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1 Algebraic-algorithmic correspondence

Modal mu-calculus [5] is a logical framework combining simple modalities with fixed point operators,
enriching the expressivity of modal logic so as to deal with infinite processes like recursion. It has a
simple syntax, an easily given semantics, and is decidable. Many expressive modal and temporal logics
such as PDL, CTL and CTL∗ can be seen as fragments of the modal mu-calculus.

Sahlqvist-style frame-correspondence theory for modal mu-calculus has recently been developed in
[6]. The correspondence results in [6] are developed purely model-theoretically. However, they can be
naturally encompassed within the existing algebraic approach to correspondence theory [2, 3, 4], and
generalized to mu-calculi on a weaker-than-classical (and, particularly, intuitionistic) base. We focus
in particular on the language of bi-intuitionistic modal mu-calculus, and we enhance the algorithm, or
calculus for correspondence, ALBA [3] for the elimination of monadic second order variables, so as to
guarantee its success over a class including the Sahlqvist mu-formulas defined in [6].

The algorithm ALBA: an example. Consider the transitivity axiom �p→ ��p. As is discussed at
length in [3, 2], every piece of argument used to prove this correspondence on frames can be translated
by duality to their complex algebras, which are perfect distributive lattices with operators. The validity
condition on frames translates into its complex algebra as A |= ∀p[�p ≤ ��p], followed by the chain
of equivalences

A |= ∀p[�p ≤ ��p]
iff A |= ∀p[

∨
{i ∈ J∞(A) | i ≤ �p} ≤

∧
{m ∈ M∞(A) | ��p ≤ m}]

iff A |= ∀p∀i∀m[(i ≤ �p & ��p ≤ m)⇒ i ≤ m]
iff A |= ∀p∀i∀m[(_i ≤ p & ��p ≤ m)⇒ i ≤ m]
iff A |= ∀i∀m[(��_i ≤ m)⇒ i ≤ m]

In above quasi-equations, J∞(A) (resp. M∞(A)) is the set of completely join-prime (resp. completely
meet-prime) elements of the lattice, i ranging over J∞(A) (resp. m ranging over M∞(A)) is a nominal
(resp. conominal) and _ is the left adjoint of the � operation. The above equivalences hold because
of the order-theoretic properties of the algebraic interpretation of the logical connectives. The last step,
where the variable p is eliminated, is a consequence of the Ackermann’s lemma (cf. [3, lemma 4.2]).
The final condition can be translated in the first order frame correspondence language (cf. [3, Section
6.3]).
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2 Extending algebraic-algorithmic approach to mu-calculus
The syntactic manipulations presented in the example above can be described in terms of “proof rules”
or rules of a rewriting system of a calculus for correspondence that is discussed in [3]. These rules
come in two types: approximation and adjunction rules. Their soundness is based on the order theo-
retic properties of the interpretation of the logical connectives in the language. In order to extend this
approach to mu calculus, we need to define sound adjunction and approximation rules for mu-formulas.
The soundness is taken care of by the following lemma

Lemma 2.1. For L and M complete lattices and G : M × L → L, let µy.G : M → L be the map given
by a 7→ LFP(G(a, y)) for each a ∈ M such that LFP(G(a, y)) is defined,

1. If G is completely join-preserving, then µy.G : M → L is defined everywhere on M, and is
completely join-preserving.

2. If, moreover, F = (F1, F2) : L→ M × L is the right adjoint of G, then the right adjoint of µy.G is
the map defined by the assignment z 7→ νy.(F1(y) ∧ F1(z)).

2.1 Approximation and general adjunction rules for fixed-point formulas
Let AtProp and FVar be disjoint sets of propositional variables and of fixed point variables, and Var =

AtProp∪FVar. Let L+ be the expanded modal mu-language built over Var, nominals and conominals.
Let ε be an order-type on an n-tuple x and ii

ε
be the n-tuple whose i-th coordinate is iεi and whose j-th

coordinate is ⊥ε j for all j , i.1 We have the following approximation rule for the least fixed point
operator

i ≤ µX.ψ(ϕ/x, X, z)
(µε-A)

On
i=1(∃jεi [i ≤ µX.ψ(ji

ε
/x, X, z) & jεi ≤εi ϕi])

where the tuples x and z are disjoint, and the variables x ∈ Var do not occur in any formula in ψ
or in ϕ and the associated term function of ψ(x, X, z) is completely

∨
-preserving in (x, X) ∈ Cε × C,

for any perfect modal bi-Heyting algebra C. The following adjunction rule follows as an immediate
consequence of lemma 2.1.2.

µX.ψ(ψ/x, X, z) ≤ χ
(µε-Adj)

&n
i=1 ψi ≤

εi νX.(Gi(χ/y, z) ∧Gi(X/y, z))

where ψ, ψ, χ ∈ L+, the arrays of variables x and z are disjoint, x has arity n, the term function associated
with ψ(x, X, z) is a left adjoint in (x, X) ∈ Cε × C for any perfect modal bi-Heyting algebra C, and
G = ((Gi(y, z))n

i=1,G
′(y, z)) : C→ Cε × C is its right adjoint.

The order-theoretic lemma and rules for the greatest fixed point operator are given dually.

2.2 Inner formulas and adjunction rules
The adjunction rules as given above are too general, because they do not provide any information on
know how to express Gi in terms of the (extended) mu-language. The following definition is tailored
to ensure that for any perfect modal bi-Heyting algebra L, the term function associated with a IF�δ
(respectively, IF^δ ) formula is a right (respectively, left) adjoint from Lδ → L fixing the variables z as
parameters (see lemma below).

1Of course, if we fix a value for iεi , then ii
ε

denotes the element in J∞(Aε ) corresponding to iεi in the i-th coordinate.
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Definition 2.2. Let y, z ⊆ Var and X ⊆ FVar be tuples of variables which are pairwise different in the
union of the their underlying sets. Let δ be an order-type on x = y ⊕ X. The δ-� and δ-^ (x, z)-inner
formulas ((x, z)-IF�δ and (x, z)-IF^δ ), the free variables of which are contained in (x, z), are given by the
following simultaneous recursion (for the sake of readability, the parameters x and z are omitted):

IF�δ 3 ϕ ::= xi | �ϕ | ϕ1 ∧ ϕ2 | νY.ϕ′ | π→ ϕ | π ∨ ϕ | ψc → π
IF^δ 3 ψ ::= xi | ^ψ | ψ1 ∨ ψ2 | µY.ψ′ | ψ − π | π ∧ ψ | π − ϕc

where δi = 1 in the base of the recursion, π is a positive formula, ϕ′ = ϕ′(y⊕X
′
, z) and ψ′ = ψ′(y⊕X

′
, z)

are IF�δ′ and IF^δ′ , respectively, with X
′

= X ⊕ Y and δ′ = δ ⊕ 1, ψc ∈ (x, z)-IF^
δ∂

and ϕc ∈ (x, z)-IF�
δ∂

. All
other formulas have their free variables among (x, z).

The above definition also guarantees that the approximation rules (µδ-A) and (νδ-A) can be respec-
tively applied in particular to inequalities of the form i ≤ µX.ψ(y, X, z) and νX.ϕ(y, X, z) ≤ m, such that
µX.ψ and νX.ϕ are (y, z)-IF^δ and (y, z)-IF�δ sentences respectively.

The following definition of normal formulas is given in order to achieve an effective computation of
adjoints of IF�δ and IF^δ formulas.

Definition 2.3. The normal (x, z)-IF�δ and (x, z)-IF^δ formulas are given by the same simultaneous re-
cursion as in definition 2.2, subject to the following additional constraints:

1. if ϕ is of the form νY.ϕ′(x′, z), where x′ = y⊕X
′

and X
′

= X⊕Y , then there exists an (y′⊕X
′
, z)-IF�δ′

formula ϕ′′, where δ′ is the order-type over y′ ⊕ X
′

which is constantly 1 over y′ and restricts to
δ over X

′
, such that ϕ′(x′, z) = ϕ′′(ϕ/y′, X

′
, z) where the ϕ are normal (y, z)-IF�δ′′ sentences, where

δ′′ is the restriction of δ to y.

2. if ψ is of the form µY.ψ′(x′, z), where x′ = y ⊕ X
′

and X
′

= X ⊕ Y , then there exists an (y′ ⊕ X
′
, z)-

IF^δ′ formula ψ′′, where δ′ is the order-type over y′ ⊕ X
′

which is constantly 1 over y′ and restricts
to δ over X

′
, such that ψ′(x′, z) = ϕ′′(ψ/y′, X

′
, z) where the ψ are normal (y, z)-IF^δ′′ sentences,

where δ′′ is the restriction of δ to y.

Example 2.4. The formula νX.[�(X∧¬µY.[^(∼X∨(Y∨x))])] is an (x,∅)-IF�δ formula for δ = (∂), and it
is not in normal form.The normalization procedure on this subformula involves surfacing the innermost
∨ node, by applying associativity of ∨ and distributivity of ^ over ∨, so as to obtain ¬µY.[^Y ∨ (^∼X ∨
^x)], which is equivalent to ¬µY.[^Y ∨ ^∼X] ∧ ¬µY.[^Y ∨ ^x]. Hence the original formula can be
equivalently rewritten as νX.[�(X ∧ (¬µY.[^Y ∨ ^∼X] ∧ ¬µY.[^Y ∨ ^x]))], which is in normal form:
indeed, it is a substitution instance of the formula νX.[�(X∧ (¬µY.[^Y ∨^∼X]∧ y′))] which is a (y′,∅)-
IF�δ′ with δ′ = (1); moreover, y′ has been substituted for the IF� sentence ¬µY.[^Y ∨ ^x].

Proposition 2.5. Every IF∗δ formula, ∗ ∈ {^,�}, is equivalent to an IF∗δ formula in normal form.

2.3 Adjunction rules for normal inner formulas

Definition 2.6. For x = y⊕X of arity n, for each order-type δ over x, and each 1 ≤ i ≤ n, we define maps
LAδ

i and RAδ
i sending normal IF�δ and IF^δ formulas, respectively, intoL+, by the following simultaneous

recursion:
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LAδ
i (xi) = u for u ∈ Var − (x ∪ z);

LAδ
i (x j) = ⊥δ j when i , j;

LAδ
i (�ϕ(x, z)) = LAδ

i (ϕ)(_u, z);
LAδ

i (ϕ1(x, z) ∧ ϕ2(x, z)) = LAδ
i (ϕ1)(u, z) ∨δi LAδ

i (ϕ2)(u, z) ;
LAδ

i (νY.ϕ(ϕ(x, z)/y′,Y, z)) =
∨δi
{
LAδ

i (ϕ j)(µY.[LAδ′

j (ϕ)(Y, z) ∨ LAδ′

j (ϕ)(u, z)], z) | 1 ≤ j ≤ `
}

;
LAδ

i (π(z)→ ϕ(x, z)) = LAδ
i (ϕ)(u ∧ π(z), z);

LAδ
i (π(z) ∨ ϕ(x, z)) = LAδ

i (ϕ)(u − π(z), z);
LAδ

i (ψc(x, z)→ π(z)) = RAδ∂

i (ψc)(u→ π(z), z);

RAδ
i (xi) = u for u ∈ Var − (x ∪ z);

RAδ
i (x j) = >δ j when i , j;

RAδ
i (^ψ(x, z)) = RAδ

i (ψ)(�u, z);
RAδ

i (ψ1(x, z) ∨ ψ2(x, z)) = RAδ
i (ψ1)(u, z) ∧δi RAδ

i (ψ2)(u, z);
RAδ

i (µY.ψ(ψ(x, z)/y′,Y, z)) =
∧δi
{
RAδ

i (ψ j)(νY.[RAδ′

j (ψ)(Y, z) ∧ RAδ′

j (ψ)(u, z)], z) | 1 ≤ j ≤ `
}

;
RAδ

i (ψ(x, z) − π(z)) = RAδ
i (ψ)(π(z) ∨ u, z);

RAδ
i (π(z) ∧ ψ(x, z)) = RAδ

i (ψ)(π(z)→ u, z);
RAδ

i (π(z) − ϕc(x, z)) = LAδ∂

i (ϕc)(π(z) − u, z).

By normality, formulas with νY as main connective are of the form νY.ϕ(ϕ(y, z)/y′, X,Y, z)) where
ϕ(y′, X,Y, z) is an IF�δ′ formula, with δ′ constantly 1 on y′ and Y and restricting to δ on X, and the
ϕ = (ϕ1, . . . , ϕ`) are (y, z)-IF�δ sentences. Likewise, formulas with µY as main connective are of the
form νY.ψ(ψ(y, z)/y′, X,Y, z)) where ψ(y′, X,Y, z) is an IF^δ′ formula, with δ′ constantly 1 on y′ and Y and
restricting to δ on X, and the ψ = (ψ1, . . . , ψ`) are (y, z)-IF^δ sentences.

We are now in a position to give versions of the adjunction rules tailored to normal (x, z)-IF�δ and
(x, z)-IF^δ formulas, for which the adjoints are expressible as L+-term functions:

η ≤ ϕ(x, z)
(IFR)

&n
i=1 LAδ

i (ϕ)[η/u] ≤δi xi

ψ(x, z) ≤ η
(IFL)

&n
i=1 xi ≤

δi RAδ
i (ψ)[η/u]

where ϕ, η ∈ L+, the arrays x and z are disjoint, the arity of x is n, ϕ ∈ (x, z)-IF�δ and ψ ∈ (x, z)-IF^δ .

Example 2.7. Consider the inequality νX.[�(X∧¬µY.[^(∼X∨(Y∨ p))])] ≤ ^�¬p, which is ε-recursive
for εp = ∂. After first approximation we have:

∀p∀i∀m[(i ≤ νX.[�(X ∧ ¬µY.[^(∼X ∨ (Y ∨ p))])] & ^�¬p ≤ m)⇒ i ≤ m].

No approximation rules are applicable, thus we work toward the application of an appropriate adjunction
rule to display the p in the first inequality in the antecedent of the quasi-inequality above. In example
2.4, the normal form of the left hand side of the inequality was computed as, ϕ = νX.[�(X∧ (¬µY.[^Y ∨
^∼X] ∧ ¬µY.[^Y ∨ ^p]))]. Recall that ϕ is a substitution instance of the formula νX.ϕ′ = νX.[�(X ∧
(¬µY.[^Y ∨ ^∼X] ∧ y′))], where ϕ′ is a (y′ ⊕ X,∅)-IF�δ formula with δ = (1, 1); moreover, y′ has been
substituted for the IF� sentence ¬ψ = ¬µY.[^Y ∨ ^p]. Thus, LAε

p(ϕ) = LAε
p(¬ψ)(µX.[LAδ

y′ (ϕ
′)[X/u] ∨

LAδ
y′ (ϕ

′)]/u′), where

LAε
p(¬ψ) = RAε∂

p (ψ)(¬u′/u′)
= RAε∂

p (µY.[^Y ∨ ^p])(¬u′/u′)
= (νY.[RAε∂⊕1

p (^Y ∨ ^p)[Y/u′] ∧ RAε∂⊕1
p (^Y ∨ ^p)])(¬u′/u′)

= (νY.[(> ∧ �u′)[Y/u′] ∧ (> ∧ �u′)])(¬u′/u′)
= (νY.[�Y ∧ �u′])(¬u′/u′)
= νY.[�Y ∧ �¬u′],
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LAδ
y′ (ϕ

′) = LAδ
y′ (�(X ∧ (¬µY.[^Y ∨ ^∼X] ∧ y′)))

= LAδ
y′ (X ∧ (¬µY.[^Y ∨ ^∼X] ∧ y′))(_u/u)

= (LAδ
y′ (X) ∨ LAδ

y′ (¬µY.[^Y ∨ ^∼X] ∧ y′))(_u/u)
= (⊥ ∨ (LAδ

y′ (¬µY.[^Y ∨ ^∼X]) ∨ LAδ
y′ (y

′)))(_u/u)
= (RAδ∂

y′ (µY.[^Y ∨ ^∼X])(¬u/u) ∨ u)(_u/u)
= (⊥ ∨ u)(_u/u)
= _u.

Now, LAε
p(ϕ) = νY.[�Y ∧ �¬(µX.[_X ∨ _u])]. Thus, applying (IFσR) to the normalized inequality

transforms (2.7) into

∀p∀i∀m[(νY.[�Y ∧ �¬(µX.[_X ∨ _i])] ≤ p & ^�¬p ≤ m)⇒ i ≤ m],

which is in Ackermann shape. Now applying Ackermann’s lemma yields the quasi-inequality

∀i∀m[^�¬νY.[�Y ∧ �¬(µX.[_X ∨ _i])] ≤ m⇒ i ≤ m],

from which all propositional variables have been eliminated.

The second part of the abstract [1] presents a calculus of correspondence for the mu-calculus and
the defines the class of recursive formulas.
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