
EPiC Series in Computing

Volume 90, 2022, Pages 1–17

Proceedings of 9th International Workshop on Applied
Verification of Continuous and Hybrid Systems (ARCH22)

Implementation of Ellipsoidal Operations in CORA 2022

Victor Gaßmann and Matthias Althoff

Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany
{victor.gassmann,althoff}@in.tum.de

Abstract

Tool presentation: Ellipsoids are a broadly applied set representation for formal anal-
yses, such as set-based observers, or reachability analysis. While ellipsoids are not closed
under frequently used set operations like Minkowski sum or intersection, their widespread
popularity can be attributed to their compact numerical representation and intuitive na-
ture. As a result, there already exist toolboxes that implement many operations for el-
lipsoids. That said, most are either no longer maintained, or implement only a subset of
necessary ellipsoidal operations. Thus, we implement all common set operations, as well
as recent research results on ellipsoids as a class in the Continuous Reachability Analyzer
(CORA) - a free MATLAB toolbox for continuous reachability analysis. Previously, CORA
already contained implementations for many ellipsoidal operations, which, however, were
lacking in speed, accuracy, and functionality. Here, we describe the implementation of the
ellipsoid class in CORA and compare it against the popular, but no longer maintained,
Ellipsoidal Toolbox (ET).

1 Introduction

While ellipsoids are by design constrained to centrally symmetric, convex sets, they are widely
used for formal verification tasks, such as set-based observers [8], invariant region computa-
tion [1, 11], and reachability analysis [3, 9]. This can be in part attributed to their simple
representation and intuitive nature.

As a result, there exist toolboxes which implement the ellipsoidal operations necessary for
these aforementioned applications, among which the Ellipsoidal Toolbox (ET) [10] is arguably
the most popular. The ET implements ellipsoidal operations as well as reachability analysis
using ellipsoids. However, while it includes a wide variety of ellipsoidal functions, it is no longer
maintained. Furthermore, many applications often additionally require the usage of other set
representations to avoid overly conservative results, e.g., when operations are required which
cannot be exactly computed for ellipsoids. Therefore, we include the ellipsoidal functionality
from the ET into the Continuous Reachability Analyzer (CORA) [2], a MATLAB toolbox for
reachability analysis, which already implements many different set representations.

In Sec. 2, we first define ellipsoids. We then describe the implementation of the ellipsoidal
operations in Continuous Reachability Analyzer (CORA) in Sec. 3, and finally present a com-
parison of the CORA implementation with the most recent implementation of the ET in Sec. 4.

G. Frehse, M. Althoff, E. Schoitsch and J. Guiochet (eds.), ARCH22 (EPiC Series in Computing, vol. 90),
pp. 1–17

Ellipsoidal Operations in CORA 2022 Gaßmann and Althoff

2 Preliminaries

Generally, we denote sets by calligraphic letters (X), vectors and scalars are denoted by lower-
case letters (x), and matrices are denoted by capital letters (X). Further, S is the set of all
symmetric matrices, and S+ denotes the cone of all symmetric, positive semi-definite matrices.
For a given vector x ∈ Rn, its i-th component is denoted by xi. We denote with □n×m an
(n × m)-dimensional block of □, and introduce □n as a shorthand for □n×n. Further, the
supremum of a function f : Rn 7→ R is given by supx f (x). Lastly, for x ∈ R, ceil (x) returns
the smallest integer z ∈ Z for which x ≤ z. Before defining an ellipsoid, let us first introduce
support functions.

Definition 1 (Support Function [10, Sec. 2]). The support function for a set X ⊆ Rn and a
direction l ∈ Rn is

ρX (l) = sup
x∈X

lTx.

An ellipsoid can be defined using a support function as follows.

Definition 2 (Ellipsoid [10, Sec. 2]). An ellipsoid E (Q, q) with center q ∈ Rn and shape matrix
Q ∈ Sn×n

+ can be defined through its support function

ρE (l) = lT q +
√

lTQl.

When E (Q, q) is non-degenerate, i.e., rank (Q) = n, one commonly uses the more intuitive
definition

E (Q, q) =
{
x ∈ Rn

∣∣∣ (x− q)
T
Q−1 (x− q) ≤ 1

}
.

In this work, we define the dimension of an ellipsoid as the dimension of the vector space in
which the user has specified the ellipsoid. Further, the minimum dimension of an ellipsoid refers
to the dimension of the highest-dimensional vector space in which said ellipsoid has non-zero
volume. An ellipsoid is then degenerate if rank (Q) < n.

3 Implementation in CORA

Table 1 shows relevant ellipsoidal functions implemented in CORA, how to construct ellipsoid
objects, and describes the properties of an ellipsoid object. Since CORA is implemented in
MATLAB, we choose the function names to overload built-in MATLAB functions where appro-
priate. By default, overloaded variants of operations always compute an outer approximation.
The two examples in the next section illustrate the usage of ellipsoids in CORA. As shown in
table 1, ellipsoids in CORA are constructed from a shape matrix Q ∈ Sn×n

+ and (optionally) a
center q ∈ Rn (zero by default).

Inner and Outer Ellipsoid-Ellipsoid Intersection The following code defines two ellip-
soids, computes both the inner and outer ellipsoid approximations of their intersection, and
plots the results:

1 % define both ellipsoids

2 E1 = ellipsoid ([0.2 ,0.3;0.3 ,1.5] ,[-1;0.5]);

3 E2 = ellipsoid ([3 , -0.5; -0.5 ,1] ,[0.2;0.1]);

4
5 % compute inner and outer approximations for intersection

2

Ellipsoidal Operations in CORA 2022 Gaßmann and Althoff

6 Eo = E1 & E2; % CORA computes outer approximations by default

7 Ei = and(E1 ,E2 ,'inner ');
8
9 % plot results

10 figure; hold on

11 plot(E1 ,[1,2],'b'); plot(E2 ,[1,2],'r');
12 plot(Eo ,[1,2],'k');
13 plot(Ei ,[1,2],'--k');
14 xlabel('x_1','interpreter ','latex ');
15 ylabel('x_2','interpreter ','latex ');

The output is shown in Fig. 1a.

Ellipsoidal Enclosure of Degenerate Point Cloud Here, we first define random points
on a hyperplane, compute the corresponding minimum-volume ellipsoid, and plot the result:

1 % define hyperplane normal

2 a = [1;1; -2];

3 % define center shift (a'*x = b)

4 b = 1;

5 % define hyperplane

6 hyp = conHyperplane(a,b);

7 % get random points on that hyperplane

8 V = randPoint(hyp ,10);

9
10 % get minimum -volume enclosing ellipsoid

11 E = ellipsoid.enclosePoints(V,'min -vol');
12
13 % plot hyperplane in 3D

14 figure; hold on

15 A = a(1); B = a(2); C = a(3); D = -b;

16 lin_x = linspace(min(V(1,:)),max(V(1,:)) ,10);

17 lin_y = linspace(min(V(2,:)),max(V(2,:)) ,10);

18 [x,y] = meshgrid(lin_x ,lin_y);

19 z = -1/C*(A*x+B*y+D);

20 grid on

21 surf(x,y,z,'FaceColor ','none');
22
23 % plot points

24 plot3(V(1,:),V(2,:),V(3,:),'xr');
25
26 % plot ellipsoid boundary in 3D

27 V_E = randPoint(E,100,'extreme ');
28 V_E = [V_E ,V_E(:,1)];

29 plot3(V_E(1,:),V_E(2,:),V_E(3,:),'b');
30 xlabel('x','interpreter ','latex ');
31 ylabel('y','interpreter ','latex ');
32 zlabel('z','interpreter ','latex ');

A possible output is shown in Fig. 1b.

3

Ellipsoidal Operations in CORA 2022 Gaßmann and Althoff

Table 1: List of important CORA functions. Here, E, P, H, h, v denote an ellipsoid, a polytope,
a half-space, a hyperplane, and a vector, respectively. Further, “...” denotes name-value pair
arguments, {·} represents a list of possible values for that input argument, ’inner’ denotes an
inner approximation, and ’outer’ denotes an outer approximation.

CORA function in ET description

Constructor

obj = ellipsoid(Q)

obj = ellipsoid(Q,q)

✓ Constructor: Q∈ Sn×n
+ , q∈ Rn;

Properties obj.Q (shape ma-
trix), obj.q (center)

Returns Ellipsoid

and(obj,{E,P,H,h,v},{’inner’,’outer’}) ✓ Intersection
cartProd(obj,E) Outer approximation of Carte-

sian product
enclosePoints(V) ✓ Outer approximation of point

cloud V [5]
in(obj,{E,v}) ✓ Containment: {E,v} ∈ obj

ellipsoid.generateRandom(...) ✓ Generate a random ellipsoid
minkDiff(obj,E,L,{’inner’,’outer’}) ✓ Minkowski difference between

two ellipsoids using matrix of di-
rections L

mtimes(obj,A) ✓ Linear Transformation of obj

by matrix A

or(obj,{E,v},{’inner’,’outer’}) ✓ Union
plus(obj,{E,v},L,{’inner’,’outer’}) ✓ Minkowski sum between two el-

lipsoids using matrix of direc-
tions L (also see Sec. 4.1.4)

plus(obj,{E,v},{’outer’,’outer:halder’}) Minkowski sum (also
see Sec. 4.1.4; [7] for
’outer:halder’)

Returns Value

distance(obj,{E,P,H,h,v}) (✓) Ellipsoid distance (see
Sec. 4.1.2)

isBigger(obj,E) ✓ Containment: E (E.Q) ⊆
E (obj.Q)

isIntersecting(obj,{E,P,H,h,v}) ✓ Check if intersecting
norm(obj) Maximum Euclidean norm (see

[6])
volume(obj) ✓ Volume
supportFunc(obj,l) ✓ Support function in direction l

Set Conversions

interval(obj) Outer interval approximation
zonotope(obj,{’inner’,’outer’}) Ellipsoid-to-zonotope conver-

sion [6]

4

Ellipsoidal Operations in CORA 2022 Gaßmann and Althoff

−2 −1 0 1 2
−1

0

1

2

x1

x
2

E1
E2
Eo
Ei

(a) Example of inner and outer ellipsoid approxi-
mations of an ellipsoid-ellipsoid intersection.

−2 0 20

1

−2

0

x

y

z

hyp

V
E

(b) Example of the minimum-volume ellipsoid en-
closure of a degenerate point cloud.

Figure 1: Output of example scripts

4 Comparison with the Ellipsoidal Toolbox

In this section, we compare the CORA and ET implementation. CORA implements a superset
of the ellipsoidal operations in the ET. The only exception hereby are implementations that are
more efficient for specific dimensions (typically dimension 2 or 3). While this certainly means
that these cases will not be as performant using the n-dimensional algorithms, low-dimensional
ellipsoidal operations rarely are the bottleneck. Furthermore, if one is really interested in
improving runtimes, implementing these routines in a more real-time-oriented language might
be more appropriate.

All computations are carried out on an Intel(R) Core(TM) i7-8650U processor with 16
GB of RAM. Furthermore, both CORA and the ET use MOSEK1 to solve all semi-definite
programming (SDP) problems. All shown results are averages over N = 20 runs unless specified
otherwise.

Next, we first shortly introduce notable implementation differences between CORA and the
ET in Sec. 4.1, followed by benchmarking the most important functions in Sec. 4.2.

4.1 Notable Changes

While CORA mostly follows the implementation of the ET, some functions and functionality
were changed significantly to improve robustness, runtime, and consistency.

4.1.1 Direct Modeling of Optimization Problems

While optimization modeling frameworks like YALMIP [12] or CVX2 are essential to quickly
and easily model even complex optimization problems, they mostly require re-modeling for
each problem instance, i.e., transforming the specified optimization problem into a problem
description that the selected solver accepts. While, e.g., YALMIP allows one to pre-transform
certain models, this initial transformation to a form required by the solver still has to be
executed, which – especially for low-dimensional problems – often consumes most of the runtime.

1https://www.mosek.com/
2http://cvxr.com/cvx

5

Ellipsoidal Operations in CORA 2022 Gaßmann and Althoff

Thus, CORA models all optimization problems directly, i.e., it directly produces the inputs
necessary for the selected solver (see appendix A for details). Whenever possible, CORA
uses built-in MATLAB functions from the optimization toolbox. While commercially available
solvers might offer faster runtimes, we follow the design philosophy of avoiding external (non-
MATLAB) dependencies. That said, some operations on ellipsoids require the solution of a
semi-definite programming (SDP) problem, which is currently not supported by MATLAB.
Here, CORA supports both the commercially available solver MOSEK as well as SDPT3 [14],
which is freely available.

4.1.2 Distance

Let E (Q, q) be a given non-degenerate ellipsoid with Q ∈ Sn×n
+ , q ∈ Rn, and S another ellipsoid

of same dimension n. The ET defines the distance d of E (Q, q) to S as

d = min
s∈S,x∈E

∥x− s∥22 . (1)

This formulation, however, has the downside that all x ∈ E ∩ S are mapped to d = 0. Thus,
when numerically evaluating (1), deciding whether S and E truly intersect is challenging for all
x ∈ E ∩ S, irrespective of the size of this intersection, since d = 0 is rarely achieved in practice
due to floating point errors and solver tolerances.

To circumvent this, we introduce the ellipsoid norm ∥x∥E =
∥∥∥Q− 1

2x
∥∥∥
2
and rather define d

as

d = min
x∈S

∥x− q∥2E − 1. (2)

Now, E and S still intersect whenever d ≤ 0. However, the objective function in (2) additionally
gives insight about the “depth” of the intersection. Specifically, it only maps x ∈ ∂ (E ∩ S) to 0
(which may be numerically challenging), but all x ∈ interior (E ∩ S) are mapped to progressively
more negative values the closer (in the ellipsoid norm sense) they are to the ellipsoid center.
Thus, deciding whether E and S intersect becomes numerically increasingly more stable as
points in S get closer to q (again in the ellipsoid norm sense), since then d gets increasingly
closer to 1.

In summary, we note that while both (1) and (2) are second-order cone programming prob-
lems and thus convex, the resulting values for d are still subject to numerical errors due to
(primal and dual) feasibility tolerances and duality gap tolerances, as well as floating point
inaccuracies. That said, (2) is numerically more stable due to only mapping boundary points
of the intersection to d = 0, as previously described.

4.1.3 Handling Degenerate Sets

The ET handles degenerate ellipsoids by bloating the corresponding dimensions so that they
become non-degenerate. While this bloating approach is easy to implement, it ignores that –
for some operations – one can project a degenerate ellipsoid into a lower-dimensional subspace
whose dimension is equal to its minimum dimension. Thus, we shortly describe subspace
projections for set conversions. Finally, we sketch how the approach for single sets can be
extended to intersection and containment operations.

6

Ellipsoidal Operations in CORA 2022 Gaßmann and Althoff

Set Conversions Let S ⊆ Rn be a degenerate set with minimum dimension nt. Here, we
make use of a transformation matrix U ∈ Rn×n that exposes its n− nt degenerate dimensions
through the linear transformation UTS. The transformation matrix U for an ellipsoid S =
E (Q, q) is given by the singular value decomposition

Q = U

[
D, 0
0, 0

]
UT ,

where U ∈ Rn×n is an orthogonal matrix, and D ∈ Rnt×nt is a diagonal matrix with strictly
positive entries. Similarily, for a point cloud of N points p(k) ∈ Rn, k ∈ {1, ..., N}, collected in
M ∈ Rn×N , U is again given by the singular value decomposition

M = U

[
D, 0
0, 0n−nt

]
V T ,

if M ≥ n, or

M = U

[
D
0

]
V T ,

ifM < n, where U , V , andD are defined as before. The set conversion can then be computed on
the projected, nt-dimensional set, and transformed back to the original space by reintroducing
the values of the degenerate dimensions, and applying the inverse transformation matrix U .
In CORA, this is, e.g., applicable to functions enclosePoints, interval, or zonotope (see
table 1 for details on arguments).

Intersection and Containment For both intersection (and in CORA) and containment (in
in CORA) operations, we additionally have a non-degenerate ellipsoid W ⊆ Rn. By applying
the same aformentioned transformation to both sets, i.e., UTS and UTW, it is clear that
UTS ∩ UTW = UT (S ∩W) so that we can equally use the same transformations as shown
above. Obviously, for the containment check, no back-transformation is required.

4.1.4 Plus

The ET implements the Minkowski sum only for user-defined directions. While one can compute
a union or intersection (inner or outer approximations) of the resulting ellipsoids of multiple
directions, this is numerically expensive. Thus, for outer approximations, CORA additionally
implements an SDP problem computing a minimum-volume ellipsoid covering the Minkowski
sum of ellipsoids [4]. Furthermore, we also implement the approximate but performant approach
from [7], which computes an optimal, outer approximation based on a chosen parameterization
of the resulting ellipsoid.

4.2 Results

To compare volumes (where appropriate) of an ellipsoid E (Q, q), and to compare runtimes, we
introduce

Vrel =

(
det (QET)

det (QCORA)

) 1
n

,

Trel =
TET

TCORA
,

7

Ellipsoidal Operations in CORA 2022 Gaßmann and Althoff

where det
(
Q(·)

) 1
n is a measure proportional to the normalized volume of the corresponding

ellipsoid. This normalization is achieved by the 1
n exponent, which avoids exponential in-

crease/decrease of det
(
Q(·)

)
with increasing dimension for large/small ellipsoids.

Table 2 compares the implementation of various functions in CORA and the ET. For each
benchmarked function, results for non-degenerate sets (above dashed line) and for degenerate
sets are shown (below dashed line). The minimum dimension of all degenerate sets is n −
ceil (n/2) (where n is the dimension of the set). Whenever no numerical issues occur for a given
toolbox implementation, or if results are identical (Vrel = 1), we omitted the corresponding row
in table 2. The only exception here is the relative volume ratio for degenerate cases, as Vrel is
undefined for degenerate sets.

We conclude that CORA is often much faster for smaller dimensions, and mildly
faster for higher dimensions when sets are non-degenerate. An exception hereby is the
and(obj,E,’outer’) operation. For non-degenerate cases and operations which require the
solution of a semi-definite programming (SDP) problem, these speed-ups can be mostly at-
tributed to the direct modeling of optimization problems (see Sec. 4.1.1). Improvements for
cases where no SDP problems have to be solved are mostly dominated by an overall more effi-
cient architecture of CORA (see, e.g., plus(obj,p) in table 2, which essentially only requires
the addition of two vectors). Further, for degenerate cases, we observe that runtime improve-
ments start to dominate overall runtime only for larger-dimensional sets. That is expected since
the transformation to the lower-dimensional subspaces (see Sec. 4.1.3) initially takes some time,
but saves a lot of computational effort for high-dimensional problems, which are computation-
ally expensive (such as SDP problems). For the same reason, handling of degenerate cases can
even negatively affect runtime when the operation itself is computationally cheap (see, e.g.,
and(obj,E,’outer’)). That said, while volume ratios for the degenerate cases are not shown
due to the 0 volume of degenerate sets, the explicit handling in CORA still produces more
accurate results by design, as we do not bloat degenerate dimensions. Lastly, we notice that
for the degenerate cases of in(obj,E) in table 2, the ET has a failure rate of almost 50%. For
each run of this benchmark, we alternate between generating a contained pair of ellipsoids and
a non-intersecting pair of ellipsoids; the ET fails to identify this degenerate containment almost
every time.

8

Ellipsoidal Operations in CORA 2022 Gaßmann and Althoff

Table 2: Comparison of the CORA and ET implementation of various functions. For each
function, we show the averages for non-degenerate cases (above dashed line) and averages for
degenerate cases (below dashed line). ”Num. issues rate” hereby denotes the number of failed
runs (due to numerical issues) over the total number of runs (per dimension).

Dimensions 2 5 10 20 30 40

and(obj,E,’inner’)

Num. issues rate (ET) 0 0 0 0 0 0
Trel 59.46 36.37 19.07 4.55 2.00 1.30

Num. issues rate (ET) 0 0 0 0 0.05 0
Trel 72.93 24.39 14.91 9.78 10.53 13.67

and(obj,E,’outer’)

Num. issues rate (ET) 0 0 0 0 0 0
Trel 1.13 1.20 1.14 0.87 0.80 0.60

Num. issues rate (ET) 0 0 0 0 0 0
Trel 1.07 0.62 0.42 0.29 0.23 0.15

enclosePoints(V)

Num. issues rate (ET) 0 0 0 0 0 0
Trel 111.55 91.11 46.33 14.23 5.35 2.43

ET could not handle degeneracies

in(obj,E)

Num. issues rate (ET) 0 0 0 0 0 0
Trel 100.77 100.22 65.52 65.61 45.48 29.27

Num. issues rate (ET) 0.50 0.50 0.50 0.45 0.50 0.50
Trel 114.97 74.99 56.01 65.84 50.32 45.31

isIntersecting(obj,E)

Num. issues rate (ET) 0 0 0 0 0 0
Trel 1.14 4.69 9.23 19.11 24.61 33.21

Num. issues rate (ET) 0 0 0.20 0.20 0.35 0.20
Trel 25.88 31.61 23.14 26.66 15.97 34.83

lminkDiff(obj,E,L,’inner’)

Num. issues rate (ET) 0 0 0 0 0 0
Trel 7.10 10.90 6.08 4.26 2.90 2.47

Not implemented for CORA or ET

lminkDiff(obj,E,L,’outer’)

Num. issues rate (ET) 0 0 0 0 0 0
Trel 7.10 10.90 6.08 4.26 2.90 2.47

Not implemented for CORA or ET

9

Ellipsoidal Operations in CORA 2022 Gaßmann and Althoff

or(obj,E,’outer’)

Num. issues rate (ET) 0 0 0 0 0 0
Trel 50.68 33.54 17.78 5.72 5.72 1.33

Num. issues rate (ET) 0.30 0.50 0.60 1 1 1
Trel 48.44 33.24 19.41 NaN NaN NaN

plus(obj,v)

Num. issues rate (ET) 0 0 0 0 0 0
Trel 3.95 3.62 4.29 5.73 5.37 3.60

Num. issues rate (ET) 0 0 0 0 0 0
Trel 3.68 3.49 4.45 5.13 5.53 3.46

5 Conclusions

In this paper, we present the implementation of ellipsoidal operations in the Continuous Reach-
ability Analyzer (CORA) and compare it to the popular Ellipsoidal Toolbox (ET). CORA not
only implements virtually all ellipsoidal operations offered by the ET, but also incorporates
both well-known results not implemented in the ET, as well as more recent results from the
literature. By modeling optimization problems directly without using a modeling framework,
we achieve a significant speed-up compared to the ET for almost all operations, especially for
low-dimensional problems. Furthermore, ellipsoidal operations in CORA now explicitly han-
dle degenerate sets, which – as we have shown – increases accuracy of affected operations and
reduces computation times significantly.

6 Acknowledgments

We gratefully acknowledge financial support by the project justITSELF funded by the European
Research Council (ERC) under grant agreement No 817629.

A Dual Problem for SDP Modeling

Since many ellipsoidal operations require the solution to an SDP problem, we need to bring a
given SDP problem to a form that the given solver accepts. Therefore, in appendix A.1 we first
briefly introduce all SDP problems in CORA and their corresponding ellipsoidal operation.
To see that the dual problem is very useful for matching the introduced SDP problems to
a standard problem formulation of a solver, we will derive the dual problem of MOSEK’s
primal standard problem in appendix A.2. While this is not a novel contribution, to the best
knowledge of the authors this information is not compactly available, and thus we include it
here to ease understanding of the SDP problems implemented in CORA. We use the MOSEK
primal problem formulation rather than the SDPT3 formulation simply because we focused on
MOSEK in this paper. Lastly, we derive a special case of the dual problem in appendix A.3,
and also demonstrate – using the example of the ellipsoid-ellipsoid containment problem – that
identifying the necessary problem matrices required by the solver is possible using this special
case of the dual problem.

10

Ellipsoidal Operations in CORA 2022 Gaßmann and Althoff

A.1 SDP Problems in CORA

Here, we introduce all SDP problems along with their corresponding ellipsoidal operation. For
convenience, we define M non-degenerate ellipsoids

E
(
Q(i), q(i)

)
=

{
x ∈ Rn

∣∣∣∣ (x− q(i)
)T

Q(i)−1
(
x− q(i)

)
≤ 1

}

=

x ∈ Rn

∣∣∣∣∣∣∣∣ x
T Q(i)−1︸ ︷︷ ︸

:=A(i)

x+ 2
(
−q(i)

T
Q(i)−1

)
︸ ︷︷ ︸

:=b(i)T

x+ q(i)
T
Q(i)−1

q(i) − 1︸ ︷︷ ︸
c(i)

≤ 0

 , (3)

with Q(i) ∈ Sn×n
+ and q(i) ∈ Rn, where 1 ≤ i ≤ M , and introduce I as the identity matrix.

A.1.1 Inner Approximation of Intersection

Given are M non-degenerate ellipsoids as in (3). The inner approximation of the intersection

of all ellipsoids E
(
Q(i), q(i)

)
, 1 ≤ i ≤ M , is given by E

(
B̂2, q̂

)
, where [5, Sec. 8.4.2]

B̂, q̂ = arg min
B,q,λ

log detB−1,

s.t.

−λi − ci + b(i)
T
A(i)−1

b(i), 0,
(
q +A(i)−1

b(i)
)T

0, λiIn, B

q +A(i)−1
b(i), B, A(i)−1

 ⪰ 0, ∀i ∈ {1, ...,M} ,

B ⪰ 0.

A.1.2 Outer Approximation of Minkowski Sum

Given are M non-degenerate ellipsoids as in (3). The outer approximation of the Minkowski

sum of all ellipsoids E
(
Q(i), q(i)

)
, 1 ≤ i ≤ M , is given by E

(
Ŵ−1,−Ŵ−1b̂

)
, with [4, Sec. 3.7.4]

Ŵ, b̂ = arg min
W,b,τ

log detW−1,

s.t.


E(0)TWE(0), E(0)T b, 0(
E(0)T b

)T
, −1, bT

0, b, −W

−
M∑
i=1

τi

 Ã(i), b̃(i), 0

b̃(i)
T
, c(i), 0

0, 0, 0

 ⪯ 0,

τi ≥ 0, ∀i ∈ {1, ...,M} ,
W ⪰ 0,

where

E(i) =
[
0n×((i−1)n), In×n, 0n×((N−i)n)

]
, 1 ≤ i ≤ M,

E(0) =

M∑
i=1

E(i),

Ã(i) = E(i)TA(i)E(i),

b̃(i) = E(i)T b(i).

11

Ellipsoidal Operations in CORA 2022 Gaßmann and Althoff

A.1.3 Outer Approximation of Union

Given are M non-degenerate ellipsoids as in (3). The outer approximation of the union of all

ellipsoids E
(
Q(i), q(i)

)
, 1 ≤ i ≤ M , is given by E

(
Â−2,−Â−2ˆ̃b

)
, where [5, Sec. 8.4.1]

Â,
ˆ̃
b = arg min

A,b̃,τ
log detA−1,

s.t.

 A2 − τiA
(i), b̃− τib

(i), 0(
b̃− τib

(i)
)T

, −1− τic
(i), b̃T

0, b̃, −A2

 ⪯ 0, ∀i ∈ {1, ...,M} ,

τi ≥ 0, ∀i ∈ {1, ...,M} ,
A ⪰ 0,

which is convex in A2 ∈ Sn×n
+ b̃ ∈ Rn, and τ ∈ RM .

A.1.4 Outer Approximation of Point Enclosure

Given are points x(i) ∈ Rn, i ∈ {1, ...,M}. Then the minimum-volume ellipsoid covering all

points x(i) is given by E
(
Ê−2,−Ê−1d̂

)
, where [5, Sec. 8.4.1]

Ê, d̂ = argmin
E,d

log detE−1,

s.t.
∥∥∥Ex(i) + d

∥∥∥
2
≤ 1, ∀i ∈ {1, ...,M} ,

E ⪰ 0.

A.1.5 Inscribed Polytope

For a given polytope P =
{
x ∈ Rn

∣∣∣ a(i)Tx ≤ wi, 1 ≤ i ≤ M
}
, a(i) ∈ Rn, wi ∈ R, the

maximum-volume inscribed ellipsoid E
(
B̂2, q̂

)
is given by [5, Sec. 8.4.2]

B̂, q̂ = argmin
B,q

log detB−1,

s.t.
∥∥∥Ba(i)

∥∥∥
2
+ a(i)

T
q ≤ wi, ∀i ∈ {1, ...,M} ,

B ⪰ 0.

A.1.6 Ellipsoid-Ellipsoid Containment

Given two non-degenerate ellipsoids E (Q, q), Q ∈ Sn×n
+ , q ∈ Rn, and E (W, c), W ∈ Sn×n

+ ,
c ∈ Rn, it holds that E (W, c) ⊆ E (Q, q) if and only if there exists a t ∈ R such that

−
[

Q−1, −Q−1q

−
(
Q−1q

)T
, qTQ−1q − 1

]
+ t

[
W−1, −W−1c

−
(
W−1c

)T
, cTW−1c− 1

]
⪰ 0, (4a)

t > 0. (4b)

12

Ellipsoidal Operations in CORA 2022 Gaßmann and Althoff

Since (4) contains a strict inequality, it does not lend itself very well to numerical evaluation.
Instead, for a given user-specified tolerance δ > 0, we introduce

−
[

Q−1, −Q−1q

−
(
Q−1q

)T
, qTQ−1q − 1

]
+ t

[
W−1, −W−1c

−
(
W−1c

)T
, cTW−1c− 1

]
⪰ 0, (5a)

t ≥ δ. (5b)

A.2 Primal to Dual

MOSEK can solve problems of the form3

p∗ = min
x,X(i)

cTx+

N∑
i=1

〈
C(i), X(i)

〉
, (6a)

s.t.
¯
bj ≤ a(j)

T
x+

N∑
i=1

〈
A(ij), X(i)

〉
≤ b̄j , j ∈ {1, ...,M} , (6b)

¯
d ≤ x ≤ d̄, (6c)

x ∈ K, (6d)

X(i) ⪰ 0, i ∈ {1, ..., N} , (6e)

where p∗ ∈ R is the optimal primal objective value, x ∈ Rn contains n scalar optimization
variables, X(i) ∈ Sn×n

+ are N positive semi-definite optimization matrices, c ∈ Rn, C(i) ∈ Sn×n,〈
C(i), X(i)

〉
=
∑

k,l C
(i)
kl X

(i)
kl denotes the Frobenius inner product (□kl denotes the element in

the k-th row and l-th column),
¯
b ∈ RM , b̄ ∈ RM , a(j) ∈ Rn, AT =

[
a(1), ..., a(M)

]
∈ Rn×M ,

A(ij) ∈ Sn×n,
¯
d ∈ Rn, d̄ ∈ Rn, and K ⊆ Rn is the Cartesian product of convex cones supported

by MOSEK.
When comparing the structure of (6) to the SDP problems introduced in appendix A.1, we

notice that they are structurally quite different, since, e.g., (6) does not offer Linear Matrix
Inequality (LMI) constraints, which are, e.g., required for the containment problem in (4). As we
will see, the dual of (6) will be closer in structure to SDP problems introduced in appendix A.1,
and thus we derive the dual problem subsequently.

3MOSEK MATLAB documentation (Sec. 6.6): https://docs.mosek.com/9.3/toolbox.pdf

13

https://docs.mosek.com/9.3/toolbox.pdf

Ellipsoidal Operations in CORA 2022 Gaßmann and Althoff

To that end, we first construct the dual function of (6), which is given by

Θ
(
¯
µ, µ̄,

¯
η, η̄, s, S(i)

)
=

inf
x,X(i)

{
cTx+

N∑
i=1

〈
C(i), X(i)

〉
(7a)

+

M∑
j=1 ¯

µj

(
¯
bj − a(j)

T
x−

N∑
i=1

〈
A(ij), X(i)

〉)
+

M∑
j=1

µ̄j

(
−b̄j + a(j)

T
x+

N∑
i=1

〈
A(ij), X(i)

〉)
(7b)

+
¯
ηT (

¯
d− x) + η̄T

(
x− d̄

)
(7c)

− sTx (7d)

−
N∑
i=1

〈
S(i), X(i)

〉}
, (7e)

where each line in (7) aligns with objective function and constraints in (6), and where
¯
µ ∈ RM ,

µ̄ ∈ RM ,
¯
η ∈ Rn, η̄ ∈ Rn, s ∈ Rn, and S(i) ∈ Rn×n

+ , i ∈ {1, ..., N}. While most of
the dual function follows from standard duality theory, we briefly discuss (7d) and (7e).
For any feasible x and X(i) of (6),

¯
µ ≥ 0, µ̄ ≥ 0,

¯
η ≥ 0, η̄ ≥ 0, s ∈ dual (K), and

S(i) ∈ Sn×n
+ , weak duality holds, i.e., Θ

(
¯
µ, µ̄,

¯
η, η̄, s, S(i)

)
≤ p∗: The dual cone of K is

given by dual (K) =
{
z ∈ Rn

∣∣ zTx ≥ 0, x ∈ K
}
. Thus, since sTx ≥ 0 for all feasible x

and ∀s ∈ dual (K), we subtract sTx from (7) to ensure Θ
(
¯
µ, µ̄,

¯
η, η̄, s, S(i)

)
≤ p∗ (weak

duality)4. Similarly, the dual cone of the positive semi-definite cone Sn×n
+ is given by

dual
(
Sn×n
+

)
=
{
Z ∈ Sn×n

∣∣ ⟨Z,X⟩ ≥ 0, X ∈ Sn×n
+

}
= Sn×n

+ (since the cone of positive semi-

definite matrices is self-dual), thus
〈
S(i), X(i)

〉
≥ 0 for all feasible X(i) and ∀S(i) ∈ Sn×n

+ , and

therefore we also subtract
∑N

i=1

〈
S(i), X(i)

〉
from (7).

As a next step, we collect all terms in (7) involving x and X(i), which yields

Θ
(
¯
µ, µ̄,

¯
η, η̄, s, S(i)

)
=

inf
x,X(i)

{
xT
(
c−AT

¯
µ+AT µ̄−

¯
η + η̄ − s

)
+

N∑
i=1

〈
C(i) −

M∑
j=1

A(ij)
(
¯
µj − µ̄j

)
− S(i), X(i)

〉}
+
¯
bT

¯
µ− b̄T µ̄+

¯
dT

¯
η − d̄T η̄.

(8)

4MOSEK cookbox (3.3.0), Sec. 8.3: https://docs.mosek.com/MOSEKModelingCookbook-letter.pdf

14

https://docs.mosek.com/MOSEKModelingCookbook-letter.pdf

Ellipsoidal Operations in CORA 2022 Gaßmann and Althoff

Since we included all constraints on both x and X(i) in the Lagrangian function, (8) is un-
bounded below unless the factor of xT and the left-hand side of the Frobenius inner product
involving X(i) equal zero, i.e.

Θ
(
¯
µ, µ̄,

¯
η, η̄, s, S(i)

)
=¯b

T

¯
µ− b̄T µ̄+

¯
dT

¯
η − d̄T η̄, if

c−AT

¯
µ+AT µ̄−

¯
η + η̄ − s = 0 ∧

C(i) −
∑M

j=1 A
(ij)
(
¯
µj − µ̄j

)
= S(i), ∀i ∈ {1, ..., N} ,

−∞, otherwise.

(9)

Hence, the dual problem is given by

d∗ = max
¯
µ,µ̄,

¯
η,η̄,s̄

bT

¯
µ− b̄T µ̄+

¯
dT

¯
η − d̄T η̄, (10a)

s.t. c−AT
(
¯
µ− µ̄

)
−
¯
η + η̄ − s = 0, (10b)

C(i) −
M∑
j=1

A(ij)
(
¯
µj − µ̄j

)
⪰ 0, i ∈ {1, ..., N} , (10c)

s ∈ dual (K) , (10d)[
¯
µT , µ̄T ,

¯
ηT , η̄T

]
≥ 0, (10e)

where S(i) ∈ Sn×n
+ is implicitly considered by replacing C(i)−

∑M
j=1 A

(ij)
(
¯
µj − µ̄j

)
= S(i) with

C(i) −
∑M

j=1 A
(ij)
(
¯
µj − µ̄j

)
⪰ 0, i ∈ {1, ..., N}.

Clearly, (5) is structurally more similar to (10) than (6), especially when comparing (5a)
to (10c). However, we still cannot identify all necessary matrices from (10), since there is no
equivalent for (5b) in (10). Therefore, we now derive a special case of the dual problem which is
used for all SDP problems in CORA, and that structurally includes the containment problem.

Remark We note that contrary to linear programs, strong duality does not necessarily hold
even for feasible SDP problems [13, Sec. 4] and thus technically require a sufficient constraint
qualification to ensure strong duality, i.e., d∗ = p∗. However, for practical applications of SDP,
it is reasonable to assume that such a constraint qualification always holds, and that a non-zero
duality gap most likely signals issues with the model itself5.

A.3 Dual Problem with Inequality Constraints

In this section, we derive a special form of the dual problem in (10) that includes an inequality
constraint, motivated by (5b). We will then use this special form of (10) to identify the necessary
matrices to model the containment problem in (5).

Derivation Say we identified A, A(ij), c, C(i) from (10), ∀i ∈ {1, ..., N}, j ∈ {1, ...,M}, but
additionally require the constraint µk ≥ ϵ (motivated by (5b)), where µ =

¯
µ− µ̄, 1 ≤ k ≤ K ≤

M , and ϵ ∈ RK . For all SDP problems in CORA, it suffices to set b =
¯
b = b̄, which implies

µ =
¯
µ − µ̄, i.e., (6b) becomes an equality constraint. Substituting c, AT ,

¯
d, d̄,

¯
η, η̄, s in (10)

with ĉ =

[
c
−ϵ

]
, ÂT =

[
AT

−IK×K , 0

]
, ˆ
¯
d =

[
¯
d
0K

]
, ˆ̄d =

[
d̄

∞K

]
, ˆ
¯
η =

[
¯
η

¯
η̃

]
, ˆ̄η =

[
η̄
¯̃η

]
, ŝ =

[
s
s̃

]
,

5MOSEK cookbox (3.3.0), Sec. 8.4: https://docs.mosek.com/MOSEKModelingCookbook-letter.pdf

15

https://docs.mosek.com/MOSEKModelingCookbook-letter.pdf

Ellipsoidal Operations in CORA 2022 Gaßmann and Althoff

K̂ = K × K̃ – where
¯
η̃, ¯̃η, s̃ are all vectors from RK and K̃ ⊆ RK – yields

max
µ,
¯
η,η̄,s

bTµ+
¯
dT

¯
η − d̄T η̄, (11a)

s.t. c−ATµ−
¯
η + η̄ − s = 0, (11b)

− ϵk + µk − ˜
¯
η
k
− s̃k = 0, k ∈ {1, ...,K} , (11c)

C(i) −
M∑
j=1

A(ij)µj ⪰ 0, i ∈ {1, ..., N} , (11d)

ŝ ∈ dual
(
K̂
)
, (11e)[

¯
ηT , η̄T ,

¯
η̃T
]
≥ 0, (11f)

where ¯̃η is forced to 0 due to the its coefficients being −∞ in the objective function. Further,
if we do not constrain the primal scalar variables x̃ ∈ RK that we introduced by this extension
of c, AT etc. with a cone in the primal problem, i.e., K̃ = RK , the corresponding dual cone is

given by dual
(
K̃
)
=
{
z ∈ RK

∣∣∣ zT x̃ ≥ 0, x̃ ∈ K̃
}
and thus s̃ ∈ dual

(
K̃
)
implies s̃ = 0. Hence

(11c) becomes µk − ϵk = ˜
¯
η
k
≥ 0. If we now further assume that d̄ = −

¯
d = ∞, we arrive at

max
µ,s

bTµ, (12a)

s.t. c−ATµ− s = 0, (12b)

µk ≥ ϵk, k ∈ {1, ...,K} , (12c)

C(i) −
M∑
j=1

A(ij)µj ⪰ 0, i ∈ {1, ..., N} , (12d)

s ∈ dual (K) , (12e)

which now structurally includes (5). We note that in addition to (5), the problem in
(12) is, e.g., also relevant for modeling in(obj,E) (ellipsoid-in-ellipsoid containment) and
or(obj,E,’outer’) (outer approximation of union of two ellipsoids).

Identification of Problem Matrices Since (12) now includes the inequality constraint
(12c), we can identify all necessary matrices by comparing (12) with (5), which yields

ÂT = −1,

ˆ
¯
d = 0,

ˆ̄d = ∞,

C(1) = −
[

Q−1, −Q−1q

−
(
Q−1q

)T
, qTQ−1q − 1

]
,

A(11) = −
[

W−1, −W−1c

−
(
W−1c

)T
, cTW−1c− 1

]
,

ĉ = −δ,

K = R.

Since (5) is a feasibility problem, the choice of b is arbitrary.

16

Ellipsoidal Operations in CORA 2022 Gaßmann and Althoff

References

[1] T. Alamo, A. Cepeda, and D. Limon. Improved computation of ellipsoidal invariant sets for
saturated control systems. In Conference on Decision and Control, pages 6216 – 6221. IEEE,
2005.

[2] M. Althoff. An introduction to CORA 2015. In Workshop on Applied Verification for Continuous
and Hybrid Systems, page 120–151, 2015.

[3] D. V. Balandin, R. S. Biryukov, and M. M. Kogan. Ellipsoidal reachable sets of linear time-varying
continuous and discrete systems in control and estimation problems. Automatica, 116, 2020. article
no. 108926.

[4] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and
Control Theory. Society for Industrial and Applied Mathematics, 1994.

[5] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[6] V. Gaßmann and M. Althoff. Scalable zonotope-ellipsoid conversions using the Euclidean zonotope
norm. In American Control Conference, pages 4715 – 4721. IEEE, 2020.

[7] A. Halder. On the parameterized computation of minimum volume outer ellipsoid of Minkowski
sum of ellipsoids. In Conference on Decision and Control, pages 4040 – 4045. IEEE, 2018.

[8] A. B. Kurzhanski. Hamiltonian techniques for the problem of set-membership state estimation.
International Journal of Adaptive Control and Signal Processing, 25(3):249–263, 2010.

[9] A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis. In Hybrid
Systems: Computation and Control, pages 202–214. Springer, 2000.

[10] A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal toolbox (ET). In Conference on Decision and
Control, pages 1498 – 1503. IEEE, 2006.

[11] Y. Li and Z. Lin. The maximal contractively invariant ellipsoids for discrete-time linear systems
under saturated linear feedback. Automatica, 76:336–344, 2017.

[12] J. Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB. In International
Conference on Robotics and Automation, pages 284 – 289. IEEE, 2004.

[13] M. J. Todd. Semidefinite optimization. Acta Numerica, 10:515–560, 2001.

[14] K. C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3 — A MATLAB software package for semidef-
inite programming, version 1.3. Optimization Methods and Software, 11(1-4):545–581, 1999.

17

	1 Introduction
	2 Preliminaries
	3 Implementation in CORA
	4 Comparison with the Ellipsoidal Toolbox
	4.1 Notable Changes
	4.1.1 Direct Modeling of Optimization Problems
	4.1.2 Distance
	4.1.3 Handling Degenerate Sets
	4.1.4 Plus

	4.2 Results

	5 Conclusions
	6 Acknowledgments
	A Dual Problem for SDP Modeling
	A.1 SDP Problems in CORA
	A.1.1 Inner Approximation of Intersection
	A.1.2 Outer Approximation of Minkowski Sum
	A.1.3 Outer Approximation of Union
	A.1.4 Outer Approximation of Point Enclosure
	A.1.5 Inscribed Polytope
	A.1.6 Ellipsoid-Ellipsoid Containment

	A.2 Primal to Dual
	A.3 Dual Problem with Inequality Constraints

	References

