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Abstract

Rapid developments in aerospace technologies demand reliable procedures to plan ro-
bust missions with high safety. To increase safety under uncertainties in model parameters
or environmental conditions, multi-objective robust optimization methods via sensitivity
minimization can be used. An acceptable trade-off between a nominal operational cost
(e.g., time, energy) and robustness is searched for to plan missions that are less prone to
disturbances. The presented analysis considers open-loop and closed-loop sensitivity min-
imization approaches and utilizes multi-objective optimization to assess the performance
and the limitations of both approaches. To solve the multi-objective optimization prob-
lems, scalarization techniques are employed using weighted sums and cost bounds. By
varying weights and cost bounds, multiple optima can be calculated, resulting in an ap-
proximate Pareto front and giving rise to an overview of the trade-off between optimality
and robustness of the solutions. The analysis is performed for robust unmanned aerial
vehicle (UAV) trajectory optimization minimizing positional sensitivities.

1 Introduction

When planning missions in aerospace engineering, robustness is essential to increase safety and
reduce costs, especially for various unmanned aerial vehicle (UAV) applications. Robustness
is crucial, e.g., when designing trajectories to achieve high performance under uncertain cir-
cumstances. In [13], trajectory optimization for UAV take-off regarding positional robustness
is studied using stochastic collocation. In [18], sensitivity minimization is employed to increase
the robustness of battery pack temperatures.

However, when increasing robustness, there is a trade-off between multiple important factors,
e.g., resources, costs, and safety. In order to find the best compromise between optimality and
robustness with the given resources, multi-objective optimization can be applied. Multiple costs,
mostly conflicting, are minimized simultaneously to meet user-specified requirements. Often,
there are multiple compromises, which a Pareto front can represent. Points on the Pareto front
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are solutions of a multi-objective optimization problem, such that no single cost function value
can be improved without deteriorating another. There are different approaches for calculating
Pareto optimal solutions. An overview of solution approaches is given in [12, 11]. Further
theoretical details referring to, e.g., non-convexity, are presented in [7]. Classically, a posteriori
methods aim to generate multiple Pareto optimal points from which a decision maker can select
the most suitable compromise. Most of these multi-objective approaches aim to formulate a
problem with a scalar cost function. The main challenge is a proper formulation of the problem
in order to generate a representative set of Pareto optimal solutions and to ensure a proper
basis for selecting an appropriate solution. Here, computational resources, completeness, and
accuracy of the Pareto front are of main interest.

Related studies in the field of multi-objective UAV trajectory optimization are presented in
[15], where two objectives, namely flight time and risk to the human population, are minimized.
The authors from [17] analyze the trade-off between transmission time and energy consumption
for UAV communication networks with multi-objective particle swarm optimization. In [1],
the authors have investigated a trade-off in the robustness of UAV climb trajectories using
open-loop and closed-loop considerations. The paper at hand is based on the work in [1]
and extends it by a holistic robustness analysis, systematically calculating multiple trade-offs
for UAV trajectory optimization using optimal control to further assess the performance and
limitations of the open-loop and closed-loop modeling approaches. For this, three objectives,
a nominal operational cost and two positional sensitivity costs, are minimized using different
scalarization methods for multi-objective optimization.

This study is structured as follows. First, the multi-objective robust optimal control prob-
lems in open-loop and closed-loop are stated in Section 2. Afterward, the utilized scalarization
techniques are presented in Section 3. A description of the application scenario for UAV tra-
jectory optimization is stated in Section 4, followed by numerical results and their discussion.
The analysis is concluded in Section 5.

2 Multi-objective optimal control problem statements

This section presents a general optimal control problem formulation with multiple cost func-
tions, namely a nominal operational cost and sensitivity costs for robustness based on [10, 5, 1].
To analyze open-loop and closed-loop modeling approaches with respect to robustness, both
modeling approaches are included in the optimal control problem formulation in the following
subsections according to [1].

2.1 Open-loop optimal control problem statement minimizing opera-
tional cost and sensitivity

Usually, an open-loop model is the first basis for trajectory optimization, as it builds a crucial
base in developing a flight system. An open-loop multi-objective robust optimal control problem
minimizing sensitivities regarding uncertainties can be formulated as follows. The aim is to
find a state history x : T → Rnx and a control history u : T → Rnu , where the considered time
horizon is denoted by T = [t0, tf ] ⊆ R, which solve the following problem:

min
x,u,tf

[
J0 JS1 . . . JSnJ

]
(1)

with a nominal operational cost

J0 = J(x(t0),x(tf ), tf ) (2)
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and sensitivity costs

JSi =

∫ tf

t0

Si(t)
2 dt, i = 1, . . . , nJ (3)

to increase robustness, subject to the dynamic constraints

ẋ(t) = f(x(t),u(t);p) (4)

with f : Rnx × Rnu → Rnx , the sensitivity differential equation according to [5] for sensitivities
S : T → Rnx × Rnp with S(t) := ∂x

∂p (t) and

Ṡ(t) =
∂f

∂x
(t) · S(t) + ∂f

∂p
(t), S(t0) =

∂x

∂p
(t0), (5)

the initial and final boundary conditions

ψ(x(t0),x(tf );p) = 0 (6)

with ψ : Rnx × Rnx → Rnψ , linear inequality constraints

cineq(x(t),u(t);p) ≤ 0 (7)

and linear rate constraints

crate(ẋ(t), u̇(t);p) ≤ 0 (8)

for all t ∈ T with cineq : Rnx × Rnu → Rnineq and crate : Rnx × Rnu → Rnrate . The parameter
p ∈ R represents the model uncertainty and is fixed to a nominal value p0. The problem
formulation can be extended to consider multiple uncertainties. Since, in this study, a scalar
uncertain parameter is considered, the notation is restricted to the scalar case.

The cost function J0 is a Mayer cost function, representing operational costs, e.g., energy
consumption or flight time. The cost functions JSi with i ≥ 1 are integrated squared sensitivi-
ties, describing the states’ dependencies on model parameters. For notational ease in the cost
function, the sensitivities are numbered, e.g., Si may describe the sensitivity of the i-th state.
Minimizing sensitivities is of interest when designing robust trajectories. A reduced sensitivity
increases robustness against parameter perturbations. Usually, the operational and sensitivity
costs are conflicting, i.e., when one cost function is decreased, at least another increases. In
other words, there is a trade-off between optimality and robustness. Therefore, multi-objective
optimization is suitable for selecting trajectory designs with an acceptable trade-off between
operational costs and robustness.

2.2 Closed-loop optimal control problem statement minimizing oper-
ational cost and sensitivity

Since, in reality, the system operates in closed-loop, its robustness is increased. Nevertheless, it
is desired to exploit the full system performance, and hence, it is meaningful to further reduce
sensitivities. Therefore, the multi-objective robust optimal control problem in Section 2.1 is
extended to a closed-loop formulation. The following closed-loop formulation is adapted from
the work [1].

Let p be a realization of the uncertainty. It is assumed that the realizations are in a bounded
set P ⊂ R with plb ≤ p ≤ pub for plb,pub ∈ P. A feasible control for the open-loop problem
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(1) – (8) is denoted by u(·;p0) : T → Rnu . Then, a control update û : T × P → Rnu with a
predicted feedback is defined by

û(t,p) = u(t;p0) +K(t) · S(t) · (p− p0) . (9)

It is to be noted that a parameter value is usually estimated, and its estimation can be used
to update the control. The performance of the updated control depends on the estimation
accuracy of a parameter realization.

Compared to the open-loop problem, the nominal controls u(·;p0) are optimized together
with the time-dependent gains K : T → Rnu×Rnx . In equation (9), these can be interpreted as

the effect of state deviations on the control, i.e., K(t) := ∂û(t,p)
∂x . Then, the sensitivity differential

equation (5) extends to

Ṡ(t) =

(
∂f

∂x
(t) +

∂f

∂û
(t) ·K(t)

)
· S(t) + ∂f

∂p
(t), S(t0) =

∂x

∂p
(t0) (10)

according to [16]. In comparison, for the open-loop case in equation (5) the termK(t) = ∂u(t;p0)
∂x

is zero, as the controls are subject to optimization and do not explicitly depend on x.
As the gains are design variables, the path constraints (7) are extended by user-specified

constraints for the gains:
Klb ≤ K(t) ≤ Kub (11)

for all t ∈ T with Klb,Kub ∈ Rnu×nx . Analogous to the optimal open-loop controls, the control
updates are subject to path and rate constraints at the lower and upper bounds of p under the
assumption that the worst-case deviations occur at these bounds:

cineq(x(t), û(t,plb);plb) ≤ 0, cineq(x(t), û(t,pub);pub) ≤ 0, (12)

crate(ẋ(t), ˙̂u(t,plb);plb) ≤ 0, crate(ẋ(t), ˙̂u(t,pub);pub) ≤ 0. (13)

3 Scalarization methods

Since common direct optimal control methods require a scalar cost function, the multi-objective
problems from Section 2 are reformulated with a scalar cost function in the following subsections.
The method selection is based on the overview given in [12]. Please note that for the subse-
quent problem statements, the constraints (4) – (8) and (10) – (13), respectively, are adopted.
The modifications are made within the cost function and, if necessary, further constraints are
imposed.

3.1 Weighted sum method

A common approach to tackle the sensitivity minimization problems in Section 2 is the weighted
sum approach:

min
x,u,tf

w0cs,0J0 +

nJ∑
i=1

wics,iJSi .

The weights wi with
∑nJ

i=0 wi = 1 can be specified by the decision maker. The higher the
weight, the more the according cost is reduced. That means, if high optimality is required, the
weight w0 for the nominal cost is increased. If high robustness is required, the weights wi for
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i ≥ 1 are increased. By varying the weights, a Pareto front can be generated if it is convex.
However, not all Pareto optimal points can be calculated if the Pareto front is non-convex [12, 7].
Furthermore, an equidistant selection of weights does not ensure that equidistant Pareto optimal
solutions are obtained, especially when the costs are in different orders of magnitude. If the
weights are not modified accordingly, the solutions may accumulate close to the minimum cost
value with a higher order of magnitude. Hence, a relevant region with actual trade-offs may
be missed. The authors in [11, 3, 6, 9, 4] propose systematic selections of weights to ensure
that the solutions map relevant regions with acceptable trade-offs. In this study, due to the
different orders of magnitude between the final time cost and sensitivity cost in the open-loop
case, each weighted cost term is scaled by a factor cs,i such that each term is in a similar order
of magnitude to improve the balance between the cost terms.

Due to the convenience of implementation, the weighted sum approach is often used in
robust optimization using sensitivity penalty, enabling the prioritization of minimizing nominal
operational costs.

3.2 ε-constraint method

In the ε-constraint method, one cost function is minimized while constraining the other costs
as follows:

min
x,u,tf

J0

s.t. JSi ≤ εi,0, i = 1, . . . , nJ

and vice versa

min
x,u,tf

JSj

s.t. J0 ≤ ε0,j

JSi ≤ εi,j , i = 1, . . . , nJ , i ̸= j

for all j = 1, . . . , nJ . Thereby, the upper bound εi,j can be defined to be in a range of the
minimum of JSi and the value that JSi takes when the cost JSj is minimized, i.e., εi,j ∈
[εi,j,lb, εi,j,ub] with

εi,j,lb = min
x,u,tf

JSi , εi,j,ub = JSi

(
argmin
x,u,tf

JSj

)
. (14)

for i ̸= j. The bounds εi,0 and ε0,j for J0 are defined analogously. To obtain the bounds,
each cost is minimized in single-cost optimizations before solving the ε-constrained problems.
By varying the bounds, all Pareto optimal solutions can be calculated, also if the frontier is
non-convex [12].

3.3 Method of weighted metrics

In the method of weighted metrics, the distance to a reference vector is minimized:

min
x,u,tf

(
w0cm,0 (J0 − J∗

0 )
q
+

nJ∑
i=1

wicm,i

(
JSi − J∗

Si

)q) 1
q
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with 1 ≤ q < ∞ and J∗
0 and J∗

Si
commonly being the minimum of the according individual

cost function. The minimization of the distance to the minimum can be seen as a kind of
soft constraint, contrary to the hard constraint in the ε-constraint method in Section 3.2. The
method can only represent all Pareto optimal solutions, if the problem is convex [12]. Similar
to the weighted sum method description, each term is weighted with a scaling factor cm,i to
scale the costs to a similar order of magnitude.

3.4 Weighted Tchebycheff method

A special case of the weighted metrics method for q = ∞ is the Tchebycheff formulation:

min
x,u,tf

max
[
w0cT,0 |J0 − J∗

0 | , w1cT,1

∣∣JS1
− J∗

S1

∣∣ , . . . , wnJ cT,nJ

∣∣∣JSnJ − J∗
SnJ

∣∣∣] . (15)

Contrary to the weighted metrics method, only the maximum cost function is minimized. The
method can represent any Pareto optimal point for a utopian reference vector, which is strictly

smaller than the optimal vector
[
J∗
0 , J

∗
S1
, . . . , J∗

SnJ

]
consisting of the minima of each individual

cost as stated in [12]. Similar to the weighted sum method description, each term is weighted
with a scaling factor cT,i to scale the costs to a similar order of magnitude.

It is to be noted that absolute values are difficult to handle in gradient-based optimization
due to non-differentiability. However, the absolute values can be omitted since the minima J∗

0

and J∗
Si

are known. Furthermore, the maximum function is not differentiable. To handle this,
a parameter pmax ≥ 0 is introduced fulfilling

w0cT,0 (J0 − J∗
0 ) ≤ pmax,

wicT,i

(
JSi − J∗

Si

)
≤ pmax, i = 1, . . . , nJ .

Then, the minimization (15) can equivalently be formulated by

min
x,u,tf

pmax.

4 Application to robust UAV trajectory optimization

4.1 Problem statement

When planning missions for UAVs, it is of high interest to minimize operational costs while
increasing robustness. The scenario studied in this paper is a climb in minimum time under
consideration of uncertainties in the aerodynamic model adapted from [1]. To find a satisfactory
trade-off between costs and robustness, an approximation of a Pareto front is calculated with
the scalarization methods in Section 3. Specifically, positional sensitivities are minimized with
an open-loop and a closed-loop model to assess the robustness performances. Therefore, a fixed-
wing UAV is modeled with the dynamic equations as presented in [8] and [1]. The states x, y, h
describe the positional coordinates. The course angle is denoted by χ, the flight path angle by
γ and the velocity by V . Furthermore, m is the mass of the vehicle and g is the gravitational
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acceleration. The dynamics are given as follows:

ẋ(t) = V (t) cosχ(t) cos γ(t)

ẏ(t) = V (t) sinχ(t) cos γ(t)

ḣ(t) = V (t) sin γ(t)

χ̇(t) =
L(t) sinµ(t)

mV (t) cos γ(t)

γ̇(t) =
L(t) cosµ(t)−mg cos γ(t)

mV (t)

V̇ (t) =
T (t)−D(t)

m
− g sin γ(t),

The thrust, lift and drag are given by

T (t) = δT (t)Tmax

L(t) =
1

2
ρV (t)2ACL(t)

D(t) =
1

2
ρV (t)2A

(
CD0

+ kCL(t)
2
)

with Tmax being the maximum thrust of the vehicle, ρ the air density, A the reference area,
CD0 the zero-lift drag coefficient and k the induced drag factor. The controls are given by the
lift coefficient CL, the bank angle µ and the thrust lever position δT . The model parameter
values are given in Table 1.

Parameter Unit Value

m kg 6
g m/s 9.81
ρ kg/m3 1.225
Tmax N 70.632
A m2 0.7
CD0

- 0.015
k - 0.02

Table 1: Model parameter values.

The task of the UAV is a climb in minimum time with the initial and final boundary
conditions, path, and rate constraints as given in Tables 2 and 3. Furthermore, for a well-posed
problem, a limitation for the flight time of maximally 20 s is set.

The uncertainty is assumed to be in the aerodynamic zero-lift drag coefficient CD0 with a
deviation up to 30 %. To reduce collision risk, a robust position for sufficient separation may be
important for specific scenarios. Therefore, the sensitivities of the x-position and the altitude
with respect to CD0

defined by Sx := ∂x
∂CD0

and Sh := ∂h
∂CD0

are minimized as well. Then, the

cost functions are given by

J0 = tf , JS1
=

∫ tf

t0

Sx(t)
2 dt, JS2

=

∫ tf

t0

Sh(t)
2 dt.
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Symbol Unit Lower Bound Upper Bound Initial Value Final Value

States x m 0 ∞ 0 -
y m 0 ∞ 0 -
h m 0 ∞ 30 100
χ deg −60 60 0 0
γ deg −30 30 0 0
V m/s 0 20 17 17

Table 2: State limits and initial boundary conditions.

Symbol Unit Lower Bound Upper Bound

Controls CL - 0 1
µ deg −30 30
δT - 0 1
K - −0.5 0.5

Control Rates ĊL,
ˆ̇CL(·,plb),

ˆ̇CL(·,pub) 1/s −0.1 0.1

µ̇, ˙̂µ(·,plb), ˙̂µ(·,pub) deg/s −30 30

δ̇T ,
˙̂
δT (·,plb),

˙̂
δT (·,pub) 1/s −0.1 0.1

Table 3: Control and rate limits.

To minimize the costs, the scalarization techniques presented in Section 3 are implemented.
For the weighted methods, 11 equidistant weights for each w0, w1, w2 ∈ [0, 1] are perturbed

fulfilling
∑2

i=0 wi = 1 to cover different combinations of weighting triplets. Due to the different
orders of magnitude between the cost functions in the open-loop case, each weighted cost term
is scaled by a factor c(s,m,T ),i to improve the balance between the cost terms. The index refers
to the weighted sum (s), weighted metrics (m), and the Tchebycheff method (T ). The values
are given in Table 4. Since in the closed-loop case, the cost values are in a similar order of
magnitude in the region of interest, the scaling factors are set to 1.

In the weighted metric sum method, the exponent q = 2 is chosen, i.e., the Euclidean norm.
For the ε-constraint method, the weighted metric sum, and the weighted Tchebycheff method,
a range for the bounds and reference values are required. These are determined by solving each
single-objective optimization problem according to the equations in (14). For the closed-loop
case, the upper bounds are determined after a first run of multi-objective optimizations and
after observing that the sensitivity costs vary in the order of magnitude. This observation led
to the selection of smaller bound intervals to map the relevant region of solutions. Therefore, 11
upper bounds εi,j are equidistantly chosen within the intervals given in Table 4. The optimal
control problems are solved with the framework FALCON.m [14], which is based on direct
optimal control using trapezoidal collocation and the optimization solver IPOPT [2].

4.2 Numerical results

The optimal cost function values using the scalarization techniques from Section 3 for the open-
loop and closed-loop case are depicted in Fig. 1 and Fig. 2, respectively. The first observation
is that the approximation of both Pareto fronts are likely to be convex.

In the open-loop solutions, the scalarization techniques deliver similar approximations of a
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Open-loop Closed-loop

J∗
0 9.0539 s 9.0524 s

cs,0 1 1
cm,0 1 1
cT,0 1 1
ε0,1 [9.0539, 12.4507] s [9.0524, 15] s
ε0,2 [9.0539, 10.6350] s [9.0524, 15] s

J∗
S1

9.1757× 103 0.0146
cs,1 1/9000 1
cm,1 10−10 1
cT,1 1/9000 1
ε1,0 [9.1757× 103, 3.9171× 105] [0.0146, 20]
ε1,2 [9.1757× 103, 4.2593× 104] [0.0146, 20]

J∗
S2

6.3733× 104 1.3177× 10−7

cs,2 10−5 1
cm,2 10−10 1
cT,2 10−5 1
ε2,0 [6.3733× 104, 6.3653× 105] [1.3177× 10−7, 20]
ε2,1 [6.3733× 104, 3.6027× 105] [1.3177× 10−7, 20]

Table 4: Parameters for scalarized multi-objective optimization problems.

Pareto front with slightly different distributions of solutions on the frontier. The results show
that a relevant region of an acceptable trade-off may be between 10 s and 11 s, where the
deviations in the x-position and altitude can be reduced to be below 1 m and 2 m, respectively.
With the weighted methods, the solutions are mainly concentrated in an area between 10 s and
12 s, including the region of interest. In contrast, the ε-constraint technique delivers points
over the whole frontier, also in a surrounding of extreme cases, i.e., close to the minimum of
the single costs.

In the closed-loop solutions, the cost function values have varying orders of magnitude from
1 to 105. Therefore, the selection of bounds for the ε-constraint method is based on a relevant
region with low sensitivities to be considered by a decision maker under the assumption that
a decision maker would exclude solutions with high sensitivities. Approximate Pareto optimal
solutions in this region are depicted in Fig. 2. In the ε-constraint method, the solutions are
more evenly distributed over the approximate frontier. The weighted methods deliver solutions
concentrated in the center of the region. Exemplary state trajectories and nominal controls
with an acceptable trade-off resulting from the ε-constraint method are depicted in Fig. 3. The
reduction of sensitivities, i.e., the increase in robustness, is significant compared to the open-loop
solutions. Trajectories with near-optimal flight time and reduced positional deviations below
2 cm can be obtained using the actual parameter value. Employing perturbed parameter values
assuming that a drag estimator can reduce the estimation uncertainty to 5 %, the positional
deviations are below 15 cm, i.e., the predicted feedback leads to good robustness performance
when considering estimation errors in parameter values. The trajectory structures of potentially
Pareto optimal solutions in Fig. 3 indicate that robust solutions may reduce the overall velocity
during flight, increasing flight time, similar to the studies in [1]. It is to be noted that the results
are specific to the selected gain bounds. The fact that the closed-loop solutions fully exploit
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these bounds, i.e., the bound constraints are active for some time points, may indicate that
robustness could be improved by increasing the gain bounds, provided that feasible solutions
exist.
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Figure 1: Approximation of Pareto front for open-loop problem formulation from different
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Figure 3: Selected robust trajectories with an acceptable trade-off resulting from ε-constraint
method in open-loop (solid) and closed-loop (dashed) modeling compared to the optimal nom-
inal open-loop trajectories (black).

5 Conclusion and outlook

This study analyzes multi-objective solutions to map the trade-off between optimality of opera-
tional costs and robustness in UAV trajectory optimization, considering open-loop and closed-
loop modeling approaches. By adapting the weights and bounds to the different orders of
magnitude of costs, the weighting techniques and the ε-constraint technique deliver relevant
sets of approximate Pareto optimal solutions. The analysis serves as a basis for a decision
maker to choose a solution with an acceptable trade-off and for evaluating the performance
of an open-loop and a closed-loop sensitivity minimization approach for further improvements.
It is observed that the closed-loop solutions depend on the user-defined gain bounds and fur-
ther research can be directed to investigate suitable gain bounds in order to enhance a robust
closed-loop strategy. Furthermore, the solutions may be improved by investigating globalization
techniques for better approximation of Pareto optima and by analyzing Pareto optimality.
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