p-adic numbers. When reading the current
symbol of the input word, the automaton changes the amplitudes of all the states according
to the transition matrix corresponding to this input symbol. When the automaton reads the
end-marker, the measurement is performed, and the amplitudes of all the states are transformed
into the p-norms of these amplitudes. The norms are rational numbers and it is possible to
compare whether or not the norm exceeds the threshold λ. If total of the norms for all the
accepting states of the automaton exceeds λ, we say that the automaton accepts the input
word.

Paavo Turakainen considered various generalizations of finite probabilistic automata in 1969
and proved that there is no need to demand in cases of probabilistic branchings that total
of probabilities for all possible continuations equal 1. He defined generalized probabilistic
finite automata where the ”probabilities” can be arbitrary real numbers, and that languages
recognizable by these generalized probabilistic finite automata are the same as for ordinary
probabilistic finite automata. Hence we also allow usage of all possible p-adic numbers in
p-ultrametric machines. Remembering the theorem by P.Turakainen [17] we start with the
most general possible definition hoping to restrict it if we below find examples of not so natural
behavior of ultrametric automata. (Moreover, we do not specify all the details of the definitions
in Theorems 1-4, and make the definition precise only afterwards. The reader may consider
such a presentation strange but we need some natural examples of ultrametric automata before
we concentrate on one standard definition.)

However, it is needed to note that if there is only one accepting state then the possible
probabilities of acceptance are discrete values 0, p1, p−1, p2, p−2, p3, · · · . Hence there is no nat-
ural counterpart of isolated cut-point or bounded error for ultrametric machines. On the other
hand, a counterpart of Turakainen’s theorem for probabilistic automata with isolated cut-point
still does not exist. We also did not succeed to prove such a theorem for ultrametric automata.
Most probably, there are certain objective difficulties.

Theorem 1. There is a continuum of languages recognizable by finite ultrametric automata.

Proof. Let β = · · · 2a32a22a12a02 be an arbitrary p-adic number (not p-adic integer) where
p ≥ 3 and all ai ∈ {0, 1}. Denote by B the set of all possible such β. Consider an automaton
Aβ with 3 states, the initial amplitudes of the states being (β,−1,−1). The automaton is
constructed to have the following property. If the input word is 2a02a12a22a32 · · · 2an2 then
the amplitude of the first state becomes · · · 2an+42an+32an+22an+12. To achieve this, the
automaton adds −2, multiplies to p, adds −an and again multiplies to p.

Now let β1 and β2 be two different p-adic numbers. Assume that they have the same
first symbols am · · · 2a32a22a12a02 but different symbols am+1 and bm+1. Then the au-
tomaton accepts one of the words am+12am · · · 2a32a22a12a02 and rejects the other one
bm+12am · · · 2a32a22a12a02. Hence the languages are distinct.

Definition 3. Finite p-ultrametric automaton is called integral if all the parameters of it are
p-adic integers.

Automata recognizing nonrecursive languages cannot be considered natural. Hence we are
to restrict our definition.
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Theorem 2. There exists a finite integral ultrametric automaton recognizing the language
{0n1n}.

Proof. When the automaton reads 0 it multiplies the amplitude to 2, and when it reads 1
it multiplies it to 1

2 . The norm of the amplitude equals p0 iff the number of zeros is equal to
the number of ones.

We consider the following language.

L = {w|w ∈ {0, 1}∗ and w = wrev}

Theorem 3. For every prime number p ≥ 5, there is an integral p-ultrametric automaton
recognizing L.

Proof. The automaton has two special states. If the input word is

a(1)a(2) · · ·a(n)a(n+ 1)a(n+ 2) · · · a(2n+ 1)

then one of these states has amplitude

a(1)pn + · · ·+ a(n)p+1 + a(n+ 1)p0 + a(n+ 2)p−1 + · · ·+ a(2n)p−n+1 + a(2n+ 1)p−n

and the other one has amplitude

−a(1)p−n − · · · − a(n)p−1 − a(n+ 1)p0 − a(n+ 2)p+1 − · · · − a(2n)p+n−1 + a(2n+ 1)p+n

. If the sum of these two amplitudes equals 0 then the input word is a palindrome. Otherwise,
the sum of amplitudes has a norm removed from p0.

Definition 4. A square matrix with elements being p-adic numbers is called balanced if for
arbitrary row of the matrix the product of p-norms of the elements equals 1.

Definition 5. A finite ultrametric automaton is called balanced if all the matrices in its
definition are balanced.

Theorem 4. If a language M can be recognized by a finite ultrametric automaton then M can
be recognized also by a balanced finite ultrametric automaton.

Proof. For every state of the automaton we add its duplicate. If the given state has an
amplitude γ then its duplicate has the amplitude 1

γ
. Product of balanced matrices is balanced.

Definition 6. A balanced finite ultrametric automaton is called regulated if there exist con-
stants c > 0 and λ such that for arbitrary input word x the norm λ − c <‖ γ ‖p< λ + c. We
say that the word x is accepted if ‖ γ ‖p> λ and it is rejected if ‖ γ ‖p≤ λ.

Theorem 5. (1) If a language M is recognized by a regulated finite ultrametric automaton then
M is regular.
(2) For arbitrary prime number p there is a constant cp such that if a language M is recognized
by a regulated finite p-ultrametric automaton with k states then there is a deterministic finite

automaton with (cp)
k. ˙logk states recognizing the language M .
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4 Non-regulated finite automata

Since the numbers 1 and 0 are also p-adic numbers, every deterministic finite automaton can be
described in terms of matrices for transformation of amplitudes. Hence every regular language
is recognizable by a regulated p-ultrametric automaton. There is a natural problem : are there
languages for which regulated p-ultrametric automata can have smaller complexity, i.e. smaller
number of states.

The following 3 theorems seem to present such an example but there is a catch: these
automata are not regulated because the norm of the amplitude to be measured can be arbitrary
small (for lengthy input words).

Theorem 6. For arbitrary prime number p ≥ 3 the language

Lp−1 = {1n | n ≡ p− 1( mod p)}

is recognizable by a p-ultrametric finite automaton with 2 states.

Proof. A primitive root modulo n is any number g with the property that any number
coprime to n is congruent to a power of g modulo n. In other words, g is a generator of the
multiplicative group of integers modulo n. Existence of primitive roots modulo prime numbers
was proved by Gauss. The initial amplitude 1 of a special state in our automaton is multiplied
to an arbitrary primitive root modulo p. When the end-marker is read the amplitude −1 of the
other state is added to this amplitude. The result has p-norm p0 iff n ≡ p− 1.

Theorem 7. For arbitrary prime number p ≥ 3 the language

Lp = {1n | n ≡ p( mod p)}

is recognizable by a p-ultrametric finite automaton with 2 states.

Proof. The value 1 of the amplitude of the second state is added to the amplitude of the
accepting state at every step of reading the input word. The result has p-norm p0 iff n ≡ p.

Theorem 8. For arbitrary natural number m there are infinitely many prime numbers p such
that the language

Lm = {1n | n ≡ 0( mod m)}
is recognizable by a p-ultrametric finite automaton with 2 states.

Proof. Dirichlet prime number theorem, states that for any two positive coprime integers
m and d, there are infinitely many primes of the form m + nd, where n ≥ 0. In other words,
there are infinitely many primes which are congruent to m modulo d. The numbers of the form
mn+ d form an arithmetic progression

d, m+ d, 2m+ d, 3m+ d, . . . ,

and Dirichlet’s theorem states that this sequence contains infinitely many prime numbers.
Let p be such a prime and g be a primitive root modulo p. Then the sequence of remainders

g, g2, g3, · · · modulo p has period m and n ≡ 0( mod m) is equivalent to gn ≡ d( mod p). Hence
the automaton multiplies the amplitude of the special state to g and and adds −d when reading
the end-marker.
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5 Regulated finite automata

We wish to complement Theorem 5 by a proof showing that the gap between the complexity
of regulated finite ultrametric automata and the complexity of deterministic finite automata is
not overestimated. It turns out that this comparison is related to well-known open problems.

First, we consider a sequence of languages where the advantages of ultrametric automata
over deterministic ones are super-exponential but the advantages are achieved only for specific
values of the prime number p.

It is known that every p-permutation can be generated as a product of sequence of two
individual p-permutations:

a =

(

1 2 3 · · · p− 1 p
2 3 4 · · · p 1

)

b =

(

1 2 3 · · · p− 1 p
2 1 3 · · · p− 1 p

)

A string x ∈ {a, b}∗ is in the language Mp if the product of these p-permutations equals the
trivial permutation.

Theorem 9. (1) For arbitrary prime p, the language Mp is recognized by a p-ultrametric finite
automaton with p+ 2 states.
(2) If a deterministic finite automaton has less than p! = cp. log p states then it does not recognize
Mp.

Idea of the proof. The ultrametric automaton gives initial amplitudes 0, 1, 2, · · · , p−1 to p
states of the automaton and after reading any input letter only permutes these amplitudes. After
reading the endmarker from the input the automaton subtracts the values 0, 1, 2, · · · , p−1 from
these amplitudes. Notice that if a prime number p′ is such that p′ < p then the p′-ultrametric
automaton can need more than p+ 2 states.

Now we wish to present a sequence of languages such that the size advantages of ultrametric
automata can be achieved for all sufficiently large values of p. Unfortunately, we have proved
only exponential advantages, and even the base of the exponent is very small.

Linear codes is the simplest class of codes. The alphabet used is a fixed choice of a finite field
GF (q) = Fq with q elements. For most of this Section we consider a special case of GF (2) = F2.
These codes are binary codes.

A generating matrix G for a linear [n, k] code over Fq is a k-by-n matrix with entries in
the finite field Fq, whose rows are linearly independent. The linear code corresponding to the
matrix G consists of all the qk possible linear combinations of rows of G. The requirement
of linear independence is equivalent to saying that all the qk linear combinations are distinct.
The linear combinations of the rows in G are called codewords. However we are interested in
something more. We need to have the codewords not merely distinct but also as far as possible
in terms of Hamming distance. Hamming distance between two vectors v = (v1, . . . , vn) and
w = (w1, . . . , wn) in Fqk is the number of indices i such that vi 6= wi.

The textbook [8] contains

Theorem A. For any integer n ≥ 4 there is a [2n, n] binary code with a minimum distance
between the codewords at least n/10.
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However the proof of the theorem in [8] has a serious defect. It is non-constructive. It means
that we cannot find these codes or describe them in a useful manner. This is why P.Garret calls
them mirage codes.

If q is a prime number, the set of the codewords with the operation
”component-wise addition” is a group. Finite groups have useful properties. We single out
Lagrange’s Theorem. The order of a finite group is the number of elements in it.

Lagrange’s Theorem (see e.g. [8]). Let GR be a finite group. Let H be a subgroup of
GR. Then the order of H divides the order of G.

Definition 7. A generating matrix G of a linear code is called cyclic if along with an arbitrary
row (v1, v2, v3, . . . , vn) the matrix G contains also a row
(v2, v3, . . . , vn, v1).

We would wish to prove a reasonable counterpart of Theorem A for cyclic mirage codes,
but this attempt fails. Instead we consider binary generating matrices of a bit different kind.
Let p be an odd prime number, and x be a binary word of length p. The generating matrix
G(p, x) has p rows and 2p columns. Let x = x1x2x3 . . . xp. The first p columns (and all p rows)
make a unit matrix with elements 1 on the main diagonal and 0 in all the other positions. The
last p columns (and all p rows) make a cyclic matrix with x = x1x2x3 . . . xp as the first row,
x = xpx1x2x3 . . . xp−1 as the second row, and so on.

Definition 8. We say that the numbering Ψ = {Ψ0(x),Ψ1(x),Ψ2(x), . . .} of 1-argument par-
tial recursive functions is computable if the 2-argument function U(n, x) = Ψn(x) is partial
recursive.

Definition 9. We say that a numbering Ψ is reducible to the numbering η if there exists a total
recursive function f(n) such that, for all n and x, Ψn(x) = ηf(n)(x).

Definition 10. We say that a computable numbering ϕ of all 1-argument partial recursive
functions is a Gödel numbering if every computable numbering (of any class of 1-argument
partial recursive functions) is reducible to ϕ.

Definition 11. We say that a Gödel numbering ϑ is a Kolmogorov numbering if for ar-
bitrary computable numbering Ψ (of any class of 1-argument partial recursive functions) there
exist constants c > 0, d > 0, and a total recursive function f(n) such that:

1. for all n and x, Ψn(x) = ϑf(n)(x),

2. for all n, f(n) ≤ c · n+ d.

Kolmogorov’s Theorem [15]. There exists a Kolmogorov numbering.

There exist many distinct Kolmogorov numberings. We now fix one of them and denote it
by η. Since Kolmogorov numberings give indices for all partial recursive functions, for arbitrary
x and p, there is an i such that ηi(p) = x. Let i(x, p) be the minimal i such that ηi(p) = x. It
is easy to see that if x1 6= x2, then i(x1, p) 6= i(x2, p). We consider all binary words x of the
length p and denote by x(p) the word x such i(x, p) exceed i(y, p) for all binary words y of the
length p different from x. It is obvious that i ≥ 2p − 1.

Until now we considered generating matricesG(p, x) for independently chosen p and x. From
now on we consider only odd primes p such that 2 is a primitive root modulo p and the matrices
G(p, x(p)). Freivalds [6] proved that if p is sufficiently large, then Hamming distances between
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arbitrary two codewords in this linear code is at least 4p
19 . (The gap in Theorem 9 below might

be superexponential had we proven an explicit bound what this ”sufficiently large” means.
Unfortunately, usage of Kolmogorov complexity is intrinsically nonconstructive.)

Above we mentioned a binary generating matrix G(p, p(x)) for a linear code. Now we use
this matrix to construct a probabilistic reversible automaton R(p).

The matrix G(p, x(p)) has 2p columns and p rows. The automaton R(p) has 4p+ 1 states,
2p of them being accepting and 2p+1 being rejecting. The input alphabet consists of 2 letters.

The states q1, q2, . . . , g4p are related to the columns of G(p, x(p)) and should be considered
as 2p pairs (q1, q2), (q3, q4), . . . , . . . (q4p−1, q4p) corresponding to the 2p columns of G(p, x(p)).
The states
q1, q3, q5, q7, . . . , q4p−1 are accepting and the states q2, q4, q6, q8, . . . , q4p are rejecting. The initial
probability distribution is as follows:

{

1
2p , for each of q1, q3, . . . , q4p−1 ,

0, for each of q2, q4, . . . , q4p .

The processing of the input symbols a, b is deterministic. Under the input symbol a the
states are permuted as follows:

q1 → q3 q2 → q4 q2p+1 → q2p+3 q2p+2 → q2p+4

q3 → q5 q4 → q6 q2p+3 → q2p+5 q2p+4 → q2p+6

q5 → q7 q6 → q8 q2p+5 → q2p+7 q2p+6 → q2p+8

· · · · · · · · · · · ·
q2p−3 → q2p−1 q2p−2 → q2p q4p−3 → q4p−1 q4p−2 → q4p
q2p−1 → q1 q2p → q2 q4p−1 → q2p+1 q4p → q2p+2

The permutation of the states under the input symbol b depends on G(p, x(p)). Let be

G(p, x(p)) =









g11 g12 . . . g1 2p

g21 g22 . . . g2 2p

· · · · · · · · · · · ·
gp1 gp2 . . . gp 2p









For arbitrary i ∈ {1, 2, . . . , p},














q2i−1 → q2i−1 , if g1i = 0
q2i → q2i , if g1i = 0
q2i−1 → q2i , if g1i = 1
q2i → q2i−1 , if g1i = 1.

In order to understand the language recognized by the automaton R(p) we consider the
following auxiliary mapping CW from the words in {a, b}∗ into the set of binary 2p-vectors
defined recursively (starting from the empty word Λ):

1. CW (Λ) = g11g12 . . . g1 2p

2. if CW (w) = h1h2h3 . . . hphp+1hp+2hp+3 . . . h2p then

{

CW (wa) = hph1h2 . . . hp−1h2php+1hp+2 . . . h2p−1 and
CW (wb) = (h1 ⊕ g11)(h2 ⊕ g12)(h3 ⊕ g13) . . . (h2p ⊕ g1 2p) .
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The next two lemmas can be proved by induction over the length of w.

Lemma 1. For arbitrary word w ∈ {a, b}∗, CW (w) is a codeword in the linear code corre-
sponding to the generating matrix G(p, x(p)).

Lemma 2. Let w be an arbitrary word in {a, b}∗, and CW (w) = h1h2 . . . h2p. Then the
amplitude distribution of the states in R(p) is















1
2p , for g2i−1 if hi = 0,

0 , for g2i if hi = 0,
0 , for g2i−1 if hi = 1,
1
2p , for g2i if hi = 1.

We introduce a language

LG(p,x(p)) = {w|CW (w) = 000 . . .0}.

Lemma 3. If 2 is a primitive root modulo p and p is sufficiently large, then the automaton
R(p) recognizes the language LG(p,x(p))

Lemma 4. For arbitrary p and arbitrary deterministic finite automaton A recognizing LG(p,x(p))

the number of states of A is no less than 2p.

Proof. First, we show that every codeword z = h1h2 . . . h2p is a value of CW (w) for a suitable
z ∈ {a, b}∗. Since the first p columns of G(p, x(p)) are columns of the unit (p × p) matrix,
z = h1(g11, g12, . . . , g1 2p) + h2(g21, g22, . . . , g2 2p) + . . . + h2p(gp1, gp2, . . . , gp 2p). Then z =
CW (bh1abh2abh3a . . . abh2pa).

Second, let u and v be two distinct input words such that CW (u) 6= CW (v). A cannot
remember u and v by the same state. Hence the number of the states is at least 2p.

Lemmas 3 and 4 imply

Theorem 10. If 2 is a primitive root for infinitely many distinct primes then there exists an
infinite sequence of regular languages L1, L2, L3, . . . in a 2-letter alphabet and a sequence of
positive integers p(1), p(2), p(3), . . . such that for arbitrary j:

1. any deterministic finite automaton recognizing Lj has at least 2p(j) states,

2. there is a regulated finite ultrametric automaton with (4p(j) + 1) states recognizing Lj.

Emil Artin made in 1927 a famous conjecture the validity of which is still an open problem.

Artin’s Conjcture [1]. If a is neither -1 nor a square, then a is a primitive root for infinitely
many primes.

Moreover, it is conjectured that density of primes for which a is a primitive root equals
A = 0.373956 . . .. In 1967, C.Hooley [11] proved that Artin’s conjecture follows from the
Generalized Riemann hypothesis.

The original Riemann hypothesis (RH) [16] was formulated in 1859. It was a statement
about the zeroes of the complex Zeta function. Since then RH has become one of the most
notorious open problems in mathematics. Several equivalent formulations of RH have been
found. We follow [2] to present here RH and its generalizations.

π(x) is the number of primes less than or equal to x. π(x, n, a) is the number of primes less
than or equal to x and congruent to a mod n.
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li(x) =
∫ x

2
dt

log t

The Euler phi function, φ(n), is defined to be the number of positive integers ≤ n which are
relatively prime to n.

Riemann Hypothesis For arbitrary ǫ > 0, we have

π(x) = li(x) +O(x
1

2
+ǫ).

Extended Riemann Hypothesis Let n and a be relatively prime integers. Then for arbitrary
ǫ > 0, we have

π(x, n, a) = li(x)
φ(n) +O(x

1

2
+ǫ).

Generalized Riemann Hypothesis Let K be an algebraic number field and let πk(n) denote
the number of prime ideals whose norm is ≤ x. Then for arbitrary ǫ > 0, we have

πk(x) = li(x) +O(x
1

2
+ǫ).

Hooley’s Theorem [11] Assume GRH. Let a ≥ 2 be a squarefree integer, with a 6≡ 1
(mod 4). Let πa(x) denote the number of primes less than or equal to x for which a is a
primitive root. Then as x → ∞,

πa(x) = A x
log x

+O(x(log a+log log x)
(log x)2 )

where A is the Artin’s constant 0.373956 . . ..
On the other hand, D.R.Heath-Brown [4] proved the following theorem without assumption

of any unproved conjectures.

Heath-Brown Theorem [4] If a, b, and c are distinct odd primes, then the number of
p ≤ x for which at least one of these is a primitive root modulo p is Ω( x

(log x)2 ).

It follows from this theorem that Artin’s conjecture can be wrong no more than for 2 distinct
primes a.

Corollary 1. Assume Artin’s Conjecture. Then Theorem 10 holds.

Corollary 2. Assume Generalized Riemann Hypothesis. Then Theorem 10 holds.

6 2-way finite automata

Our Theorem 2 proved that the language {0n1n} can be recognized by finite integral p-
ultrametric automata for all prime p ≥ 3. Unfortunately, the automaton exhibited there was
not regulated. For 2-way automata this theorem can be strengthened. Idea of the proof is
similar to that used in [5].

Theorem 11. For every prime p ≥ 3 there exists a regulated 2-way finite integral p-ultrametric
automaton recognizing the language {0n1n}.
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7 1-way pushdown automata

Let A = {a, b, c, d, e, f, g, h, k, l,m, p, q, r, s, t, u, v}. Now we consider a language T in the al-
phabet A ∪ {#} for which both the deterministic and probabilistic 1-way pushdown automata
cannot recognize the language but there exists an ultrametric 1-way pushdown automaton rec-
ognizing it.

The language T is defined as the set of all the words x in the input alphabet such that either
x is in all 9 languages Ti described below or in exactly 6 of them or in exactly 3 of them or in
none of them where

T1 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projab(x) = projab(y)},

T2 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projcd(x) = projcd(y)},

T3 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projef (x) = projef (y)},

T4 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projgh(x) = projgh(y)},

T5 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projkl(x) = projkl(y)},

T6 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projmp(x) = projmp(y)},

T7 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projqr(x) = projqr(y)},

T8 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projst(x) = projst(y)},

T9 = {x#y | x ∈ A∗ ∧ y ∈ A∗ ∧ projuv(x) = projuv(y)}.

Theorem 12. For the language T we have the following properties.

(1) There is a regulated 3-ultrametric 1-way pushdown automaton recognizing the language T .

(2) No deterministic 1-way pushdown automata can recognize the language T .

(3) No probabilistic 1-way pushdown automata can recognize the language T can have bounded
error.

8 Query algorithms

Many papers on query algorithms consider computation of Boolean functions. The input of
the query algorithm is a black box oracle containing the values of the variables x1 = a1, x2 =
a2, · · · , xn = an for an explicitly known Boolean function f(x1, · · · , xn). The result of the
query algorithm is to be the value f(a1, · · · , an). The query algorithm can ask for the values
of the variables. The queries are asked individually, and the result of any query influences the
next query to be asked or the result to be output.

The complexity of the query algorithm is defined as the number of the queries asked to the
black box oracle. Deterministic query algorithms prescribe the next query uniquely depending
only on the previously received answers from the black box oracle. Probabilistic query algo-
rithms allow randomization of the process of computation. They sometimes allow to reduce the
complexity of the algorithm dramatically.
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Following [7], we consider in this paper a more general class of functions f(x1, · · · , xn),
namely, functions {0, 1, 2, · · · , n− 1}n → {0, 1}. The domain {0, 1, 2, · · · , n}n is restricted to a
particularly interesting case - permutations. For instance,

x0 = 4, x1 = 3, x2 = 2, x3 = 1, x4 = 0

can be considered as a permutation of 5 symbols {0,1,2,3,4} usually described as 43210. Under
such a restriction the functions f : {0, 1, 2, · · · , n−1}n → {0, 1} can be considered as properties
of permutations. For instance, the function

f(0, 1, 2) = 1, f(1, 2, 0) = 1, f(2, 0, 1) = 1, f(0, 2, 1) = 0, f(1, 0, 2) = 0, f(2, 1, 0) = 0

describes the property of 3-permutations to be even (as opposed to the property to be odd).

Theorem 13. There is a property P of permutations such that for each natural number n there
is a number m that for all primes p > m the property P can be checked by a p-ultrametric query
algorithm with 1 query only while any deterministic query algorithm for n-permutations needs
at least n− 1 queries to check the property P .

Idea of the proof. The property P is whether the given permutation is not the trivial
permutation. The ultrametric query algorithm, in parallel processing, asks one value of xi and
gives the accepting state the amplitude 1 if xi = i and 0, otherwise. The norm of the sum of
all these amplitudes exceeds 0 iff the given permutation has the property P . Notice that for
large n the norm of the amplitude can become unrestrictedly close to 0.

Theorem 14. For arbitrary natural number m, there is a property Pm of n-permutations where
n = 4m2 + 4m+ 1, such that:
(1) Every deterministic query algorithm for Pm needs 4m2 + 6m+ 2 queries.
(2) For all sufficiently large primes p, there is a p-ultrametric query algorithm deciding Pm with
m+ 1 queries.

Idea of the proof. We consider finite projective geometries with 4m2+4m+1 = (2m)2+
2m + 1 points and 4m2 + 4m + 1 = (2m)2 + 2m + 1 lines such that each linPGme contains
2m+1 points, every pair of lines intersect in precisely 1 point, and given any two distinct points,
there is exactly one line that contains both points. Let GRm be the group of permutations
preserving the geometry PGm. The p-ultrametric query algorithm, by parallel processing, for
every line of PGm, where the points are denoted by a1, a2, · · · , a(2m + 1) asks two sets of
queries. In the first set there are queries xa1, · · · , xa(m+1). In the second set there are queries
xa(m+1), · · · , xa(2m+1). If the permutation is in GRm then the answers to one set of queries
uniquely determine the other set of answers. If p is sufficiently large, it is possible to give
amplitudes α for all possible answers such that the amplitudes annihilate iff they correspond.
Norm of the amplitude can be only either 0 or 1 even for very long words.

9 Turing machines

We denote by pUP the class of all languages recognizable by p-ultrametric Turing machines in
a polynomial time. This is a large class of languages.

Theorem 15. If a language M is recognizable by a probabilistic Turing machine in a polynomial
time then for arbitrary p ≥ 3 there is a p-ultrametric Turing machine recognizing M in a
polynomial time.
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Proof. The class PP of all languages recognizable in a polynomial time has natural complete
problems, for example, MAJSAT . MAJSAT is a decision problem in which one is given a
Boolean formula F . The answer must be YES if more than half of all assignments x1, x2, · · · , xn

make F true and NO otherwise. Hence M is reducible toMAJSAT in deterministic polynomial
time. On the other hand, MAJSAT is recognizable by a p-ultrametric Turing machine in a
polynomial time. This machine considers in parallel all possible assignments for x1, x2, · · · , xn

and adds a p-adic number 2−n to the amplitude α of a special state. F is in MAJSAT iff the
resulting amplitude α has p-norm 0.

Riemann surface is a notion useful to study functions of complex variable [19]. We introduce
a discrete counterpart of this notion.

Definition 12. A discrete Riemann surface on the rectangle [a, b]× [c, d] is a map from (x, y, z)
(where x ∈ [a, b], y ∈ [c, d] and z is a string of symbols from a finite alphabet Σ whose length
equals y − c) to a finite alphabet ∆. For each triple its neighbors are defined as the triples:
(1) (x, y′, z) where either y′ = y + 1 or y′ = y + 1,
(2) (x′, y, z′) where either x′ = x− 1 and z′ is z with the last symbol omitted, or x′ = x+1 and
z′ is z with the one symbol attached at its end.

Definition 13. A discrete Dirichlet condition is a 5-tuple consisting of: (1) a map from (x, y)
where y = c to ∆, (2) a map from (x, y) where y = d to ∆, (3) (x, y) where x = a to ∆, (4)
(x, y) where x = b to ∆, and (5) neighboring conditions that may forbid some simultaneous
maps of neighboring triples.

Definition 14. The discrete Dirichlet problem is whether or not a Riemann surface is possible
consistent with the given discrete Dirichlet condition.

Theorem 16. For arbitrary prime number p ≥ 3, there is a pUP -complete language.

Idea of the proof. The language consists of all discrete Dirichlet conditions such that the
discrete Dirichlet problem has a positive answer. The map in the Riemann surface can be used
to describe the work of a ultrametric Turing machine. The symbols of ∆ for all possible values
of x for a fixed y and z describe the configuration of the tape at the moment y with the choices
z made before the moment y and the amplitudes accumulated. The discrete Dirichlet problem
asks whether the ultrametric machine accepts the input word. The difference d− c represents
the computation time allowed.
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