
EPiC Series in Computing

Volume 88, 2022, Pages 1–7

Proceedings of 31st International Conference
on Software Engineering and Data Engineering

Software Development: Past, Present, and Future

Jalal H. Kiswani1, Sergiu M. Dascalu2, and Frederick C. Harris, Jr2

1 Smart-API.com,
jalal.kiswani@smart-api.com

2 University of Nevada, Reno, U.S.A.
dascalus@cse.unr.edu, fred.harris@cse.unr.edu

Abstract

In the field of software development, the processes, technologies, and practices have
matured over time to achieve a higher level of delivery and quality. However, the devel-
opment phase, which is an essential part of the software development life cycle (SDLC),
is still consuming a significant cost (time and resources) in both the waterfall and agile
approaches. The reason behind that, current technologies and approaches of software de-
velopment are somehow following the same rules and practices they have for decades, and
have not evolved with the proper velocity over the time. In this article, and based on
real-life case studies, we will discuss how the utilization of components re-usability (API’s
and frameworks), metadata-driven development, code generation, and Artificial Intelli-
gence can make the software development more efficient by creating a holistic approach to
creating software systems.

1 Introduction

Software development is an essential part of all the modern evolution’s in technology, starting
from the software installed on main-frames in the beginning era’s of computing to solve complex
mathematical problems, to the current evolution of autonomous driving, home robots, and the
virtual worlds of the meta-verse.

However, while the applications of using software are widely expanded to include almost
every area of our lives, the software development process itself, at least most of the time, is
being done the same way it has been done for decades.

In the past, the process was based on having a smart-person who was good at math and
had excellent analytical skills to translate the needed requirements into computer instructions.
However, this didn’t scale well, especially with the invention of personal computers in the
1980’s, where the need of expanding the programmers base was important; also, this demand
has grown more and more with the evolution of internet, in 1990’s, and lately, the demand also
has increased to be able to deliver the goals of organizations, led by the digital transformation
wave.

All the above have demanded a better ways of software development, which started by
waterfall, then agile and iterative development, followed by components re-use, and lately,

F. Harris, A. Redei and R. Wu (eds.), SEDE 2022 (EPiC Series in Computing, vol. 88), pp. 1–7



Software Development: Past, Present, and Future Kiswani, Dascalu, and Harris

emphasising on Rapid Application Development(RAD) approaches led by prototyping, low-
code no-code tools, platforms, and frameworks [7].

2 Waterfall

Waterfall is following the plan-driven process model. Where it follows an organized processes
that is inspired by the engineering discipline of having a clear sequence of phases that includes:
a) specifications, b) design, c) development, d) validation, and finally, e) evolution.

In practice, the requirements phase is performed by a system analyst (who is also commonly
called business analyst). The design phase is done by different architectural roles, including
a data architect, User Interface/User Experience engineer (UI/UX), and an application archi-
tect. The development phase it self is performed by front-end developers, back-end developers,
database developers, and some times could be handled by a one-man-show – full-stack devel-
oper. The validation, which is also commonly called the Testing phase, is curried-out by the
Quality Assurance (QA) and/or Quality Control engineers (QC), which also based on the nature
of testing, which could be manual or automated testing. This is illustrated in Figure 1

Figure 1: The Software Development Process in the Waterfall Model.

While the waterfall approach had a successes in some fields and domains (e.g., health, mil-
itary, and financial), in addition of looks elegant, controllable, and well-structured, it didn’t
work will during the internet-boom in the late 1990’s, since in Silicon-Valley, time-to-market
was more important than software quality, and the nature of having frequent changes to re-
quirements in some-domains led to some projects failures [5].

Some retries of following an iterative approach that delivers values faster such as Rational
Unified Process (RUP) was introduced. RUP was developed by Rational Software by 1995, and
acquired later by IBM in 2003. While RUP was created with the ability to adopt changes with
minimum impact of software quality and delivery, the tools, documentation needed, modeling
required, and the learning curve, didn’t allow to be adopted on large-scale [6].

2



Software Development: Past, Present, and Future Kiswani, Dascalu, and Harris

3 Agile

Following a disciplined approach of software development such as waterfall, and a formal-
iterative approaches such as RUP, worked well for a while and in some-domains, however, and
as mentioned in the previous section, it didn’t scale well for domains that requires faster delivery
and high frequency of changes to the requirements [1].

Silicon Valley, as it has been always been, decided to go with a different approach, eXtreme
Programming (XP), where they thought that spending a lot of time on requirements specifica-
tions and designing software with the maximum quality before writing a single line of code is
risky and could take companies out of market, so they decided to go directly to development
phase as fast as they could. While it looks risky, in startup companies its not, where the re-
quirements needed to be implemented is short, and could (and in the agile culture it should) be
delivered relatively in a short time frame, in practice, from one to two weeks. XP worked well in
small teams that had a the need of delivering values faster as Minimum Viable Product(MVP),
that is mainly implemented by internal team for internal products [2].

Agile in general and XP in particular, and based on the need of improving quality and reduc-
ing risks, introduced some new concepts to software development, such as pair-programming,
test-driven development, and continuous integration.

Enterprise and domains that has formal management styles tried to implement agile in dif-
ferent contexts that doesn’t match the culture of software development in Internet business,
which led to significant issues, such as lack of visibility, and inability to measure project per-
formance, in addition to some management issues such as budgeting and resources allocation.
This has led to the a new approach, Scrum, where a Scrum Master, a replacement of Project
Manager in waterfall approach, is managing each iteration (in agile approaches could be called
story or sprint) and ensuring the agile practices are well-implemented, in addition of having
proper visibility on the development process, performance monitoring, mitigating the concerns
presented by XP approach.

Figure 2: Software Development Process

3



Software Development: Past, Present, and Future Kiswani, Dascalu, and Harris

4 Software and Components Re-usability

Software re-use has dramatically improved the software delivery and time to market, where soft-
ware development could re-use components from Application Programming Interfaces (API’s),
using application frameworks such as Microsoft .NET, Java Enterprise Edition (Java EE). or
following a Software Product Line Approach (SPL) such as building an Operating System (OS)
from the open source Linux kernel created by Linus Torvalds.

The wide traction to this approach was increased due to the availability of open source
repositories such as GitHub, SourceForge, and GitLab which have enabled organizations and
individuals to share their internal components such as NetFlex frameworks which led the current
development practices of Cloud Native Applications.

While software re-use have helped lot of organizations implementing software applications
faster than building it from scratch, developers (programmers) most of the time still needs
to code basic stuff that consumes a lot of their development time such as User Interface(UI),
themes, validations, data access, and binding between the data-access and the UI. In addition
to implementing quality attributes, such as security, reliability, integrity, and maintainability,
which all led to make the developers focus on stuff that is not directly relevant to the tasks
in-hand expected by the management or customers.

5 Rapid Application Development

The dream of having and elegant, easy, faster way, and tools of developing software has been
there since along time, however, it still not convincing enough for the management and technical
people. Where managers prefer tools that doesn’t require special expertise, well-supported
(mainly by a wide-community) for along time, and is accepted by the technical team. Same as
developers, who looks for tools that keep them productive to satisfy their employers, however,
with carefully maintaining their position and their market-value of having an edge over non-
technical people [3, 4].

Using visual tools such as model-driven development tools is available in multiple flavours,
where a lot of Unified Modeling Language tools (UML) tools like Visual Paradigms, could
help generating the code from UML models. Other tools such as Microsoft PowerApps, and
Oracle Apex are used to enable people to build software directly from the a design console,
which somehow follows the prototyping approach, which also currently is being called No-Code
approach.

However, the black-box nature of applications generated using No-Code approach such as
the previous examples and platforms such Mendix and Appian, is considered risky for some
organizations due to the hidden details of code that executed at run-time, in addition to the
risks of vendor-lock, data-migration, and integration with other systems.

Generating the code for that is time-consuming, repetitive, and doesn’t require special
expertise, could be the way-to-go, where having tools or platforms that enable developers to git
rid of the all the time-consuming tasks, could enable developers to focus on whats important,
satisfy their managements, and deliver values to their customers faster, without having any
vendor-lock or black-box apps constrains. Such concept, which is known as Low-Code, could be
the future of software development, and makes the software development takes another complete
efficient direction that could be implemented on various domains.

4



Software Development: Past, Present, and Future Kiswani, Dascalu, and Harris

Figure 3: Runtime Based Metadata

6 Metadata Driven Low-Code

Some platforms such as Smart-API.com provide tools and applications that includes low-code
no-code tools such as CodeGen, AppGen, and App-Studio.

Smart-API tools and applications utilize the concepts of metadata data, where applications
of specific domains, will have (most likely) common project structure, common files, common
files sections, and a common development approach. By designing the metadata model, creating
a code transformers, building user friendly UI, that enable users to input the metadata for for
specific applications, could enable software vendors building low-code platforms that makes
software development more efficient (Figure 4, 5).

Figure 4: Smart API Approach

However, implementing the above process for each domain, could be a time consuming and

5



Software Development: Past, Present, and Future Kiswani, Dascalu, and Harris

Figure 5: Smart API Platform Design

requires a special expertise, where designing the metadata models and creating the transform-
ers manually for each domain could be not practical. Utilizing an Artificial Intelligence (AI)
approach for that could change the future of software development (Figure 6).

Figure 6: AI Approaches could change the Model.

7 Conclusion

While software is being a key part of every aspect of our lives, software development it self is
still time-consuming, expensive, and limited in features to be delivered.

Enabling a Metadata Driven Low-Code No-Code approach could enable a more efficient
delivery of software development, where building applications for the same domains doesn’t

6



Software Development: Past, Present, and Future Kiswani, Dascalu, and Harris

need to be repetitive.
However, designing the metadata models for each domain manually is not practical, so

utilizing an AI approach that analyzes projects from same domain, extract common project
structure, common files, common sections, and any other repetitive metadata data could enable
a faster adoption of Low-Code No-Code Metadata approach.

References

[1] Pekka Abrahamsson, Juhani Warsta, Mikko T Siponen, and Jussi Ronkainen. New directions on
agile methods: a comparative analysis. In 25th International Conference on Software Engineering,
2003. Proceedings., pages 244–254. Ieee, 2003.

[2] Homa Bahrami. The emerging flexible organization: Perspectives from silicon valley. California
management review, 34(4):33–52, 1992.

[3] Paul Beynon-Davies, Chris Carne, Hugh Mackay, and Douglas Tudhope. Rapid application de-
velopment (rad): an empirical review. European Journal of Information Systems, 8(3):211–223,
1999.

[4] Robin Lichtenthäler, Sebastian Böhm, Johannes Manner, and Stefan Winzinger. A use case-based
investigation of low-code development platforms. In ZEUS, pages 76–83, 2022.

[5] Kai Petersen, Claes Wohlin, and Dejan Baca. The waterfall model in large-scale development.
In International Conference on Product-Focused Software Process Improvement, pages 386–400.
Springer, 2009.

[6] Sara Shafiee, Yves Wautelet, Lars Hvam, Enrico Sandrin, and Cipriano Forza. Scrum versus rational
unified process in facing the main challenges of product configuration systems development. Journal
of Systems and Software, 170:110732, 2020.

[7] Ian Sommerville. Software engineering. Pearson, 2016.

7


	1 Introduction
	2 Waterfall
	3 Agile
	4 Software and Components Re-usability
	5 Rapid Application Development
	6 Metadata Driven Low-Code
	7 Conclusion
	References

