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Abstract

Business Process Diagrams (BPDs) have been used for documenting, analyzing and op-
timizing business processes. Business Process Modeling and Notation (BPMN) provides a
rich graphical notation which is supported by a formalization that permits users automat-
ing such tasks. Stochastic versions of BPMN allows designers to represent the probability
every possible way a process can develop. Nevertheless, this support is not enough for
representing conditional dependencies between events occurring during process develop-
ment. We show how structural learning on a Bayesian Network obtained from a BPD is
used for discovering causal relations between process events. Temporal precedence between
events, captured in the BPD, is used for pruning and correcting the model discovered by
an Inferred Causation (IC) algorithm. We illustrate our approach by detecting dishonest
bidders in an on-line auction scenario.

1 Introduction

Organizational processes have multiple representations, being flowcharts, workflows and causal
diagrams the most common and intuitive. Among them, Business Process Modeling and Nota-
tion (BPMN) has become the most accepted representation among industry practitioners due
to its rich visual expressiveness for representing complex workflows where multiple actors decide
which alternative to follow in order to reach individual or global goals [1].

BPMN Business Process Diagrams (BPDs) basically describe a process in terms of events
and actions (nodes) connected through control flows (arcs) that indicate valid sequences in the
process development. Gateways are special nodes connected through control flows that indicate
whether the process develops through two or more sequences of task and events in parallel
(AND), alternatively (XOR) or optionally (OR). The beginning of the process is denoted by an
initial event node and its conclusion by a set of end event nodes.

Gateways allow to express all the possible ways a process can develop but the probability of
observing one or another is not represented in the original version of BPMN. Stochastic versions
of BPDs have been proposed for estimating the probability of observing a given event or task
at time t. For this purpose tasks are annotated with a duration interval [2], whereas alternative
sequence flows are annotated with a probability [3]. Both approaches use Continuous Time
Markov Chains for representing BPDs.

D. Lee, A. Steen and T. Walsh (eds.), GCAI-2018 (EPiC Series in Computing, vol. 55), pp. 29–40



Discovering Causal Relations H. Ceballos and F. Cantu

Another approach is to generate a Bayesian Network (BN) from events occurring in a BPD
[4]. Probabilities of the resulting network are learned from past process executions and can be
used for making Bayesian inference, i.e. estimating how likely it is to observe an event or a task
B given that another one A occurs, even if B does not follow immediately to A.

In this paper we evaluate a structural learning algorithm for discovering causal relationships
between events occurring in past process developments. Besides, we use semantic annotation
of BPD nodes for extracting a probabilistic distribution of a subset of process instances. This
is illustrated by estimating if a bidder will pay an item awarded in an on-line auction, given
the reviews of previous auctions.

In the next section we present the probabilistic BPMN normal form and how to annotate
BPD nodes semantically. In section 3 we introduce a new semantic descriptor and present
how Bayesian structural learning is used for discovering casual relationships and use them
for detecting fraudulent bidders. We conclude by discussing the relevance of this work and
providing closing remarks.

2 Background

The proposed algorithm is based in a BPMN probabilistic normal form that can generate a
Bayesian Network that transforms precedence relations into conditional dependencies. For this
purpose, we now provide the required background.

2.1 Probabilistic BPMN normal form

In the probabilistic BPMN normal form introduced by Ceballos et al [4], a Business Process
Diagram W is formally represented by a set of pools (P), lanes (L), nodes (N) and control flows
(F). Nodes (N) allowed in this probabilistic normal form are: start events (NS), intermediate
events (N I), end events (NE), atomic actions or tasks (NA) and gateways (NG). All sequence
flows are unconditional, denoted as F (ni, nj) ∈ F where ni, nj ∈ N. A single start event s ∈ NS

is defined (|NS | = 1).
Additionally, two consecutive action nodes must be mediated by at least one intermediate

event node and as many gateways as needed, i.e. two action nodes are not connected directly
through sequence flows. Each split or merge of control flows must be mediated by a splitting
gateway (NG

S ⊆ NG) or a merging gateway (NG
M ⊂ NG), respectively. Gateways can be of type

Parallel-AND (A), Optional-OR (O), or Exclusive-XOR (X). The graph GN constituted by all
F (ni, nj) ∈ F must not have any directed cycle or loop.

For obtaining a Bayesian Network from a normalized BPD, events and actions are mapped
to realizations of random variables, whereas control flows and gateways are used for building
the conditional dependency graph and the probabilistic distribution of the model.

A Bayesian Network (BN) is represented by M = 〈V,GV , P (vi|pai)〉, where V is the set of
random variables, GV is the Directed Acyclic Graph (DAG) consisting of variables in V and
directed arcs between them, and P (vi|pai) is a conditional probabilistic distribution (CPD)
where the probability of vi depends on the value of its parents (pai) in GV . The set of possible
values a discrete random variable may hold is denoted by its domain dom(Vi) = {vi1, . . . , vin},
whereas the realization of a random variable Vi to the value vij ∈ Dom(Vi) is represented as
Vi = vij

Task nodes as well as start, end and intermediate events are mapped to realizations of
random variables. This mapping, denoted by map(n, Vi = vi), n ∈ N where n ∈ (N \NG), is
produced during the BN generation.
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Given that control flows in the BPD encode necessary conditions for the development of
the process, they are interpreted as temporal precedence and conditional dependence in the
resulting BN. A graph between BPD mapped nodes (G′

N : N × N) is modified according to
a set of rules that remove unnecessary gateways and unify end nodes in a single one. The
resulting graph contains the conditional dependencies between random variables.

Figure 1 shows the structures supported by this probabilistic normal form. The column
Mappings shows the correspondence between BPDs and random variables whereas the last
column indicates which mapped nodes prevail in G′

N .

Figure 1: Valid structures in the BPD normal form.

2.2 Semantic Descriptors

Semantic descriptors of BPDs introduced in [5] use the notation and properties of conjunctive
queries given by Description Logics (DL) [6], which states that the interpretation of a query is
not only given by statements specified in the query, but by constraints and definitions specified
in the domain model (T ) as well. This model, known as ontology, is basically constituted by a
set of concepts (used to group/classify objects) and relations (used to specify entity’s attributes
or used to relate entities among them). Ontology languages such as OWL1 allows expressing
concepts in terms of other concepts (definitions), and specifying constraints between concepts
(e.g. disjointness or subsumption) and properties (e.g. reflexivity or transitivity).

A DL conjunctive query (CQ) has the form:

Q = (s1, ...sn).{T1, ..., Tm}
1OWL Web Ontology Language. https://www.w3.org/TR/owl-features/
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where si is the set of distinguished variables, denoted Dis(Q), that define the resulting binding
sets (the information retrieved), and Ti is a finite set of either concept clauses (s rdf:type

C) or relation clauses (s r s’), where s, s′ ∈ (NV ∪ NC), C is a concept/class and r is a
relation/property (both defined in T ), NV is a finite set of variables denoted V ar(Q), and NC
is a finite set of constants.

In SPARQL, the query language for RDF [7], a conjunctive query is coded as a SELECT
query without filters. Distinguished variables (Dis(Q)) of a conjunctive query Q are listed in
the section SELECT, whereas atoms Ti are specified in the section WHERE as statements or
subject-predicate-object triplets.

The semantic descriptor of BPD nodes is defined as follows.

Definition 1 (Semantic Descriptor). A semantic descriptor Ann(n,Q) uses the conjunctive
query Q for representing the meaning of a lane, an observable event, or human task n ∈ (L ∪
NS ∪N I ∪NE ∪NA) in a BPD W.

A lane descriptor describes the kind of individual that play a role in the activity. It has the
form Ann(l, Ql), where l ∈ L and Ql might represent an absolute or relative role. An absolute
role annotation is given by a Ql = (?role).{?role a RoleClass} where RoleClass indicates the
type of individual, denoted by ?role, associated to l. A relative role annotation is given by a
Ql = (?role).{?role rel ?role2} where the role associated to the lane (?role) is defined in terms
of its relationship (rel) with a participant represented by another lane (?role2).

In this formalization, an event descriptor has the form Ann(z,Qz), where z ∈ (NS ∪N I ∪
NE) and Qz is a conjunctive query describing a condition (constraints between individuals)
that denotes the occurrence of the event. Formally, the occurrence of the event z is observed
in the Linked Data K by evaluating Qz, i.e. K |=π Qz, where K contains information of past
process developments and π contains references to entities participating in event occurrence(s).
Similarly, a task descriptor describing the task execution has the form Ann(x,Qx), where
x ∈ NA. In consequence, a BPD annotated semantically is defined as follows.

Definition 2 (Annotated BPD). An annotated BPD WD is a BPD W where each node n ∈
(L ∪NS ∪N I ∪NE ∪NA) is annotated with exactly one semantic descriptor Ann(n,Q) ∈ D.

3 Discovering causal relations in Business Process Dia-
grams

In this work we extend the semantic annotation proposed in [5] with a new semantic descriptor
for making inference on subsets of process instances. We also introduce a hybrid probabilistic-
semantic representation of past process developments that will be further used for learning and
decision making.

We motivate our approach with a case study in an on-line auction scenario. The BPD shown
in Figure 2 is an adaptation of an English on-line auction processing modeled by Kuster et al
in [8], compliant with the probabilistic BPD normal form proposed by Ceballos et al in [4].
The process starts when the auction is over, then the item is awarded to the highest bid or
is declared void on the absence of bids. The awarded bidder is notified by the auctioneer and
he makes the corresponding money transfer. The seller receives the payment notification and
sends the goods to the bidder. The auctioneer transfers the money to the seller if the item
is sent or returns it back to the bidder otherwise. Simultaneously, both bidder and seller rate
the auction. Finally, the process ends when the auction is removed by the auctioneer from the
system, indicating whether the item was sold or not.
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Figure 2: BPMN diagram of the processing of an English electronic auction.

Figure 3 shows the conditional dependence graph of the Bayesian Network resulting of
removing tasks and applying the transformation described in [4] to the BPD in Figure 2.
The link VBID → VAP is used for representing that the process ends immediately in void
auctions, denoted as VAP = FAILURE. Items sold in auctions are captured by Ann(VAP =
SUCCESS). Descriptors of VREVB

and VREVS
indicate how both participants are evaluated,

denoted by the semantic variables ?seller and ?bidder; these semantic variables refer to the
same individuals (?a, ?seller, ?bidder) used in the descriptor of the start event (VAO).

Figure 3: Bayesian Network for the on-line auction processing.
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Table 1: Semantic description for identifying the awarded bidder (VBID).
No. Vi vij Qijl
1 VBID ?bidder QBID() = (?bidder).{?a rdf : type : Auction .

?a : awardedBidder ?bidder }

3.1 Extending semantic annotation of BPDs

In [5], semantic descriptors are used for realizing random variables to a finite set of values given
in their domain. Adjusting the probabilistic model to values found in the knowledge base K
from which process instances are recovered requires making a bridge between both semantic
and probabilistic representations, as it is done in other probabilistic-logic approaches [9, 10, 11].
For this reason we introduce the following descriptor type.

Definition 3 (Bridge Descriptor). A bridge descriptor is a semantic descriptor Ann(n,QB)
such that its conjunctive query QB has a single distinguished variable sB, i.e. Dis(QB) = {sB}.

In Figure 1 it can be observed that task nodes, as well as start and intermediate events are
mapped to a realization Vi = True. The purpose of the bridge descriptor is to introduce a value
taken from the process instance (stored in K), in the conditional probabilistic distribution of
the BN.

For instance, if we are interested in knowing the behavior of a bidder in previous auctions
we need a random variable which domain is linked to every single bidder, in order to condition
the probability of other events on it. Let us define the random variable VBID with the semantic
description given in Table 1.

In this example, the domain of VBID must contain the symbol ?bidder, representing that
VBID can be realized to any symbol matching QBID in K. New symbols pulled out from K can
be added to Dom(VBID) during further Bayesian parametric learning phases.

3.2 A probabilistic and semantic representation of past process de-
velopments

For capturing the conditional probabilistic distribution of the process we need a formalism that
represents instances of the underlying Bayesian Network obtained from a DL knowledge base
K, i.e. a Linked Data containing information of past process developments.

Definition 4 (Process instance). An instance of a process modeled through an annotated BPD
WD and compliant with a probabilistic normal form [4] is represented by a tuple IW = 〈πi, v̄i〉
where πi is a binding set identifying the symbols ci ∈ K associated to semantic variables si, and
v̄i stores a set of realizations of random variables Vi ∈ V defined in the BN generated from WD.

A process instance IW is well-formed if for any two bindings of semantic variables (s1 : c1) ∈
πi and (s2 : c2) ∈ πi, s1 6= s2, i.e. for each semantic variable si exists a single realization in
πi. Likewise for any two realizations of random variables (V1 = v1) and (V2 = v2) in v̄i. In
summary, v̄i represents the occurrence of events represented by random variables Vi, whereas
πi keeps track of individuals or objects participating in these events.
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Table 2: Joint probability distribution of MAuction.

An example of a void auction would be represented by the process instance IAuction void =
〈πvoid, v̄void〉, where

πvoid = {?a : 〈things/auction 003〉, ?seller : 〈people/john〉},

v̄void = {VAO = TRUE, VBID = FALSE, VAP = TRUE, VPAY = FALSE, VGS = FALSE}.

The value of the rest of the random variables (VTRA, VREVS
, VREVB

) would be unknown, i.e.
unobserved.

The procedure for the generation of process instances from a knowledge base K is out of the
scope of this paper.

3.3 Structural Learning

A conditional dependence graph does not constitute an independence map (I-Map) as long as
the absence of arcs between variables does not necessarily represent conditional independence.
In order to have a proper Bayesian Network that enables probabilistic inference we need to
observe past process developments, complement the conditional dependence graph with missing
conditional dependencies derived from observed patterns, and learn the parameters (CPD) of
the resulting network.

Past process instances can be used for learning the probabilistic distribution of the process
which in turn can be analyzed with a Bayesian classifier implementing an Inferred Causation
(IC) algorithm for discovering additional conditional dependencies. This algorithm detects
causal dependencies between variables and represents confounders (a third unobserved cause)
through undirected arcs between variables. In this sense, the original conditional dependence
graph and the partial order of random variables in the BN are used for redirecting and solving
arcs. We illustrate this process next.

Table 2 shows an example of the joint probability distribution of the Bayesian Network
obtained from the auction process. The probabilistic distribution is constituted by a set of
valid process instances where the first column indicates the probability of finding such instance.
Columns are labeled with the random variable sub-index and the last column provides a brief
description of every case. Empty cells represent unobserved values for each case.
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We generated a sample of 1,000 instances according to the distribution given in the Table 2.
Using parametric learning on the original DAG (see Figure 3) only 87% of the instances were
classified correctly.

Applying the IC search algorithm [12] implemented in Weka [13] with a BayesNet classifier
we obtained 9 arcs (see Figure 4.a), 7 directed and 2 undirected (shown as bi-directed arcs).
5 of them (56%) were new viable edges, including the two undirected arcs. Two arcs were
proposed in the opposite direction by ICS and the other two were discarded given that they
would introduce directed cycles in the original DAG. The first undirected edge was solved by
precedence constraints (VPAY ↔ VREVS

), and the other was solved using the partial order
chosen for random variables (VREVS

↔ VTRA).

To obtain an independence map (I-Map) we enriched the original DAG with five new valid
causal dependencies discovered by ICS (see Figure 4.b): VBID → VREVS

, VPAY → VREVS
,

VPAY → VAP , VTRA → VREVS
and VTRA → VAP . These five arcs can be added without

introducing directed cycles in the graph.

We also built a third compact model using only arcs proposed by ICS (see Figure 4.c): 1)
the five arcs identified as new and valid, and 2) the two arcs identified by ICS in opposite
direction. The last two arcs were reversed for satisfying precedence constraints.

The classification result was tested with 10 folds cross-validation where 80% of the sample
was used for training and 20% was used for testing, selected randomly. 100% of the cases
were classified correctly in both enriched and compact models. For this example, both models
constitute I-Maps that can be used for predicting the process outcome in future auctions. The
probabilistic distribution (CPDs) of both models is obtained applying parametric learning with
the given sample.

Figure 4: Networks for MAuction: a) the bi-directed graph obtained by ICS, b) the original
DAG enriched with ICS valid arcs, and c) the ICS subgraph consistent with the original DAG.
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3.4 Decision Making

Now we use semantic descriptors for determining probabilistically whether to award or not a
given bidder based on his participation in previous auctions. In order to construct a proba-
bilistic model of a specific bidder we constrain the sample using the corresponding lane de-
scriptor. The variable ?bidder in the bidder lane descriptor, i.e. Ann(lB , QB) where QB =
().{?a : bidder ?bidder}, is bind to the individual of interest, e.g. {?bidder : 〈people/tom〉}.
Given that ?bidder is used in a bridge descriptor we can merely recover those process instances
IW = 〈πi, v̄i〉 where {?bidder : 〈people/tom〉} ∈ πi. The corresponding v̄i are used for building
another joint probabilistic distribution.

For example, assuming that Tom is a bidder that usually does not pay the items he wins
we would have a distribution like the one shown in Table 3. Note that Tom might appear in
other auctions as a seller but those instances are not retrieved.

Table 3: Joint probability distribution for {?bidder : 〈people/Tom〉} in MAuction.

Using these 8 cases we apply parametric learning over the enriched and the compact model
in order to compare the prediction on the auction outcome and the seller’s review. As can
be seen in Table 4, the probability of a successful outcome or a seller’s positive review when
Tom participates is lower than the average using both models. The difference is even clearer
comparing the probability of payment (VPAY = TRUE), which is the effect of an action
attributed only to the bidder. This information would be used for deciding to ban a user from
the on-line auction community, or at least forbidding awarding him in any further auction.

Table 4: Comparing predictions for a given bidder in MAuction.
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4 Discussion

Following Judea Pearl’s causal approach [14], relations found by the Inferred Causation (IC) al-
gorithm reflect direct or indirect causal relationships between cause and effect variables. Prece-
dence between BPD nodes mapped to random variables in the BN were used for choosing the
correct direction of undirected arcs found by the IC algorithm. In this way, temporal precedence
encoded in the BPD is used for supporting causality on discovered conditional dependencies.

As shown in the case study, the IC algorithm complemented the conditional dependence
graph obtained from the process workflow with additional causal relationships. This permitted
to forecast the outcome of the process with 100% precision, and evaluating a new case based
on the history of one actor of the process (the bad-bidder example).

The integration of semantic annotations in BPDs normalized for its transformation to
Bayesian Networks has additional benefits. On one hand, it produces a hybrid representa-
tion of process instances where its probabilistic component is used for Bayesian learning, and
its semantic component is used for filtering process instances.

Furthermore, discovering causal relations in other process scenarios would require: 1) nor-
malizing a BPD representing the process, 2) annotating semantically event nodes using well-
established vocabularies, 3) observing past process instances from public or proprietary Linked
Data, and 4) applying the IC algorithm. Nevertheless, we identify three obstacles for our ap-
proach: BPDs must be normalized for generating a Bayesian Network from them, semantic
annotation of BPDs requires human experts, and Linked Data that could be used for learning
causal relationships must be available and be properly linked.

Finally, we would like to point out that despite stochastic BPD approaches supported by
Markov Chain models [2, 3] can estimate the probability of observing certain event or condition
at a time t, using a Bayesian Network we were able to discover causal relationships between
events associated to non-contiguous events. These relations would permit to generate more
accurate artificial process instances.

5 Conclusions

We integrated and extended semantic annotation and probabilistic inference on BPDs. As
a result, a hybrid representation of past process instances was introduced. On one hand,
its probabilistic component contains information for the Bayesian Network generated from
normalized BPDs. On the other, the semantic component has information that permits selecting
process instances with a given feature. In our case study, this characteristic is used for generating
a probabilistic distribution of a given bidder from a on-line auction knowledge base.

The Pearl’s Inferred Causation (IC) algorithm was used for discovering causal relationships
which could be selectively incorporated in the original graph. The resulting independence map
(I-Map), with its corresponding probabilistic distribution, was used for deciding whether to
award or not a bidder in an on-line auction scenario. Bidder’s past auctions were identified and
extracted from the process’ joint probabilistic distribution by using the semantic component of
process instances.

5.1 Future Work

A limitation of the probabilistic BPD normal form [4] is the lack of support for loops. Neverthe-
less, a loop-removal procedure can be implemented on BPDs using subprocesses and recursion.
For this, the loop is encapsulated in a subprocess which is recursively called whenever the
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loop occurs. The subprocess, specified through another BPD, can in turn be specified using
the probabilistic normal form. The Bayesian Network generated for the subprocess would be
trained as well through the observation of pass process instances. Further research must be
done on the consequences of learning BNs from cycles.

On the other hand, semantic annotations of normalized BPDs can be further exploited for
learning process traces from a knowledge base K. This procedure must produce hybrid process
instances where the probabilistic component must be aligned to the Bayesian Network obtained
from the normalized BPD, whereas the semantic component would contain identifiers (URIs)
of individuals described in K.

Additionally, the unique BPD pool can be annotated as well, indicating the context on
which the activity develops. For instance, it could be used for indicating whether the bidder
knows the seller (?bidder foaf:knows ?seller). Pool annotation in this case, could be
used for constraining the cases to use for building the CPD of the underlying Bayesian Network.

Finally, probabilistic models generated for each agent (lane) can in turn be used for assisting
human activities through intelligent agents [15, 16].
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