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Abstract 
High-resolution (HR) imaging devices are now widely used for capturing crack 

images from civil structures, necessitating the development of algorithms for HR image 
segmentation. However, the traditional refined segmentation of HR images requires 
substantial GPU resources, which leads to the adoption of the cost-effective point 
rendering technique for inference. Considering that traditional rendering techniques 
require the use of coarse masks to guide the rendering points for processing prediction, 
these coarse masks typically fail to effectively focus the rendering points on the 
boundary regions of the slender cracks, resulting in ambiguous predictions at crack 
boundaries. In contrast, we introduce a novel rendering point sampling paradigm that 
enables the network to focus rendering points on crack boundary regions, guided by the 
probability maps during the inference phase. This approach significantly improves the 
segmentation accuracy of crack boundary regions from HR images without increasing 
computational resource dependence. Experiments on an open-source HR crack image 
dataset consistently show our method's superiority over state-of-the-art approaches, 
with final results of 84.24%, 93.78%, and 91.45% on IoU, mBA, and Dice, respectively. 

1 Introduction 
Bridge cracks are a leading cause of many bridge diseases, which can reduce the structural load-

bearing capacity of bridges and may trigger structural disasters (Sony et al., 2021; Deng et al., 2022). 
Therefore, for traffic management departments, it is crucial to identify crack damage timely and 
accurate to ensure the normal operation of bridges during their service period (Xie et al., 2022). 
Semantic segmentation methods based on deep learning represent the most promising solution for the 
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automatic and rapid identification of these cracks and have become a key topic in the field of bridge 
maintenance research (Chu et al., 2022). 

In recent years, with the development of imaging technology and the increased requirements for 
detection, high-resolution (HR) imaging devices have begun to be gradually promoted and applied to 
collect surface crack images of engineering structures. The advantage of collecting HR images is that 
they contain richer crack detail information, which can be better used for the assessment of structural 
safety performance. However, traditional deep learning architectures often need to perform complex 
convolutional operations to generate new pixels during the decoding stage, based on deconvolution or 
transposed convolution. These convolutional operations require processing a larger number of data 
points as the size of the image increases, and the intermediate computational results produced need to 
be cumulatively stored in GPU memory. This makes the use of current traditional deep learning 
segmentation methods for accurate segmentation of HR crack images a computationally demanding 
operation, which is difficult to implement on conventional commercial GPUs, thus significantly 
limiting the advantages of HR imaging devices in terms of detailed characterisation from being fully 
utilised in practical tasks. 

Unlike traditional encoder-decoder architectures, PointRend, proposed by Kirillov et al. (Kirillov 
et al., 2020), replaces the conventional decoding architecture with lightweight MLPs (Multilayer 
Perceptrons) that share weights and perform predictions through point-wise rendering. The MLP 
designed for point-wise rendering calculates each pixel of the image independently, meaning the 
network only needs to process a single or a small batch of pixel data at any given time. Therefore, this 
method is different from traditional upsampling, which requires expanding the entire feature map to a 
higher resolution all at once, thereby occupying a significant amount of GPU memory. In simple 
terms, this lightweight MLP performs predictions through point-wise rendering, significantly reducing 
the segmentation network's dependency on GPU memory while ensuring that the GPU memory does 
not increase with the size of the inference image. 

Meanwhile, compared to traditional methods of dealing with GPU memory constraints by resizing 
HR images to smaller sizes or cropping HR images into patches for patch-wise inference (Cheng et al., 
2020; Wang et al., 2020), the MLP-based point-wise rendering can perform calculations at the 
original resolution, thus avoiding the potential detail loss caused by proportional resizing and the 
inconsistencies or stitching artefacts that may occur during the stitching process, thereby better 
ensuring the coherence and consistency of the prediction results. Overall, the PointRend is considered 
the optimal solution for addressing GPU memory limitations in high-resolution image segmentation 
currently available. 

However, this point-rendering method was originally designed for conventional targets in natural 
scenes, but cracks, as a type of target with elongated topological structures and random distribution, 
differ greatly from conventional targets. Therefore, directly applying the point-rendering method for 
segmenting cracks poses challenges. Specifically, the original point-rendering technique, in the 
decoding phase, uses coarse segmentation masks to guide the rendering points for refined prediction, 
which is feasible for targets of conventional sizes because the edge details of such targets can be 
relatively accurately represented in the coarse segmentation masks. However, for targets like cracks 
that have elongated topological structures and random distribution, a large amount of detail features, 
including the edges of cracks and tiny crack branches, are already lost in the coarse segmentation 
masks. This deficiency results in rendering points being unable to effectively focus on these lost detail 
feature areas, thus producing ambiguous predictions for crack boundaries and missing predictions for 
tiny crack branches. Figure 1 provides a visual demonstration of the process and results of using 
coarse segmentation masks to guide rendering points for segmenting crack images. Due to the 
inaccuracy of the coarse segmentation, the refined rendering points are unable to be effectively guided 
to the tiny crack branches (the red marked areas in Figure 1(b)) and are instead more often directed to 
the inaccurately defined coarse seg-mentation crack edges (the green marked areas in Figure 1(b)). 
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This results in the final predictions obtained through rendering techniques not only missing the tiny 
crack details but also failing to achieve refined predictions at the crack edges. 

It should be noted that, in the field of crack inspection for civil engineering, the precise 
segmentation of crack edges and the complete identification of tiny crack branches are of 
indispensable importance for assessing structural integrity, implementing early damage recognition, 
formulating maintenance strategies, and conducting long-term health monitoring to ensure structural 
safety. 

 
Figure 1. The process of segmenting a randomly selected HR crack image using the original 
PointRend architecture. (a) Schematic diagram of the PointRend architecture; (b) Coarse 
segmentation used to guide the rendering points and the final point prediction of the rendering points 
under its guidance. 
 

To maintain the GPU memory efficiency benefits of the point-rendering method for segmenting 
HR images while ensuring precise inference at crack boundaries and tiny crack branches, this study 
proposes a refined rendering approach. This approach utilizes a probability map during inference to 
guide rendering point sampling. By redefining the intervals of simple and hard samples on the 
probability map, rendering points can be concentrated from simple samples, such as the background 
and main body of cracks, towards hard-sample areas like crack edges and tiny crack branches. 
Consequently, the network achieves refined segmentation for HR crack images on standard 
commercial GPUs. Our contributions are summarized as: 

– For the first time, we incorporate point-rendering technology into HR crack image segmentation, 
tackling two significant challenges inherent to conventional segmentation methods: the substantial 
reliance on GPU computational resources and the inadequacy in achieving fine-grained segmentation 
detail. 

– We customized a set of rendering point guidance strategies for the inference phase, which not 
only reduces the difficulty of training the rendering model but also significantly increases the model's 
segmentation accuracy for detailed areas such as crack edges and minor crack branches. 

– This study proposes a novel paradigm for constructing networks for fine-grained segmentation 
of HR crack images. It advocates for the replacement of traditional prediction heads with those driven 
by the probability map and incorporates the multi-scale Transformer architecture for enhanced crack 
detail extraction. 

We conducted experiments on an HR crack image dataset collected in the field and demonstrated 
that our model achieves state-of-the-art performance in both quantitative and qualitative results, with 
enhanced fine-grained segmentation capabilities and lower computational resource dependency. 

Refined Segmentation of HR Crack Images H. Chu et al.

855



2 Related Work 
2.1 Deep Learning-based Crack Inspection 

To enhance the detection of cracks' morphological characteristics (direction, edges, and corners), 
semantic segmentation algorithms rooted in deep learning have been applied to crack image analysis. 
Initially, FCN and SegNet served as foundational frameworks (Bang et al., 2019; Liu et al., 2019; 
Zhang et al., 2019), albeit their repeated downsampling during feature extraction obscured significant 
fine crack details in the output (Zhang et al., 2019). The introduction of skip connections within U-
shaped encoder-decoder architectures addressed these limitations partially, setting a new standard for 
crack detection (Ronneberger et al., 2015). Despite their advancements, these architectures, largely 
reliant on CNNs for feature extraction (Huyan et al., 2020; Mei et al., 2020), struggle with modelling 
long-distance interactions, complicating the segmentation of slender cracks (Khan et al., 2022). 
Recent shifts towards Transformer architectures (Qu et al., 2022; Shamsabadi et al., 2022; Guo et al., 
2023), with their self-attention capabilities for extracting crack features, aim to overcome CNNs' 
constraints. Yet, these approaches do not adequately prioritize computational resources for critical 
areas like crack edges, leading to indistinct outcomes on mask boundaries. 

2.2 Refined Segmentation 
To enhance segmentation accuracy, refinement methodologies were introduced, starting with the 

amalgamation of Conditional Random Fields (Zheng et al., 2015; Lin et al., 2016; Chen et al., 2017) 
and Graph Models with deep learning frameworks (Dias & Medeiros, 2018). These initial attempts 
often relied on basic colour boundaries and did not leverage advanced semantic insights, inadequately 
addressing contours with minimal contrast to the background. Addressing this, some scholars 
proposed specialized refinement modules (Peng et al., 2017; Zhang et al., 2019), although their 
applicability was hampered by the prerequisite of predetermined thresholds. This prompted a shift to-
wards the creation of versatile plug-in modules for broader utility. Notable advancements include 
RefineNet by Lin et al. (Lin et al., 2017), which refines boundaries through multi-path connections 
that integrate features across layers during network upsampling, and HRNet by Sun et al. (Wang et al., 
2020), employing multi-path connections to enhance detail capture via high-resolution representation 
learning, thereby offering comprehensive image structural insights. Yet, these approaches' reliance on 
extensive computational re-sources and their substantial parameter counts challenge their application 
to high-resolution crack image segmentation and model training efficiency. 

2.3 Rendering-based Technology for Refined Segmentation 
The dilemma of indistinct boundary regions in crack image analysis parallels the jagged edge 

phenomenon in computer graphics when images are pixelized (Barron et al., 2021; Wu et al., 2021). 
This domain, crucial for generating and rendering images for applications like gaming and film 
effects, showcases the pinnacle of computer vision technology through image synthesis, animation, 
and virtual reality (Kellnhofer et al., 2021; Wang et al., 2021; Tewari et al., 2022). Drawing 
inspiration from these rendering techniques, Kirillov et al. (Kirillov et al., 2020) introduced 
PointRend, a novel approach utilizing rendering for enhanced segmentation in natural scenes. 
PointRend utilizes MLPs with shared weights for point-wise pixel prediction, capitalizing on 
rendering's precision without burdening GPU memory, thus enabling its application on standard 
GPUs for high-resolution imagery. Nevertheless, PointRend's dependency on coarse masks for 
rendering point guidance falls short of accurately detecting slender crack features. Addressing this, 
our study introduces a refined rendering strategy that maintains PointRend's memory efficiency while 
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improving accuracy on crack peripheries and fine branches through a probability map-guided 
rendering point approach. 

 
Figure 2. Schematic diagram of the proposed network. (a) The overall architecture; (b) Transformer 
block with the SRA embedded. 

3 Method 
The probability map-guided point-rendering crack segmentation network proposed in this study 

follows the encoder-decoder architecture design pattern, consisting of three main parts: a crack fine-
grained feature encoding backbone, a rendering point guidance branch, and a point-rendering-based 
fine-grained prediction head. The crack fine-grained feature encoding backbone is built from a 
lightweight encoder and a series of Transformer blocks; the rendering point guidance branch shares a 
lightweight encoder with the crack fine-grained feature encoding backbone and generates probability 
maps for guiding rendering points through a traditional decoder; the point-rendering based fine-
grained prediction head is built based on the MLP that can perform point-by-point refinement 
predictions. It should be noted that the rendering point guidance branch and the point-rendering-based 
fine-grained prediction head together constitute the network's decoder part. Figure 2 visually presents 
the algorithmic details and computational logic of the proposed framework for HR crack image fine-
grained segmentation. 

3.1 Crack Fine-grained Feature Encoding Backbone 
To ensure that the deep semantic feature maps contain rich crack detail information while 

improving the model's inference efficiency, this study employs a custom feature extraction encoder 
that combines a lightweight encoding architecture with an improved pyramid visual Transformer. An 
image is first input into the front end based on a lightweight encoding architecture, specifically 
adopting the MobileNetV3 architecture [31]. At this stage, the image undergoes a series of depthwise 
separable convolution operations that filter each channel of the input image using depth convolutions, 
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followed by pointwise convolutions that fuse the features of these channels. This effectively reduces 
the model's parameter count and computational complexity while retaining key image features. The 
output of the lightweight encoding architecture is a set of feature maps that are relatively smaller in 
spatial dimensions but still retain important visual information of the image. 

Subsequently, these feature maps are fed into an improved Pyramid Visual Transformer (PVT) 
module (Wang et al., 2021). The original PVT module adopts a hierarchical Transformer architecture 
capable of processing feature maps at different scales, achieving the extraction and fusion of multi-
scale features. Within each layer, feature maps are processed through a self-attention mechanism, 
allowing the model to capture global contextual information and enhance its understanding of image 
details. Through progressive processing, the PVT module gradually increases the resolution of feature 
maps while integrating richer contextual information, ultimately producing a set of high-resolution, 
semantically rich feature maps. Figure 2(b) visualizes the computational logic at each level of the 
PVT used in this study, which consists of a Patch Embedding layer and a Transformer encoding layer 
at the L_i level. It is important to note that since this study involves making predictions on HR images, 
to avoid GPU memory overflow due to excessive computation, the original Transformer encoding 
layer's multi-head attention layer (MHA) is replaced with a Spatial Reduction Attention layer (SRA). 
Similar to MHA, SRA still takes Query (Q), Key (K), and Value (V) as inputs. The difference lies in 
that SRA reduces the spatial dimensions of K and V through spatial reduction operations before the 
attention operation, thereby significantly enhancing computational efficiency.  

In summary, by adopting a feature extraction encoder that combines a lightweight encoder with 
the visual Transformer, the advantages of both architectures in computational efficiency and feature 
expression capability are effectively integrated, providing an efficient solution for the extraction of 
fine-grained crack features. 

 
Figure 3. Visual demonstration of the position for the guided rendering point used in the inference 
phase. 

3.2 Point Rendering-based Decoder 
To fully decode the fine-grained crack information from the deep semantic feature maps captured 

by the encoder, the authors improved upon the original PointRend and proposed a decoder that 
composed of a rendering point guidance branch and a point-rendering based fine-grained prediction 
head. For the fine-grained prediction head, the authors adopted the same architecture as PointRend 
because the use of MLPs in rendering technology offers computational efficiency advantages due to 
weight sharing and point-by-point prediction compared to traditional CNNs. Regarding the branch 
that guides the rendering points, considering that the rendering point guidance strategy in the 
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PointRend architecture was designed for traditional large-size natural scene targets and is not suitable 
for tiny crack targets with elongated topological structures, this study conducted specialized 
customization.  

We specifically designed a rendering point guidance strategy based on the probability map for the 
inference phase to ensure that the model can effectively concentrate computational resources on 
difficult-to-predict tiny cracks and crack boundary areas. Specifically, we aimed to achieve efficient 
boundary rendering point guidance through the refined probability map. As shown in Figure 2(a), the 
probability map is primarily obtained through forward propagation calculations involving a 
lightweight encoder followed by two convolution blocks, without the need for thresholding or other 
post-processing steps to determine final category assignments. Therefore, this process is more direct 
and efficient computationally compared to generating coarse segmentation masks. More importantly, 
the probability map can reflect the probability of pixels belonging to each category, rather than a 
simple categorical affiliation. This probabilistic information provides a continuous measure of 
confidence for each pixel, rather than categorically assigning pixels in a binary manner, thereby 
preserving more uncertainty and subtle differences about the image area, which is crucial for 
understanding the nuances and complex scenes within the image. Since crack segmentation is 
inherently a binary classification task, based on the characteristics of binary classification tasks, this 
study divided areas on the probability map into three parts: areas with probabilities close to 0 are 
considered definite background pixels, areas with probabilities close to 1 are considered definite crack 
regions, and areas with probabilities fluctuating around 0.5 are considered indeterminate areas by the 
model. These indeterminate areas often consist of pixels with intensity or contrast levels between 
cracks and backgrounds, primarily concentrated around tiny crack branches and crack boundary areas. 
Based on the above division principles, only areas on the probability map with probabilities 
fluctuating around 0.5 undergo refined rendering point sampling during the inference process. 
Regarding areas on the probability map with probabilities close to 0 and 1, which are considered 
easily recognizable pixels, they will be directly mapped as background and crack pixels on the 
prediction mask without further computation, considering the difficulty of recognition and 
computational efficiency. To visually demonstrate the rendering point guidance method during the 
inference phase, Figure 3 visualizes the probability map for a randomly selected crack sample. It can 
be clearly seen on the probabilistic heatmap that the probabilities of the background and main crack 
areas are concentrated around 0 and 1, respectively. In boundary areas and tiny crack regions, due to 
issues such as manual annotation errors and insignificant color differences, the probabilities of pixels 
on the heatmap fluctuate around 0.5. For this reason, this study sets the probability interval for these 
hard-to-identify boundary and tiny crack pixels between 0.3-0.8. In the subsequent refinement 
rendering stage, only pixels with probabilities between 0.3-0.8 undergo refined inference. The 
parameter settings involved in the rendering point guidance strategy during the training and inference 
phases will be detailed in Section 3.2. 

4 Experiments 
4.1 Datasets 

Gathering substantial crack image datasets is vital for the development and assessment of our 
segmentation method. Despite the existence of various datasets like Stone331, Bochum CrackDataSet, 
Deepcrack537, and CRKWH100 (Quan et al., 2023) for civil infrastructure analysis, the intricacies of 
acquiring and annotating crack images limit dataset sizes and resolution, typically capping at 500 
images with dimensions under 600 × 800. Such constraints risk model overfitting and lessen 
computational demand due to lower resolution. To bolster model adaptability across varying real-
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world cracks, this study amalgamated images from AigleRN, CrackTree260, and Crack500 (Ai et al., 
2023), adjusting all to a uniform resolution of 256 × 256 for cohesive model training and evaluation. 
This resulted in 800 adjusted images distributed across training, validation, and testing phases with a 
ratio of 0.6:0.2:0.2 to rigorously assess model efficacy. 

Given that higher-resolution images demand more extensive downsampling to fit within GPU 
memory constraints during inference, they are inherently more susceptible to indistinct boundary 
delineations than their lower-resolution counterparts, necessitating enhanced refinement. To address 
this, the study amassed a HR crack image dataset for thorough model assessment. In Changsha's 
urban context, diverse structural elements such as walls, roads, and foundations were selected for HR 
image acquisition, employing both tripod-mounted and handheld Nikon D5300 cameras for crisp 
imagery. A total of 300 6K RAW crack images were compiled. To mitigate the skew from 
disproportionate sample sizes, crack regions in these images were meticulously cropped, yielding 60 
images across 2K, 4K, and 6K resolutions. Each cropped image was subsequently subjected to 
detailed annotation for precise model evaluation. 

4.2 Evaluation Index 
Two commonly used metrics, namely Intersection over Union (IoU) and the Dice similarity 

coefficient (Dice), were selected to quantitatively evaluate the experimental results. Furthermore, to 
highlight the performance of the proposed method in boundary areas, the Mean Boundary Accuracy 
(mBA) introduced in CascadePSP (Cheng et al., 2020) was also used as a metric. The core concept of 
mBA involves calculating the IoU between the Ground Truth (GT) and the predicted mask within the 
boundary area. 

4.3 Implementation Details 
Hardware equipment: All the crack segmentation networks mentioned in this document were 

completed training under the Ubuntu 18.04 system, using the Pytorch 1.8.0 version as the deep 
learning framework, with an Intel i7-8700k processor, 32GB of RAM, and an NVIDIA GeForce RTX 
3090 GPU with 24 GB of VRAM. 

Hyperparameters: To ensure the global optimum of the loss function is found during the training 
process, Adam, which combines the advantages of momentum and RMSprop, was chosen as the 
optimizer for the model, with momentum set at 0.9 and weight decay at 1×10-4. The maximum 
number of training epochs on the low-resolution open-source crack image dataset was set to 800. The 
batch size was set at 8, with an initial learning rate of 0.001, decaying by 0.0001 every 10 training 
epochs. After completing the initial training, the same hyperparameter configuration was used to fine-
tune the model's performance for an additional 200 epochs using onsite collected concrete crack 
images, to obtain the final model for subsequent crack segmentation tasks 

4.4 Ablation Study 
Ablation Study for the SRA Enhanced PVT: The effectiveness of the improved Pyramid 

Transformer introduced at the end of the encoder was tested on the test set. Specifically, four typical 
encoders including ResNet50, DenseNet, MobileNet, Vision Transformer (ViT), and the original 
Pyramid Vision Transformer (PVT) were selected for performance comparison. The segmentation 
results of the rendering models with different encoders are summarized in Table 1. 

By conducting a parallel comparison of the performance of five groups of models utilizing 
different crack feature enhancement encoders, it can be observed that the networks adopting the 
Transformer architectures generally outperform those built with CNN architectures, with average 
improvements in IoU, mBA, and DICE reaching 2.81%, 3.99%, and 1.81%, respectively. This is 

Refined Segmentation of HR Crack Images H. Chu et al.

860



because, compared to the other three types of models built on the CNN, Transformers can consider all 
positions within crack images simultaneously through their inherent self-attention mechanism, 
enabling the model to capture a broader context of crack information. This assists the model in 
understanding the connections between global and local information of crack features, thereby 
effectively enhancing the model's crack recognition performance. Further comparison among the three 
groups of models using the Transformer architecture reveals that the two models adopting PVT 
outperform the ordinary VIT in recognition performance. Notably, the most significant improvement 
is observed in mBA, indicating that the Pyramid Transformer has significantly strengthened its ability 
to capture crack edges and tiny crack details in the global image. This is attributed to the Pyramid 
Transformer's fusion of multi-scale features across different levels, allowing features from various 
scales to complement each other. Thus, ensuring the model can utilize both local detail information 
and global deep contextual semantic information to enhance the representation of crack edges. Lastly, 
comparing the two groups that employed the PVT architecture, it is evident that after implementing 
the SRA pro-posed by this study to reduce the dimensions of the original multi-head attention 
mechanism, the model's number of parameters decreased by nearly 24%, while maintaining high 
recognition accuracy. 
 

Feature Extraction 
Backbone IoU(%) mBA(%) Dice(%) Parameter (M) 

ResNet50 75.48 73.17 86.03 25.6 
DenseNet 76.21 73.82 86.50 8.02 
MobileNet 73.06 72.39 84.44 4.23 

ViT 77.47 74.76 87.30 86.37 
PVT 77.81 78.25 87.52 24.51 

SRA Enhanced PVT 77.91 78.33 87.58 18.76 
Table 1. Performance comparison of models with different crack feature enhancement backbones 

introduced during the encoding phase on the test dataset 
 

Ablation Study for the Probability Map-based Rendering Point Guidance: To minimize the 
computational resource consumption during the inference process while maintaining the required 
inference accuracy, it is necessary to determine a reasonable probability range for areas with uncertain 
prediction outcomes where the probabilities are concentrated around 0.5. This is because a larger 
probability range means that more sampling points need to be refined, which, while increasing 
accuracy, also significantly raises the computational redundancy of the inference process; conversely, 
a smaller probability range can enhance inference speed but may result in many tiny cracks and 
boundary details not being effectively refined, thus severely affecting the refinement level of 
prediction outcomes. Therefore, it is essential to establish suitable threshold probability values to 
reasonably control the boundary range. Specifically, two probability values are selected: the critical 
probability value α between the background and crack boundary areas, and the critical probability 
value β between the crack boundary and crack internal areas. 

For the critical probability value α, this study set three different probability parameters: 0.2, 0.3, 
and 0.4; for the critical probability value β, three different probability parameters were also set: 0.6, 
0.7, and 0.8. These two sets of three different critical probability values define nine different 
boundary area probability ranges. Table 2 presents the statistical inference results on the test set for 
models using sampling with these nine different probability ranges. 

Table 2 shows that sets 4, 5, and 6 (i.e., the experimental groups with the background probability 
range set between 0.0 and 0.3 achieved relatively superior IoU, Dice, and mBA scores. This is 
because, compared to the sets with the background probability range set between 0.0 and 0.4, these 
three parameter settings encompass a wider background sampling area, thereby facilitating the repair 
of tiny crack details that were not detected in the background. At the same time, the sets with the 
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background probability range set between 0.0 and 0.2 classified too many pixels, which should belong 
to the boundary area, as background pixels. This resulted in an insufficient number of rendering 
points guided towards the ambiguous boundary area, unable to fully repair the crack boundary details 
in that area, and therefore achieved the relatively lower mBA scores. Furthermore, comparing sets 4, 
5, and 6 reveals that the highest accuracy in model inference was achieved when the probability range 
for the crack boundary area was set to its maximum, i.e., when the probability range was between 0.3 
and 0.8, with IoU, Dice, and mBA reaching 84.24%, 93.78%, and 91.45%, respectively. This is 
because the crack main body area, compared to the background and edge areas, is considered a simple 
sample with a high prediction probability (often exceeding 80% confidence), thus not requiring a too 
wide probability range. However, as the boundary area serves as a transition zone between the 
background and the crack main body, where pixel color and contrast often present indistinct 
conditions, leading to significant fluctuations in prediction probability, a relatively wide probability 
interval range is needed. Ultimately, the sampling parameter configuration in set 4 was adopted as the 
optimal inference phase sampling parameter to guide the model in providing sufficient guidance for 
rendering points during the inference stage. Indeed, the experimental results also indirectly confirm 
that the main reason for inadequate crack segmentation accuracy concentrates on the ambiguous 
boundary area, with the probability range on the coarse segmentation probability map roughly 
concentrating between 0.3 and 0.8. 

 
Set 

No. 

Probability 
range for 

background area 

Probability 
range for 

boundary area 

Probability 
range for crack 

internal area 
IoU(%) mBA(%) Dice(%) 

1 （0.0,0.2） （0.2,0.6） （0.6,1.0） 77.16 80.39 87.11 
2 （0.0,0.2） （0.2,0.7） （0.7,1.0） 78.59 81.77 88.01 
3 （0.0,0.2） （0.2,0.8） （0.8,1.0） 80.04 84.56 88.92 
4 （0.0,0.3） （0.3,0.6） （0.6,1.0） 78.72 82.34 88.10 
5 （0.0,0.3） （0.3,0.7） （0.7,1.0） 82.35 86.73 90.32 
6 （0.0,0.3） （0.3,0.8） （0.8,1.0） 84.24 93.78 91.45 
7 （0.0,0.4） （0.4,0.6） （0.6,1.0） 78.06 81.32 87.68 
8 （0.0,0.4） （0.4,0.7） （0.7,1.0） 81.80 83.60 89.99 
9 （0.0,0.4） （0.4,0.8） （0.8,1.0） 83.03 87.24 90.71 
Table 2. Performance comparison between the traditional decoder and the proposed rendering-

based fine-grained prediction head across models trained with various parameterized feature point 
guidance strategies 

 
Refin

ement 
Segmentat

ion 
Architectu

re 

Source of the Boundary 
Sampling Guidance 

Coarse Segmentation  
Accuracy 

Refined Segmentation  
Accuracy 

IoU mBA Dice IoU mBA Dice 

Point
Rend 

Coarse 
Mask  
Guidance 

FCN-18 68.73 64.36 81.47 77.90 79.79 87.58 

UNet 70.15 67.28 82.46 78.59 80.03 88.01 
DeepLab
V3+ 73.87 71.12 84.97 79.92 81.03 88.83 

RefineNet 72.10 70.70 83.79 79.45 80.78 88.54 
Swin 

Transformer 74.85 72.89 85.61 80.72 81.36 89.33 

Ours 
Probabilit

y Map 
Guidance 

Probabilit
y interval ∈
[0.3,0.8] 

/ 84.24 93.78 91.45 

Table 3. Performance comparison between the PointRend guided by various coarse masks and the 
proposed probability map-guided architecture 
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4.5 Comparison of the Performance of Models that use the Heatmap 
and Coarse Segmentation for Guiding Rendering Points during the 
Inference Phase 

To elucidate the benefits of the decoding architecture, which utilizes a probability map for 
rendering point guidance, over the original PointRend architecture that guided by the coarse 
segmentation mask, a comparative analysis of their performance was conducted based on the test 
dataset. Specifically, we selected five mainstream deep learning segmentation architectures with 
varying degrees of segmentation precision, including FCN-18, UNet, DeepLabV3+, RefineNet, and 
Swin Transformer, as the networks generating coarse segmentation masks required for predictions by 
the original PointRend architecture. The network proposed in this study, which guides rendering 
points with the probability map, participated in the performance comparison using optimal parameters 
obtained from prior ablation experiments. It is noteworthy that all the coarse segmentation 
architectures and the refinement segmentation networks were trained under the same configurations in 
the same deep learning framework with default optimal parameters. Additionally, when making 
predictions using the trained coarse segmentation models, all HR images were scaled down to have 
their longer side be 900 pixels to prevent GPU memory overflow caused by excessively high original 
resolutions. 

Experimental results, as shown in Table 3., indicate significant differences in the Coarse 
segmentation accuracy generated by various coarse segmentation architectures, as observed from 
rows 2 to 5 from the top. The disparities in IoU, mBA, and Dice scores range from 6.12%, 8.53%, to 
4.15%, respectively, from the lowest accuracy with FCN-18 to the highest accuracy with Swin 
Transformer. However, after applying the original PointRend model for refinement, the differences in 
refined prediction results become less pronounced, with all five sets of experimental results 
fluctuating within the ranges of 79.31±1.4% for IoU, 88.46±0.79% for mBA, and 88.46±0.88% for 
Dice. These findings demonstrate that the original PointRend architecture is in-deed independent of 
specific coarse segmentation masks, showing good robustness to coarse-grained crack features from 
different sources. Nevertheless, comparing the final experimental results with the best refinement 
predictions guided by coarse segmentation masks generated by Swin Transformer in the PointRend 
group reveals that the method using the probability map for rendering point guidance further improves 
the accuracy of segmentation results. Notably, the most significant improvement is observed in mBA, 
more than doubling the increases in IoU and Dice, reaching 12.42%. This outstanding robust 
performance is largely due to the probability map's ability to reflect the probability of pixels 
belonging to each category, rather than merely showing simple category membership like coarse 
segmentation masks. This probabilistic information provides a continuous confidence measure for 
each pixel, rather than categorically assigning pixels in a binary fashion, thereby preserving ample 
information on tiny cracks and crack boundaries. Such details allow for the discovery and refinement 
rendering of these pixels during the inference stage through point-by-point reasoning with the MLP. 
To further substantiate the validity of these conclusions, Figure 4 visualizes the prediction results 
under all comparative methods for five randomly selected HR crack images from the test set. The 
visualizations demonstrate that the predictive masks obtained by the probability map-guided 
rendering point method outperform those obtained by any coarse segmentation-guided method in 
recognizing crack edges and tiny cracks, thereby further validating the conclusions drawn from the 
quantitative results. 
 

Refined Segmentation of HR Crack Images H. Chu et al.

863



 
Figure 4. Visualization of fine-grained segmentation results of the PointRend architecture guided by 
different coarse segmentation masks and the proposed method guided by the probability map. 

5 Conclusion 
This study pioneers the application of rendering techniques from computer graphics to HR 

crack image segmentation, enhancing the fine-grained segmentation of crack im-ages through two 
novel modifications. Initially, a Pyramid Transformer Block with Spatial Relationship Attention 
(SRA) is implemented within the encoding architecture for effective extraction of deep, detailed crack 
feature maps. Additionally, a tailored rendering point guidance strategy in the decoder concentrates 
computational resources on the crack edges and tiny cracks, increasing pixel recognition accuracy for 
these hard samples. Demonstrated performance on HR crack images confirms this approach as the 
latest benchmark in the field. 

6 Acknowledgments 
This work is supported by the Europe Commission project D-HYDROFLEX (No. 101122357), 

Europe Commission project INHERIT (No. 101123326), the National Natural Science Foundation of 
China (No. 52278177) and the National Key Research and Development Program of China (No. 
2023YFC3806800) 

References 
 Ai, D., Jiang, G., Lam, S.-K., He, P. & Li, C. (2023), Computer Vision Framework for Crack 

Detection of Civil Infrastructure—a Review, Engineering Applications of Artificial 
Intelligence, 117, 105478. 

Bang, S., Park, S., Kim, H. & Kim, H. (2019), Encoder–Decoder Network for Pixel‐Level Road 
Crack Detection in Black‐ Box Images, Computer‐ Aided Civil and Infrastructure 
Engineering, 34(8), 713-727. 

Barron, J. T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R. & Srinivasan, P. P. (2021), 
Mip-Nerf: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields, 

Refined Segmentation of HR Crack Images H. Chu et al.

864



Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, 
Canada, pp. 5855-5864. 

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. L. (2017), Deeplab: Semantic 
Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully 
Connected Crfs, IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 
834-848. 

Cheng, H. K., Chung, J., Tai, Y.-W. & Tang, C.-K. (2020), Cascadepsp: Toward Class-Agnostic and 
Very High-Resolution Segmentation Via Global and Local Refinement, Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, pp. 
8890-8899. 

Chu, H., Wang, W. & Deng, L. (2022), Tiny‐Crack‐Net: A Multiscale Feature Fusion Network 
with Attention Mechanisms for Segmentation of Tiny Cracks, Computer‐Aided Civil and 
Infrastructure Engineering, 37(14), 1914-1931. 

Deng, J., Singh, A., Zhou, Y., Lu, Y. & Lee, V. C.-S. (2022), Review on Computer Vision-Based 
Crack Detection and Quantification Methodologies for Civil Structures, Construction and 
Building Materials, 356, 129238. 

Dias, P. A. & Medeiros, H. (2018), Semantic Segmentation Refinement by Monte Carlo Region 
Growing of High Confidence Detections, Asian Conference on Computer Vision, Springer, 
Perth, Australia, pp. 131-146. 

Guo, F., Qian, Y., Liu, J. & Yu, H. (2023), Pavement Crack Detection Based on Transformer 
Network, Automation in Construction, 145, 104646. 

Huyan, J., Li, W., Tighe, S., Xu, Z. & Zhai, J. (2020), Cracku‐Net: A Novel Deep Convolutional 
Neural Network for Pixelwise Pavement Crack Detection, Structural Control and Health 
Monitoring, 27(8), e2551. 

Kellnhofer, P., Jebe, L. C., Jones, A., Spicer, R., Pulli, K. & Wetzstein, G. (2021), Neural Lumigraph 
Rendering, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, virtual online, pp. 4287-4297. 

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S. & Shah, M. (2022), Transformers in 
Vision: A Survey, ACM computing surveys (CSUR), 54(10s), 1-41. 

Kirillov, A., Wu, Y., He, K. & Girshick, R. (2020), Pointrend: Image Segmentation as Rendering, 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 
9799-9808. 

Lin, G., Milan, A., Shen, C. & Reid, I. (2017), Refinenet: Multi-Path Refinement Networks for High-
Resolution Semantic Segmentation, Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, Honolulu, USA, pp. 1925-1934. 

Lin, G., Shen, C., Van Den Hengel, A. & Reid, I. (2016), Efficient Piecewise Training of Deep 
Structured Models for Semantic Segmentation, Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 3194-3203. 

Liu, W., Huang, Y., Li, Y. & Chen, Q. (2019), Fpcnet: Fast Pavement Crack Detection Network 
Based on Encoder-Decoder Architecture, pp. arXiv:1907.02248. 

Mei, Q., Gül, M. & Azim, M. R. (2020), Densely Connected Deep Neural Network Considering 
Connectivity of Pixels for Automatic Crack Detection, Automation in Construction, 110, 
103018. 

Peng, C., Zhang, X., Yu, G., Luo, G. & Sun, J. (2017), Large Kernel Matters--Improve Semantic 
Segmentation by Global Convolutional Network, Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, Honolulu, USA, pp. 4353-4361. 

Qu, Z., Li, Y. & Zhou, Q. (2022), Crackt-Net: A Method of Convolutional Neural Network and 
Transformer for Crack Segmentation, Journal of Electronic Imaging, 31(2), 023040-023040. 

Quan, J., Ge, B. & Wang, M. (2023), Crackvit: A Unified Cnn-Transformer Model for Pixel-Level 

Refined Segmentation of HR Crack Images H. Chu et al.

865



Crack Extraction, Neural Computing and Applications, 1-17. 
Ronneberger, O., Fischer, P. & Brox, T. (2015), U-Net: Convolutional Networks for Biomedical 

Image Segmentation, International Conference on Medical Image Computing and 
Computer-assisted Intervention, Springer, Munich, Germany, pp. 234-241. 

Shamsabadi, E. A., Xu, C. & Dias-da-Costa, D. (2022), Robust Crack Detection in Masonry 
Structures with Transformers, Measurement, 200, 111590. 

Sony, S., Dunphy, K., Sadhu, A. & Capretz, M. (2021), A Systematic Review of Convolutional 
Neural Network-Based Structural Condition Assessment Techniques, Engineering Structures, 
226, 111347. 

Tewari, A., Thies, J., Mildenhall, B., Srinivasan, P., Tretschk, E., Yifan, W., Lassner, C., Sitzmann, 
V., Martin‐Brualla, R. & Lombardi, S. (2022), Advances in Neural Rendering, Computer 
Graphics Forum, Wiley Online Library, pp. 703-735. 

Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M. & Wang, X. 
(2020), Deep High-Resolution Representation Learning for Visual Recognition, IEEE 
transactions on pattern analysis and machine intelligence, 43(10), 3349-3364. 

Wang, Q., Wang, Z., Genova, K., Srinivasan, P. P., Zhou, H., Barron, J. T., Martin-Brualla, R., 
Snavely, N. & Funkhouser, T. (2021), Ibrnet: Learning Multi-View Image-Based Rendering, 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
vitural online, pp. 4690-4699. 

Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D., Lu, T., Luo, P. & Shao, L. (2021), 
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without 
Convolutions, Proceedings of the IEEE/CVF International Conference on Computer Vision, 
vitural online, pp. 568-578. 

Wu, G., Liu, Y., Fang, L. & Chai, T. (2021), Revisiting Light Field Rendering with Deep Anti-
Aliasing Neural Network, IEEE Transactions on Pattern Analysis and Machine Intelligence, 
44(9), 5430-5444. 

Xie, X., Cai, J., Wang, H., Wang, Q., Xu, J., Zhou, Y. & Zhou, B. (2022), Sparse‐Sensing and 
Superpixel‐Based Segmentation Model for Concrete Cracks, Computer‐Aided Civil and 
Infrastructure Engineering, 37(13), 1769-1784. 

Zhang, C., Lin, G., Liu, F., Yao, R. & Shen, C. (2019), Canet: Class-Agnostic Segmentation 
Networks with Iterative Refinement and Attentive Few-Shot Learning, Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, pp. 
5217-5226. 

Zhang, J., Lu, C., Wang, J., Wang, L. & Yue, X.-G. (2019), Concrete Cracks Detection Based on Fcn 
with Dilated Convolution, Applied Sciences, 9(13), 2686. 

Zhang, X., Rajan, D. & Story, B. (2019), Concrete Crack Detection Using Context‐Aware Deep 
Semantic Segmentation Network, Computer‐Aided Civil and Infrastructure Engineering, 
34(11), 951-971. 

Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C. & Torr, P. H. 
(2015), Conditional Random Fields as Recurrent Neural Networks, Proceedings of the IEEE 
International Conference on Computer Vision, Santiago, Chile, pp. 1529-1537. 

 
 
 

Refined Segmentation of HR Crack Images H. Chu et al.

866


