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Abstract.  Uncertainty analysis of hydrological models often requires a large number of model 
runs, which can be time consuming and computationally intensive. In order to reduce the 
number of runs required for uncertainty prediction, we explore in this study the potential of 
Bayesian Networks (BNs). A BN is created using a simple version of Temperature-Index 
Snowmelt Model. Next, uncertainty analysis is performed using both the BN method and 
Monte-Carlo (MC) simulations. The results show that BN method gives similar results to the 
MC method and can be used for real-time applications.  
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Introduction  
Although much work has been done to overcome uncertainty problems in hydrological 
modelling, several proposed methods are computationally demanding (see a recent 
review in [1], and the references cited therein).  The most common method to estimate 
uncertainties within the hydrological community is to use the classic Monte-Carlo 
method (MC, [2]). It involves running the model successively using random sampling 
from the distributions of input parameters until sufficient samples of the output 
distribution have been obtained. Without using smart sampling, such as Latin 
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Hypercube, it is obvious that the MC simulations requires a large number of samples 
of the input distribution. If the model is complex or the number of uncertain parameters 
is high, MC method becomes time consuming and computationally expensive. As an 
example, for a hydrological model with five uncertain parameters that takes 5 seconds 
to run, in order to propagate uncertainties tied with these parameters through the 
model, 10 000 runs will take 50 000 seconds to be done, that is to say more than 13 
hours of simulations. In this study we explore the potential of Bayesian Networks 
(BNs, [3]) to allow real-time uncertainty estimation. BNs are mathematical models 
presented in the form of Directed Acyclic Graphs (DAGs) consisting of nodes and 
directed arcs relating these nodes. The nodes present the variables and the arcs 
represent the causal relationships between these variables. They can be used to create 
“expert systems” including expert knowledge about complicated domains and 
phenomena. They can also be used as tools for decisions support. In this paper, we will 
demonstrate uncertainty analysis on a Temperature-Index Snowmelt Model [4] using 
BNs and comparing to MC simulations.  

1 Methods: Bayesian Networks 
1.1 Definition of Bayesian Networks 
A Bayesian Network  is a combination of both graph and probability theory. 
It is defined as:  , a directed acyclic graph, without circuits, consisting of 
nodes and arcs relating these nodes. The nodes are associated with a set of random 
variables, , explaining the studied phenomenon, e.g. snow melt 
process, and directed arcs, , represent the set of causal relationships between these 
variables. Each node, , in the graph is associated with a conditional  probability , 

, expressing the effect of the variables, , that cause   in 
.  are also called local probabilities and they express the “dependencies strengths” 

between the nodes (variables). In practice,  are defined in Conditional Probability 
Tables (CPTs), in the form of tables. The way  is shaped, i.e. a directed acyclic 
graph, simplifies the computation of both joint and marginal probabilities of the nodes, 

, making up the network. The computation of these probabilities comes down to the 
product or sum of conditional probability terms directly accessible from CPTs. In BNs 
terms, this operation is called inference:  

   (1) 

As we can see in equation 1, the computation of  comes down to the 
product  of local probabilities terms directly accessible from CPTs associated with the 
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network. This combination between the theory of graphs and probability is one of the 
powerful aspects of Bayesian Networks providing an efficient way to preform 
inference (the process of estimating a posterior probability of a variable of interest 
giving observations on some other variables in the graph). Algorithms dealing with 
inference in BNs are explained in details in Pearl (1988) [5] and Jensen (1996) [6]. 
The most classical and famous one rests on what it’s called as Junction Tree (JT) 
method (also known as Clique Tree method). It is used to compute marginal 
probabilities on graphs by creating a tree of cliques, and carrying out a message-
passing procedure on this tree. This is done through three stages: Moralisation, 
Triangulation, and assembling cliques into a junction tree. More details on this method 
are available on Jensen (1996, p.76) [6].  

1.2 Bayesian Network associated with the snow melt model  
1.2.1 Temperature-Index Snowmelt Model 
A Temperature-Index Snowmelt Model is a widely-used method to estimate snow melt 
rates [4,7]. It assumes a simple empirical deterministic relationship between air 
temperature and melt rates. The simplest version of this model can be summarized as: 
during a rainfall event, the nature of precipitation  reaching the soil surface is closely 
related to the air temperature ( ); if 	then falls as snow ( ), otherwise  
would be rain. Snow Water Equivalent ( ) represents the amount of water stored 
in the snow (vertical depth), it is a function of snow precipitation  and melt rate (

). The model is generally applied as a time series model with a daily step. For each 
step, is computed:  

   (2) 

 
Where 	is the melt factor, which is the rate of melt per degree per day.
	expresses the influence of the meteorological conditions other than air temperature 
and physiographic characteristics of the basin. This model is purely deterministic with 

 as its unique parameter. From now on, we denote this model as the Deterministic 
Model (DM). In order to construct a Bayesian network representing this model, two 
elements are needed (see section 1.1): the structure and the conditional probability 
tables.  

1.2.2 Specifying the structure of BN  
The structure	of BN is directly inspired by the deterministic model (DM) presented 
above. The posterior probability of is computed knowing the prior distribution 
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probabilities of the inputs (  and ), of the model parameter ( ) and anterior 
conditions  (figure 1). 
 

 

Figure 1: Oriented directed structure of BN inspired from DM.  

1.2.3 Estimating CPTs of BN  
Once the model structure is fixed, model parameters have to be estimated. This phase 
consists of estimating all the CPTs involved in the causal relationships of the network. 
This is done by using algorithms in which BN is trained based on a dataset of cases 
[8]. In our case, the dataset of 100 000 cases is created using the DM model. The DM 
is forced with stochastic precipitation and temperature  with random values of . 
The results are stored in a text file text used as our database for estimating CPTs. Next, 
we used Netica [9], a Bayesian network toolkit, and specifically its counting algorithm 
to learn the network CPTs from the created data. The counting algorithm uses a 
traditional one-pass method to determine the probabilities, which essentially amounts 
to counting the number of times a node takes on a certain value given each 
configuration of the parents (for details, see [10]). Because of the requirements 
imposed by many BN software packages as it is the case of Netica, which do not 
support continuous variables, the discretisation of continuous nodes is often necessary 
in BN construction. To address this issue, the users can either rely on the discretisation 
solutions offered by these packages, or by finding their own ones. The discretization 
policy followed here is simple. It consists of scanning the historic data, presented 
below (section 1.2.5), in order to identify the minimum and the maximum values of 
all observed variables, and then divide the continuous nodes into a number of intervals. 
Ideally, it is only a few intervals should be associated with each node in order to reduce 
the dimension of BN and optimize its time inference computation. Two versions of 
BN model were constructed using two arbitrary discretization (table 1).  
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          Nodes 𝑷	& 𝑷𝒔 𝑻𝒂 𝑺𝒎 𝑴𝒇 𝑺𝑾𝑬	&	𝑺𝑾𝑬𝟎	 

Range Variation  [0, 135] mm [-16, 24] 
C° 

[0, 250] 
mm 

[0, 10] 
mm/d/C° 

[0, 2470] 
mm 

Discretisation 
D20 

20 20 50 20 20 

Discretisation 
D100 

20 20 50 20 100 

Table 1: Range variations of BN nodes and their two discretization. 

1.2.4 Used software 
In this study, the two BN versions were developed flowing the following the 
discretization fixed in table 1. the two versions of BN are developed using the software 
package of Netica version API Java (Netica-J, [9]) to. Netica-J is a complete program 
for working with Bayesian Networks. It has many practical utilities such as the ability 
to develop, train, change and store networks and determine better resolutions. Netica 
performs inference which solves the network by finding the marginal posterior 
probability for each node using the Junction Tree algorithm. One advantage of Netica 
is the comprehensive, flexible and user friendly graphical user interface included in 
the package.  

1.2.5 Case Site study: MtHood field site 
The data from the Mount Hood field site [11] has been chosen to demonstrate the BNs. 
Mount Hood field site, NRCS site number 651, is located in northern Oregon, USA, 
at approximately 1637 meters above sea level (latitude: 45.32, and longitude: -121.72). 
The site is operated by National Resources Conservation Service (NRCS) and provides 
observation data of snow water equivalent, snow depth, precipitation, temperature and 
other climatic variables in hourly, daily, monthly and yearly increments. The daily 
observed precipitation, air temperature and snow water equivalent (SWE) between 
01/10/2005 to 30/09/2013 were downloaded and used to perform uncertainty analysis 
for both the DM and BN Model.  
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Figure 2: (a) data of daily observed precipitation, temperature, and (b) snow water 
equivalent (SWE) at Mt Hood field site.  

Hereafter, we will simulate the snow water equivalent (SWE) at this station giving the 
observed precipitation and air temperature presented in figure 2.a, and then compared 
it to the observed SWE showed in figure 2.b. The simulations are done using both 
Deterministic Model (DM) and Bayesian Network (BN) model. 

2 Results and discussion 
2.1 Calibration of the model DM 
In order to estimate the optimum value of the parameter melt day factor	𝑀1, we have 
calibrated the model DM using one year of  historic data of precipitation, air 
temperature and observed SWE presented in Figure 2 (from October 2012 to 
September 2013). Several values of 𝑀1 were tested and the performance of the model 
DM was estimated using the Nash- Sutcliffe (NS) efficiency criteria [12]. It is defined 
as one minus the sum of the absolute squared differences between the predicted and 
observed values normalized by the variance of the observed values during the period 
under investigation. NS ranges between 1.0 (perfect fit) and −∞. An NS lower than 
zero indicates that the mean value of the observed values would better predictor than 
ones given by the model. Several runs of the model DM have been carried out with 
several values of 𝑀1. For each run, NS is calculated (figure 3). According to this 
criteria, 𝑀1 = 1.4	mm/d/C°	is found to be the optimum value of DM with a value of 
NS=0.7634. 

(a) (b) 
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Figure 3:  Calibration process of the DM model. An optimum value of 𝑀1 =

1.4	mm/d/C°		is found. 
 

Later on, after we have set the discretisation D100 for BN model and learned CPTs 
using the methodology described in section 1.2.3, we compute for each time step the 
posterior probability of SWE (figure 4). This probability, in the form of a state vector, 
corresponds to all possible values of SWE giving the inputs (precipitations and air 
temperature), and the optimum value of Mf as evidences. In the Bayesian network 
terms, this operation is called inference. For each time step, a state vector of SWE is 
computed (figure 4), in which we can access to the most probable value, mean value, 
standard deviation etc. The performance of the BN model can be estimated by 
comparing the most probable values of SWE of each time step to the observed SWE 
using NS criteria. In our case we found an NS=0.6769. This value is slightly lower 
than the one calculated for DM (NS=0.7634). This is due to the discretisation (D100), 
associated with the BN.  

 
Figure 4:  Posterior probabilities of SWE calculated by BN model with 𝑀1 =

1.4	mm/d/C°. for each time step, the saturated color corresponds to the most probable 
values.  
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2.2 Results of uncertainty analysis using DM and BN model 
Figure 3 shows that DM model gives acceptable results for 𝑀1 ranging from 1 to 1.8 
mm/d/C° (NS>0.70), with a pic of performance at 𝑀1 = 1.4	mm/d/C°		. Hereafter, 
we suppose that 𝑀1 has a Gaussian distribution around this optimum value with a 
standard deviation, equals to 0.4 mm/d/C°, expressing the average magnitude of 
uncertainty associated with this parameter (figure 5).  

 
Figure 5: Uncertainty distribution function of 𝑀1, 𝑝(𝜇, 𝜎) = 𝑁(1.4,0.4) mm/d/C°. 

 
Generally speaking, taking into consideration the uncertainties from different sources 
(inputs, model parameters, model structure etc.), will certainly improve the reliability 
of the outcomes (forecasts) giving by a hydrological model. It also helps the decision 
maker well interpret the results. The assessment of uncertainty in a hydrological model 
output requires the propagation of different sources of uncertainty through the 
modelling system. Monte-Carlo (MC) procedure is the most useful method used to 
achieve this purpose within hydrology community. This by forcing the model with 
perturbations in model parameters through random sampling from prescribed 
probability distributions using a MC simulation framework [13, 14].  
In this study, Uncertainty analysis using both MC procedure on DM model and BN 
model are carried out. Our aim is to propagate the uncertainty tied with 𝑀1 (Figure 5) 
and see how it affects the outcome SWE. The simulations are done using the data 
presented in section 1.2.5. The simulation period was set to 1 October 2005, until 30 
September 2012, with 1 day as time step length. 
The DM model was run 20 000 times. For each time, a single random value of 𝑀1 was 
chosen from the distribution and the SWE result is recorded. Using the corresponding 
MC simulations, we can calculate, for each time step, some statistical properties such 
as moments (mean and variance), quantiles (Q10, Q50, Q90) of the simulated SWE.  
The BN model is also used to propagate the uncertainty distribution function of 𝑀1 
through the model. Both versions were tested, corresponding to the discretisation D20, 
D100 (Table 1). For each version, we simulate the same data, as we did with DM 
model, by entering for each time step the inputs (𝑃,	𝑇C) and the Gaussian distribution 
function of 𝑀1, 𝑁(1.4,0. 4), as evidences. This is done in one run thanks to the 
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Bayesian Networks inference algorithms. Figure 6 shows different results obtained 
with DM model and the BN model discretized at D20 and D100. First, one can see 
that DM model and BN versions, exhibit similar time evolution patterns. This is totally 
expected since the BN model is a graphical implementation of deterministic equations 
making up DM. The widths of the prediction uncertainty obtained with DM and BN 
(version D20) are however different (figure 6.a and 6.b)). We can see a big portion of 
observed SWE (in blue color) are inside this large interval. When we refine the 
discretisation of BN (version D100, figure 6.c), the calculated uncertainty interval 
becomes tighter, but does not include most of the observed SWE. In fact, the more we 
refine the discretisation of BN the more we converge towards the mean of DM 
simulations: a coefficient correlation R=0.97 is calculated between BN (version D100) 
and DM simulations in this case. This proves the deterministic equations (DM model) 
used to train CPTs of BN are not able to reproduce the process of snow melt at this 
studied area. The DM, as simple as it is, is clearly not able to reproduce the complexity 
of snow melt process at this studied site. We can also evaluate the obtained results by 
considering a global index for uncertainty prediction. It is defined as the percentage of 
observed SWE points located inside the uncertainty interval Q90-Q10. The DM model 
and BN model with D20 discretisation give the best performances with 93.74% and 
95.42% respectively. This is because the corresponding uncertainty intervals are quite 
wide. For finer discretization of BN, we calculate lower values of this index; 55.06% 
for BN (version D100). 
 

 

 
 

 
 

(b) 

(a) 
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Figure 6: SWE uncertainty simulations resulting from the propagation of a Gaussian 
uncertainty tied with the parameter 𝑀1,𝑁(1.4,0. 4). The prediction uncertainty is bounded 
by the calculated Q90 and Q10. (a) the propagation is done by forcing the DM model with 
20 000 values of 𝑀1 chosen randomly form 𝑁(1.4,0. 4). (b) propagation of uncertainty 
using BN model with discretization D20. (c) propagation of uncertainty using BN model 

with discretization D100 (table 1). 
 
Besides deterministic equations, the BN CPTs can be estimated also using expert’s 
opinion and experimental data. Depending on the discretisation, training CPTs using 
deterministic modes could be costly and time consuming both in the learning and 
inference stage since the consequent Bayesian Network is complex with a lot of nodes 
and links. Another issue related to this method is that the performances of BNs depend 
on the credibility of the deterministic equation used to train CPTs. The best way to 
estimate CPTs is using experimental data. This way, the BNs can capture the real 
response of environmental system studied. Unfortunately, experimental data are not 
always available or presenting missing values. Learning algorithms tempting to handle 
this problem often delete the observations with missing values or fill in the missing 
values. Such procedures may however lead to biased results. One other option is to 
use expert’s knowledge to estimate some CPTs in the network. but its limited to the 
qualitative nodes since it’s very hard to estimate manually tables with big sizes 
associated with quantitative ones.  

Conclusion 
Uncertainty analysis on hydrological models could be done using BNs. The advantage 
of BNs is that we don’t need to run the model several times in real-time as the 
computations of the CPTs can be done a priori. Such advantages could be used to 
perform uncertainty predictions within operational hydrological model such as flood 
forecasting systems. BNs make possible to integrate both deterministic, as we did in 
this article, expert’s knowledge, estimating the CPTs using expert’s knowledge, into 
one framework, which can improve its performances. However, one major challenge 
facing the BN methodology is the need for discretisation of distributions of continuous 

(c) 
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variables. Environmental variables and parameters often have continuous values, but 
the BN methodology, or especially the available software’s developed to construct 
BNs, are very limited in its abilities to deal with such variables. Hence, these values 
are often discretised, which can lead 
to loss of information. A common way to transform continuous values into discrete 
values is by to divide the continuous distribution into intervals as we did in section 
1.2.3.  
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