
EPiC Series in Computing

Volume 39, 2016, Pages 156–168

SCSS 2016. 7th International Symposium on
Symbolic Computation in Software Science

Critical Pair Analysis in Nominal Rewriting

Takaki Suzuki1, Kentaro Kikuchi1, Takahito Aoto2, and Yoshihito Toyama1

1 RIEC, Tohoku University, Sendai, Miyagi, Japan
{ takaki, kentaro, toyama }@nue.riec.tohoku.ac.jp

2 Faculty of Engineering, Niigata University, Niigata, Japan
aoto@ie.niigata-u.ac.jp

Abstract

Nominal rewriting (Fernández, Gabbay & Mackie, 2004; Fernández & Gabbay, 2007) is a framework

that extends first-order term rewriting by a binding mechanism based on the nominal approach (Gabbay

& Pitts, 2002; Pitts, 2003). In this paper, we investigate confluence properties of nominal rewriting,

following the study of orthogonal systems in (Suzuki et al., 2015), but here we treat systems in which

overlaps of the rewrite rules exist. First we present an example where choice of bound variables (atoms)

of rules affects joinability of the induced critical pairs. Then we give a proof of the critical pair lemma,

and illustrate some of its applications including confluence results for non-terminating systems.

1 Introduction

Variable binding is ubiquitous in many expressive formal systems such as systems of predicate
logics, λ-calculi, process calculi, etc. Every language containing variable binding needs to deal
with α-equivalence. Intuitively α-equivalence may be dealt with implicitly, but much effort is
required in formal treatment. To overcome the difficulty, various studies have been made in the
literature, among which the nominal approach [4, 9] is a novel one—unlike other approaches, it
incorporates permutations and freshness conditions on variables (atoms) as basic ingredients.

To deal with equational logics containing variable binding, various frameworks of higher-
order rewriting have been proposed (e.g. [5, 6]). Nominal rewriting [2, 3] has been introduced as
a new framework of higher-order rewriting based on the nominal approach. A distinctive feature
of nominal rewriting is that α-conversion and capture-avoiding substitution are not relegated
to meta-level—they are explicitly dealt with at object-level. In contrast, previous higher-order
rewriting frameworks employ some meta-level calculus (e.g. the simply-typed λ-calculus) and
accomplish α-conversion and capture-avoiding substitution via the meta-level calculus.

Confluence and critical pairs are important in automated theorem proving and inductive
theorem proving based on rewriting techniques such as Knuth-Bendix completion and implicit
induction. Analysis of critical pairs in rewrite rules plays a fundamental role in those tech-
niques. There are, however, problems in doing such analysis in the setting of nominal rewriting,
since a rewrite system in [2, 3] is defined as an infinite set of rewrite rules that is closed under
equivariance (i.e. bijective renaming of atoms).

This motivates us to propose in [10] a refined presentation of the nominal rewriting frame-
work. While a rewrite system in [2, 3] is defined as an infinite set of rewrite rules, we define

J.H.Davenport and F.Ghourabi (eds.), SCSS 2016 (EPiC Series in Computing, vol. 39), pp. 156–168

Critical Pair Analysis in Nominal Rewriting Suzuki, Kikuchi, Aoto and Toyama

a rewriting system as a finite set of rewrite rules. Then, instead of appealing to the property
of equivariance, we specify a permutation as a parameter in each rewrite relation. Using this
formulation, we studied in [10] confluence of orthogonal systems where no overlaps (and hence
no critical pairs) exist in the rewrite rules. To solve the problem of checking the existence of
overlaps, we used an equivariant unification procedure [1] with one permutation variable.

In the present paper, we study confluence properties of nominal rewriting systems in which
overlaps of the rewrite rules exist. To this end, we need to investigate how to check joinability
of critical pairs. This is not as easy as checking the existence of overlaps (critical pairs), since
one has to examine whether there exist α-equivalent terms that are reachable from two terms
in each critical pair, which may be parametrised by permutations. In this paper, we illustrate
the process of checking joinability of critical pairs by giving some concrete examples.

The contributions of the paper are summarised as follows:

• First we present a natural example (Example 12) where choice of bound atoms of rules
varies joinability of the induced critical pairs. This is a phenomenon that never appears
in other higher-order rewriting frameworks in which α-equivalent terms are identified.

• We introduce two kinds of critical pairs with permutations as parameters, following the
corresponding kinds of overlaps in [10]. Using them, we give a detailed proof of the critical
pair lemma and concrete examples of checking joinability of critical pairs. Such examples
have never been seen in the previous style of (infinitely many) critical pairs [2, 3] without
parametrisation by permutations.

• Our proof of the critical pair lemma is more precise than the previous proof [2] in that we
construct required permutations and substitutions, using some lemmas and the property
of an mgu in the critical pair. Analysing our proof, we also present a critical pair lemma
specialised for linear rewriting systems, which seems to be new.

• As applications of the critical pair lemmas, we give several confluence criteria which are
used to obtain various confluence results including those for non-terminating systems.

The paper is organised is as follows. In Section 2, we explain basic notions and notations
of nominal rewriting. In Section 3, we discuss problems on confluence in nominal rewriting,
introduce our notion of critical pairs, and present applications of the critical pair lemmas. In
Section 4, we conclude with suggestions for further work.

2 Nominal rewriting

Nominal rewriting [2, 3] is a framework that extends first-order term rewriting by a binding
mechanism. In this section, we recall basic definitions on nominal terms and nominal rewriting
based on [10]. For further descriptions and examples, see [2, 3, 10].

2.1 Nominal terms

A nominal signature Σ is a set of function symbols ranged over by f, g, We fix a countably
infinite set X of variables ranged over by X,Y, Z, . . . , and a countably infinite set A of atoms
ranged over by a, b, c, . . . , and assume that Σ, X , and A are pairwise disjoint. Unless otherwise
stated, different meta-variables for objects in Σ, X , or A denote different objects. A swapping
is a pair of atoms, written (a b). Permutations π are bijections on A such that the set of atoms
for which a 6= π(a) is finite. Permutations are represented by lists of swappings applied in the
right-to-left order. For example, ((b c)(a b))(a) = c, ((b c)(a b))(b) = a, ((b c)(a b))(c) = b. We
write Id for the identity permutation, ()−1 for the inverse, and ◦ for the composition.

157

Critical Pair Analysis in Nominal Rewriting Suzuki, Kikuchi, Aoto and Toyama

Nominal terms, or simply terms, are generated by the grammar

t, s ::= a | π·X | [a]t | f t | 〈t1, . . . , tn〉

and called, respectively, atoms, moderated variables, abstractions, function applications and
tuples. We assume that function applications are bound more strongly than abstractions. We
abbreviate Id ·X as X if there is no ambiguity. f 〈 〉 is abbreviated as f , and referred to as a
constant. An abstraction [a]t is intended to represent t with a bound. The set of free atoms
occurring in t, denoted by FA(t), is defined as follows: FA(a) = {a}; FA(π·X) = ∅; FA([a]t) =
FA(t) \ {a}; FA(f t) = FA(t); FA(〈t1, . . . , tn〉) =

⋃
i FA(ti). We write V (t)(⊆ X) for the set of

variables occurring in t. A term t is said to be ground if V (t) = ∅. A linear term is a term in
which any variable occurs at most once.

Example 1. A nominal signature for a fragment of first-order predicate logic has function
symbols and, forall and p. The nominal term and 〈p a, forall [a]forall [b]X〉 represents the formula
p(a)∧∀a.∀b.X in the usual notation. Here X is a (meta-level) variable which can be instantiated
by another term (representing a formula) possibly with free atoms a and b. For this term t, we
have FA(t) = {a} and V (t) = {X}.

Positions are finite sequences of positive integers. The empty sequence is denoted by ε.
For positions p, q, we write p � q if there exists a position o such that q = po. We write
p ‖ q for p 6� q and q 6� p. The set of positions in a term t, denoted by Pos(t), is defined
as follows: Pos(a) = Pos(π·X) = {ε}; Pos([a]t) = Pos(f t) = {1p | p ∈ Pos(t)} ∪ {ε};
Pos(〈t1, . . . , tn〉) =

⋃
i{ip | p ∈ Pos(ti)} ∪ {ε}. The subterm of t at a position p ∈ Pos(t) is

written as t|p. A position p ∈ Pos(t) is a variable position in t if t|p is a moderated variable.
The set of variable positions in t is denoted by PosX (t).

A context is a term in which a distinguished constant � occurs. Contexts having precisely
one � are written as C[]. The term obtained from a context C by replacing each � at positions
pi by terms ti is written as C[t1, . . . , tn]p1,...,pn or simply C[t1, . . . , tn]. Similarly, the term
obtained from a term s by replacing each subterm at positions pi by terms ti is written as
s[t1, . . . , tn]p1,...,pn .

Next, we define two kinds of permutation actions π·t and tπ, which operate on terms ex-
tending a permutation on atoms. These actions are used to define substitution, α-equivalence
and rewrite relation for nominal rewriting systems. They are defined as follows:

π·a = π(a) aπ = π(a)
π·(π′·X) = (π ◦ π′)·X (π′·X)π = (π ◦ π′ ◦ π−1)·X
π·([a]t) = [π·a](π·t) ([a]t)π = [aπ]tπ

π·(f t) = f π·t (f t)π = f tπ

π·〈t1, . . . , tn〉 = 〈π·t1, . . . , π·tn〉 〈t1, . . . , tn〉π = 〈tπ1 , . . . , tπn〉

The difference between the two consists in the clause for moderated variables. In particular,
when π′ = Id , π is suspended before X in the first action as π·(Id ·X) = (π ◦ Id)·X = π·X,
while in the second action π has no effect as (Id ·X)π = (π ◦ Id ◦ π−1)·X = Id ·X.

A substitution is a map σ from variables to terms. Substitutions act on variables, without
avoiding capture of atoms. We write tσ for the application of σ on t. Note that by replacing
X of a moderated variable π·X in t by σ(X), a permutation action π·(σ(X)) occurs. For a
permutation π and a substitution σ, we define the substitution π·σ by (π·σ)(X) = π·(σ(X)).

158

Critical Pair Analysis in Nominal Rewriting Suzuki, Kikuchi, Aoto and Toyama

2.2 α-equivalence and nominal rewriting systems

The distinctive feature of nominal rewriting is that it is equipped with a mechanism to avoid
accidental capture of free atoms on the way of rewriting. This is partly achieved by α-conversion
built in the matching process of the LHS of a rule and a redex involving also permutations (cf.
Example 9).

In this subsection, we first recall the notion of α-equivalence in the nominal setting. This
is different from α-equivalence in the traditional sense in that equivalence between terms is
discussed under assumptions on the freshness of atoms in variables.

A pair a#t of an atom a and a term t is called a freshness constraint. Intuitively, this
means that a does not occur as a free atom in t, including the cases where the variables in
t are instantiated by other terms. A finite set ∇ ⊆ {a#X | a ∈ A, X ∈ X} is called a
freshness context. For a freshness context ∇, we define V (∇) = {X ∈ X | ∃a. a#X ∈ ∇},
∇π = {aπ#X | a#X ∈ ∇}, and ∇σ = {a#σ(X) | a#X ∈ ∇}.

The rules in Figure 1 define the relation ∇ ` a#t, which means that a#t is satisfied under
the freshness context ∇. It can be seen that a /∈ FA(t) whenever ∇ ` a#t. An example using
the last rule is {c#X} ` a#((a b)(b c))·X, since ((a b)(b c))−1·a = ((b c)(a b))(a) = c.

∇ ` a#b

∇ ` a#[a]t

∇ ` a#t

∇ ` a#f t

∇ ` a#t

∇ ` a#[b]t

∇ ` a#t1 · · · ∇ ` a#tn
∇ ` a#〈t1, . . . , tn〉

π−1·a#X ∈ ∇
∇ ` a#π·X

Figure 1: Rules for freshness constraints

The rules in Figure 2 define the relation ∇ ` t ≈α s, which means that t is α-equivalent to
s under the freshness context ∇. ds(π, π′) in the last rule denotes the set {a ∈ A | π·a 6= π′·a}.
For example, ds((a b), Id) = {a, b}.

∇ ` a ≈α a

∇ ` t ≈α s
∇ ` [a]t ≈α [a]s

∇ ` t ≈α s
∇ ` f t ≈α f s

∇ ` (a b)·t ≈α s ∇ ` b#t
∇ ` [a]t ≈α [b]s

∇ ` t1 ≈α s1 · · · ∇ ` tn ≈α sn
∇ ` 〈t1, . . . , tn〉 ≈α 〈s1, . . . , sn〉

∀a ∈ ds(π, π′). a#X ∈ ∇
∇ ` π·X ≈α π′·X

Figure 2: Rules for α-equivalence

Example 2. Consider the nominal signature for a fragment of first-order predicate logic in
Example 1, and suppose ∇ = {a#X, b#X}. Then we have the following derivation:

a#X ∈ ∇
∇ ` a#X

b#X ∈ ∇
∇ ` b#X

∇ ` (a b)·X ≈α X
b#X ∈ ∇
∇ ` b#X

∇ ` [a]X ≈α [b]X

∇ ` forall [a]X ≈α forall [b]X

The following property is shown in [2].

Proposition 3 ([2]). For any freshness context ∇, the binary relation ∇ ` − ≈α − is a
congruence (i.e. an equivalence relation that is closed under any context C[]).

159

Critical Pair Analysis in Nominal Rewriting Suzuki, Kikuchi, Aoto and Toyama

For ground terms, the last rules in Figures 1 and 2 are not necessary, and so the relation
∇ ` − ≈α − is irrelevant to the freshness context ∇. In that case, the relation coincides with
the usual α-equivalence (i.e. the relation reached by renamings of bound atoms) [4].

Now we define nominal rewrite rules and nominal rewriting systems.

Definition 4 (Nominal rewrite rule). A nominal rewrite rule, or simply rewrite rule, is a triple
of a freshness context ∇ and terms l and r such that V (∇)∪ V (r) ⊆ V (l). We write ∇ ` l→ r
for a rewrite rule. A rewrite rule ∇ ` l → r is linear if so are l and r. For a rewrite rule R =
∇ ` l→ r and a permutation π, we define the rewrite rule Rπ as ∇π ` lπ → rπ.

Example 5. Consider the nominal signature for a fragment of first-order predicate logic in
Example 1. The following (COM∀) is a nominal rewrite rule (we omit ∅ on the LHS of `):

` forall [a]forall [b]X → forall [b]forall [a]X (COM∀)

Definition 6 (Nominal rewriting system). A nominal rewriting system, or simply rewriting
system, is a finite set of rewrite rules. A rewriting system is linear if so are all its rewrite rules.

Example 7. Consider the nominal signature for a fragment of first-order predicate logic in
Example 1. A nominal rewriting system that represents logically equivalent transformations in
first-order predicate logic:

(∀a.X) ∧ Y ≡ ∀a.(X ∧ Y) where a /∈ FV(Y)
X ∧ (∀a.Y) ≡ ∀a.(X ∧ Y) where a /∈ FV(X)

is defined by the following Rpnf (we omit the braces on the LHS of `):

Rpnf =

{
a#Y ` and 〈forall [a]X,Y 〉 → forall [a]and 〈X,Y 〉 (∀1)
a#X ` and 〈X, forall [a]Y 〉 → forall [a]and 〈X,Y 〉 (∀2)

In [2, 3], nominal rewrite systems are defined as infinite sets of rewrite rules that are closed
under equivariance, i.e., if R is a rule of a rewrite system R then so is Rπ for any permutation
π. In [10] and the present paper, rewriting systems are defined as finite sets of rewrite rules
that may not be closed under equivariance. Accordingly, our rewrite relation is defined with a
permutation as a parameter unlike in the definition of rewrite relation in [2, 3].

In the sequel, ` is extended to mean to hold for all members of a set (sequence) on the RHS.

Definition 8 (Rewrite relation). Let R = ∇ ` l→ r be a rewrite rule. For a freshness context
∆ and terms s and t, the rewrite relation is defined by

∆ ` s→〈R,π,p,σ〉 t
def⇐⇒ ∆ ` ∇πσ, s = C[s′]p, ∆ ` s′ ≈α lπσ, t = C[rπσ]p

where w.l.o.g. V (l) ∩ (V (∆) ∪ V (s)) = ∅. We write ∆ ` s →〈R,π〉 t if there exist p and σ such
that ∆ ` s→〈R,π,p,σ〉 t. We write ∆ ` s→R t if there exists π such that ∆ ` s→〈R,π〉 t. For a
rewriting system R, we write ∆ ` s→R t if there exists R ∈ R such that ∆ ` s→R t.

Example 9. Using the rule (∀1) of the system Rpnf in Example 7, we see that the term
representing (∀a.p(a)) ∧ (∀a.q(a)) rewrites to ∀a.(p(a) ∧ (∀a.q(a))), that is, we have

` and 〈forall [a]p a, forall [a]q a〉 →〈∀1,Id,ε,σ1〉 forall [a]and 〈p a, forall [a]q a〉

where σ1 is the substitution {X := p a, Y := forall [a]q a}. The resulting term rewrites further
to the term forall [a]forall [b]and 〈p a, q b〉 by the rule (∀2) of the system Rpnf . Here we give a
detail of the rewrite step to see how capture of a free atom is avoided.

160

Critical Pair Analysis in Nominal Rewriting Suzuki, Kikuchi, Aoto and Toyama

Let s = forall [a]and 〈p a, forall [a]q a〉. Since the rule has a freshness context ∇ = {a#X},
to apply (∀2) to s at the position p = 11, it is necessary to find a permutation π and a
substitution σ2 that satisfy ` ∇πσ2 and ` and 〈p a, forall [a]q a〉 ≈α (and 〈X, forall [a]Y 〉)πσ2.
Here one cannot simply take π = Id , because then σ2(X) = p a from the condition for ≈α,
which contradicts ` ∇πσ2. So we take, e.g. π = (a b) and σ2 = {X := p a, Y := q b} to satisfy
the conditions, and get forall [a](forall [a]and 〈X,Y 〉)πσ2 = forall [a]forall [b]and 〈p a, q b〉 as the
result of rewriting.

In the following, a binary relation ∆ ` − ./ − (./ is →R, ≈α, etc.) with a fixed freshness
context ∆ is called the relation ./ under ∆, or simply the relation ./ if there is no ambiguity. If
a relation ./ is written using → then the inverse is written using ←. Also, we write ./= for the
reflexive closure, and ./∗ for the reflexive transitive closure. We use ◦ for the composition of
relations. We write ∆ ` s1 ./1 s2 ./2/n−1 sn for ∆ ` si ./i si+1 (1 ≤ i < n). A rewriting
system R is terminating if there is no infinite rewrite sequence ∆ ` s1 →R s2 →R · · · .

3 Confluence and critical pairs in nominal rewriting

Having defined basic notions on nominal terms and nominal rewriting systems, we now set out
to discuss confluence and critical pairs in nominal rewriting. To be exact, we study confluence
properties modulo the equivalence relation ≈α in terms of abstract reduction systems [7].

Definition 10. Let R be a nominal rewriting system.

1. s and t are joinable modulo ≈α under a freshness context ∆, denoted by ∆ ` s ↓≈α t, iff
∆ ` s (→∗R ◦ ≈α ◦ ←∗R) t.

2. R is locally confluent modulo ≈α iff ∆ ` s (←R ◦ →R) t implies ∆ ` s ↓≈α t.

3. R is confluent modulo ≈α iff ∆ ` s (←∗R ◦ →∗R) t implies ∆ ` s ↓≈α t.

4. R is Church-Rosser modulo ≈α iff ∆ ` s (←R ∪ →R ∪ ≈α)
∗
t implies ∆ ` s ↓≈α t.

5. R is strongly compatible with ≈α iff ∆ ` s (≈α ◦ →R) t implies ∆ ` s (→=
R ◦ ≈α) t.

It is known that Church-Rosser modulo an equivalence relation ∼ is a stronger property
than confluence modulo ∼ [7]. So we aim to prove Church-Rosser modulo ≈α for some class of
nominal rewriting systems.

The next proposition, which substitutes for Newman’s Lemma in the usual rewriting, follows
from [8, Propositions 2.5.4 & 2.5.12].

Proposition 11. If R is terminating, locally confluent modulo ≈α and strongly compatible
with ≈α, then R is Church-Rosser modulo ≈α.

3.1 Problems on confluence in nominal rewriting

Problems on confluence in nominal rewriting emerge in diverse ways. They are caused mainly
by parametrisation of rewrite steps by permutations (or, in terms of [2], equivariance of the set
of rewrite rules), which is not present in usual first-order and higher-order rewriting. In [10], we
solved a problem on confluence of orthogonal systems by introducing the notion of α-stability.
In the present paper, we treat another problem on confluence in nominal rewriting, which also
concerns permutations as parameters on two rewrite rules that induce critical pairs.

161

Critical Pair Analysis in Nominal Rewriting Suzuki, Kikuchi, Aoto and Toyama

Example 12. Consider the nominal rewriting system Rpnfcom with the rewrite rules of Rpnf in
Example 7 and the rewrite rule (COM∀) in Example 5:

Rpnfcom =

a#Y1 ` and 〈forall [a]X1, Y1〉 → forall [a]and 〈X1, Y1〉 (∀1)
a#X2 ` and 〈X2, forall [a]Y2〉 → forall [a]and 〈X2, Y2〉 (∀2)

` forall [a]forall [b]X → forall [b]forall [a]X (COM∀)

Then the term and 〈forall [a]X1, forall [a]Y2〉 can be reduced in two ways:

` and 〈forall [a]X1, forall [a]Y2〉 →〈∀1,Id〉 forall [a]and 〈X1, forall [a]Y2〉 (1-1)

` and 〈forall [a]X1, forall [a]Y2〉 →〈∀2,Id〉 forall [a]and 〈forall [a]X1, Y2〉 (1-2)

where the resulting two terms are not α-equivalent and they are normal forms in Rpnfcom. (To
apply the rule (∀2) to the resulting term of (1-1) at the position 11, it is necessary to find a
permutation π and a substitution σ that satisfy ` (a#X2)πσ and ` and 〈X1, forall [a]Y2〉 ≈α
(and 〈X2, forall [a]Y2〉)πσ. The latter implies σ(X2) = X1, but then ` (a#X2)πσ (= aπ#X1) is
not derivable by the rules in Figure 1 under the empty freshness context.) Hence we conclude
that the rewriting system Rpnfcom is not locally confluent modulo ≈α.

On the other hand, we have rewrite steps

a#Y2, b#X1 ` and 〈forall [a]X1, forall [b]Y2〉 →〈∀1,Id〉 forall [a]and 〈X1, forall [b]Y2〉 (2-1)

a#Y2, b#X1 ` and 〈forall [a]X1, forall [b]Y2〉 →〈∀2,(a b)〉 forall [b]and 〈forall [a]X1, Y2〉 (2-2)

where the resulting two terms are joinable modulo ≈α under {a#Y2, b#X1} as follows:

a#Y2, b#X1 ` forall [a]and 〈X1, forall [b]Y2〉 →〈∀2,(a b)〉 forall [a]forall [b]and 〈X1, Y2〉
a#Y2, b#X1 ` forall [b]and 〈forall [a]X1, Y2〉 →〈∀1,Id〉 forall [b]forall [a]and 〈X1, Y2〉

→〈COM∀,(a b)〉 forall [a]forall [b]and 〈X1, Y2〉

It turns out that the pairs of the resulting terms in (1-1) and (1-2), and in (2-1) and (2-2),
together with the freshness contexts, form two different critical pairs induced from the rules
(∀1) and (∀2) (cf. Example 18). Hence the above example indicates that choice of bound atoms
in the same two rewrite rules can vary joinability of the induced critical pairs, and so we have
to check all combinations of atoms in the rules to guarantee confluence properties. This kind
of phenomenon never appears in other higher-order rewriting frameworks (e.g. [5, 6]) where
α-equivalent terms are identified.

3.2 Basic critical pairs

To make the above problem more precise, we define our notions of overlaps and critical pairs.
Here we introduce two kinds of critical pairs that are induced by the corresponding kinds of
overlaps considered in [10].

First, we recall unification of nominal terms. Let P be a set of equations and freshness
constraints {s1 ≈ t1, . . . , sm ≈ tm, a1#u1, . . . , an#un} (where ai and aj may denote the same
atom). Then, P is unifiable if there exist a freshness context Γ and a substitution θ such that
Γ ` s1θ ≈α t1θ, . . . , smθ ≈α tmθ, a1#u1θ, . . . , an#unθ; the pair 〈Γ, θ〉 is called a unifier of P .
It is shown in [13] that the unification problem for nominal terms is decidable. Moreover, if P
is unifiable then there exists a most general unifier (mgu for short) of P , where an mgu of P
is a unifier 〈Γ, θ〉 of P such that for any unifier 〈∆, σ〉 of P , there exists a substitution δ such
that ∆ ` Γδ and ∆ ` Xθδ ≈α Xσ for any variable X.

162

Critical Pair Analysis in Nominal Rewriting Suzuki, Kikuchi, Aoto and Toyama

Example 13. Consider the nominal signature for a fragment of first-order predicate logic.

1. Let P = {and 〈forall [a]X1, Y1〉 ≈ and 〈X2, forall [a]Y2〉, a#Y1, a#X2}. Then, 〈∅, {X2 :=
forall [a]X1, Y1 := forall [a]Y2〉 is a unifier of P . Furthermore, it is an mgu of P .

2. Let P = {and 〈forall [a]X1, Y1〉 ≈ and 〈X2, forall [b]Y2〉, a#Y1, b#X2}. Then, 〈{a#Y2,
b#X1}, {X2 := forall [a]X1, Y1 := forall [b]Y2}〉 is a unifier of P . Furthermore, it is an mgu
of P .

As in usual first-order and higher-order rewriting, our notion of overlap is defined in terms
of unification, but involving also a permutation.

Definition 14 (Overlap). Let Ri = ∇i ` li → ri (i = 1, 2) be rewrite rules. We assume w.l.o.g.
that V (l1) ∩ V (l2) = ∅. If ∇1 ∪ ∇π2

2 ∪ {l1 ≈ lπ2
2 |p} is unifiable for some permutation π2 and

a non-variable position p, then we say that R1 overlaps on R2, and the situation is called an
overlap of R1 on R2. If R1 and R2 are identical modulo renaming of variables and p = ε, then
the overlap is said to be self-rooted. An overlap that is not self-rooted is said to be proper.

Example 15. Consider the rules (∀1) a#Y1 ` and 〈forall [a]X1, Y1〉 → forall [a]and 〈X1, Y1〉
and (∀2) a#X2 ` and 〈X2, forall [a]Y2〉 → forall [a]and 〈X2, Y2〉 from Example 12. Then, (∀1)
overlaps on (∀2) in the following two ways.

1. {a#Y1} ∪ {a#X2}Id ∪ {and 〈forall [a]X1, Y1〉 ≈ (and 〈X2, forall [a]Y2〉)Id |ε} is unifiable as
seen in Example 13 (1). This overlap is proper.

2. {a#Y1} ∪ {a#X2}(a b) ∪ {and 〈forall [a]X1, Y1〉 ≈ (and 〈X2, forall [a]Y2〉)(a b)|ε} is unifiable
as seen in Example 13 (2). This overlap is proper.

Example 16. There exist self-rooted overlaps of the rule (∀1) on its renamed variant, since
P = {and 〈forall [a]X1, Y1〉 ≈ (and 〈forall [a]Z1,W1〉)π} is unifiable for any permutation π. In
the case of π(a) = b, we take 〈{a#Z1}, {X1 := (a b)·Z1, Y1 := W1}〉 as an mgu of P .

An overlap always gives rise to a critical pair, which we call here a basic critical pair to dis-
tinguish from the critical pair [2, 3] that is defined without parametrisation by a permutation.

Definition 17 (Basic critical pair). Let Ri = ∇i ` li → ri (i = 1, 2) be rewrite rules. We
assume w.l.o.g. that V (l1) ∩ V (l2) = ∅. Let ∇1 ∪ ∇π2

2 ∪ {l1 ≈ lπ2
2 |p} be unifiable for some

permutation π2 and a non-variable position p such that l2 = L[l2|p]p, and let 〈Γ, θ〉 be an mgu.
Then, Γ ` 〈Lπ2θ[r1θ]p, r

π2
2 θ〉 is called a basic critical pair (BCP for short) of R1 and R2. A

BCP induced by a self-rooted (proper) overlap is said to be self-rooted (proper, respectively).
BCP(R1, R2) denotes the set of all BCPs of R1 and R2, and BCP(R) denotes the set⋃

Ri,Rj∈R BCP(Ri, Rj). Similarly, PBCP(R) denotes the set of all proper BCPs of R.

We remark that any BCP Γ ` 〈Lπ2θ[r1θ]p, r
π2
2 θ〉 of R1 and R2 forms a peak, i.e., we have

Γ ` Lπ2θ[r1θ]p ←〈R1,Id,p,θ〉 L
π2θ[lπ2

2 |pθ]p = (L[l2|p]p)π2θ = lπ2
2 θ →〈R2,π2,ε,θ〉 r

π2
2 θ.

Example 18. The proper BCPs induced by the proper overlaps in Example 15 (1) and (2)
are, respectively,

1. ` 〈forall [a]and 〈X1, forall [a]Y2〉, forall [a]and 〈forall [a]X1, Y2〉〉
2. a#Y2, b#X1 ` 〈forall [a]and 〈X1, forall [b]Y2〉, forall [b]and 〈forall [a]X1, Y2〉〉

These are the BCPs that were mentioned in Example 12.

Example 19. The self-rooted BCP induced by the self-rooted overlap in Example 16 is a#Z1 `
〈forall [a]and 〈(a b)·Z1,W1〉, forall [b]and 〈Z1,W1〉〉.

163

Critical Pair Analysis in Nominal Rewriting Suzuki, Kikuchi, Aoto and Toyama

In the rest of the paper, we are concerned with confluence properties for particular classes
of nominal rewriting systems. For this, we restrict rewriting systems by some conditions. First
we consider the uniformity condition [2], and present critical pair lemma for uniform rewriting
systems, which is a central tool for proving confluence of rewriting systems with critical pairs.
Intuitively, uniformity means that if an atom a is not free in s and s rewrites to t then a is not
free in t. We employ the following definition of uniformity which is equivalent to the one in [2].

Definition 20 (Uniformity). A rewrite rule ∇ ` l → r is uniform if for any atom a and any
freshness context ∆, ∆ ` ∇ and ∆ ` a#l imply ∆ ` a#r. A rewriting system is uniform if so
are all its rewrite rules.

The following property of uniform rewrite rules is important and will be used in the sequel.
(For the proof, see [12].)

Lemma 21. Let R be a uniform rewrite rule. If ∆ ` s′ ≈α s →〈R,π,p,σ〉 t, then there exist
π′, σ′, t′ such that ∆ ` s′ →〈R,π′,p,σ′〉 t

′ ≈α t.

The following is an immediate consequence of Lemma 21.

Corollary 22. Uniform rewriting systems are strongly compatible with ≈α.

Now we state the critical pair lemma. (For the proof, see [12].)

Lemma 23 (Critical pair lemma). Let R be a uniform rewriting system, and let R1, R2 ∈ R.
If ∆ ` t1 ←R1 s→R2 t2 then one of the following holds:

1. There exist terms t′1 and t′2 such that either ∆ ` t1 (→∗R1
◦ →R2) t′1 ≈α t′2 ←∗R1

t2 or
∆ ` t1 →∗R2

t′1 ≈α t′2 (←R1 ◦ ←∗R2
) t2.

2. There exist Γ ` 〈u, v〉 ∈ BCP(R1, R2) ∪ BCP(R2, R1), π, θ and C[] such that ∆ ` Γπθ,
∆ ` t1 ≈α C[uπθ] and ∆ ` t2 ≈α C[vπθ].

3.3 Confluence criteria

As corollaries of the critical pair lemma, we obtain several criteria for confluence properties of
uniform rewriting systems. In this subsection, we present those criteria and their applications.

First we state a proposition which is not difficult to show (cf. [11]).

Proposition 24. If Γ ` s ./ t and ∆ ` Γπθ then ∆ ` C[sπθ] ./ C[tπθ] (./ is ≈α or →R).

Based on the critical pair lemma, the following theorem provides a necessary and sufficient
condition for local confluence modulo ≈α of uniform rewriting systems.

Theorem 25. Let R be a uniform nominal rewriting system. Then R is locally confluent
modulo ≈α if and only if Γ ` u ↓≈α v for any Γ ` 〈u, v〉 ∈ BCP(R).

Proof. (⇒) follows from the remark after Definition 17. (⇐) Suppose ∆ ` t1 ←R1 s →R2 t2.
Then, one of 1 and 2 in Lemma 23 holds. In the case of 2, we have some Γ ` 〈u, v〉 ∈ BCP(R)
such that ∆ ` Γπθ, ∆ ` t1 ≈α C[uπθ] and ∆ ` t2 ≈α C[vπθ]. Then, from the assumption, we
have Γ ` u ↓≈α v. Hence, using Lemma 21 and Proposition 24, we obtain ∆ ` t1 ↓≈α t2.

If we restrict the class of rewriting systems to α-stable ones [10], then it suffices to consider
PBCPs (proper BCPs) instead of BCPs in the condition of Theorem 25.

164

Critical Pair Analysis in Nominal Rewriting Suzuki, Kikuchi, Aoto and Toyama

Definition 26 (α-stability). A rewrite rule R = ∇ ` l → r is α-stable if ∆ ` s ≈α s′,
∆ ` s →〈R,π,ε,σ〉 t and ∆ ` s′ →〈R,π′,ε,σ′〉 t

′ imply ∆ ` t ≈α t′. A rewriting system R is
α-stable if so are all its rewrite rules.

Theorem 27. Let R be a uniform α-stable nominal rewriting system. Then R is locally
confluent modulo ≈α if and only if Γ ` u ↓≈α v for any Γ ` 〈u, v〉 ∈ PBCP(R).

Proof. (⇒) By Theorem 25. (⇐) If Γ ` 〈u, v〉 ∈ BCP(R) in the proof of Theorem 25 is not a
PBCP, then the claim follows by the α-stability of R.

In [10], we have given a sufficient condition for uniformity and α-stability of rewrite rules,
called abstract skeleton preserving (ASP for short). It is easy to judge whether a rewrite rule
is ASP or not (cf. [10]). All examples of the rewrite rules in the present paper are ASP, and so
in the rest of the paper, we focus our attention on uniform and α-stable rewriting systems.

Now we arrive at our Knuth-Bendix criterion for nominal rewriting systems.

Corollary 28. Let R be a terminating uniform α-stable nominal rewriting system. Then R
is Church-Rosser modulo ≈α if and only if Γ ` u ↓≈α v for any Γ ` 〈u, v〉 ∈ PBCP(R).

Proof. (⇒) follows from Theorem 27, since Church-Rosser modulo ≈α implies local confluence
modulo ≈α. (⇐) is by Proposition 11, Corollary 22 and Theorem 27.

Example 29. Consider a nominal signature for a fragment of first-order predicate logic with
function symbols not, forall and exists. The following rewriting system Rnnf computes negation
normal forms.

Rnnf =

 ` not forall [a]X → exists [a]not X (dM∀)
` not exists [a]X → forall [a]not X (dM∃)
` not not X → X (DNE)

There exist three PBCPs of Rnnf , each of which is induced by a proper overlap of each rule on
the rule (DNE).

PBCP(Rnnf) =

 ` 〈not exists [a]not X, forall [a]X〉
` 〈not forall [a]not X, exists [a]X〉
` 〈not X, not X〉

It is seen that all the PBCPs are joinable modulo ≈α. For the first PBCP, we have

` not exists [a]not X →dM∃ forall [a]not not X →DNE forall [a]X

and similarly for the second PBCP. Termination of Rnnf can be shown as follows: define a map
h by h(a) = h(π·X) = 1; h([a]t) = h(t); h(not t) = h(t) × 2; h(f t) = h(t) + 1 for f 6= not;
h(〈t1, . . . , tn〉) = h(t1) + · · · + h(tn) + 1, and observe that if ∆ ` s →Rnnf

t then h(s) > h(t).
Hence by Corollary 28, Rnnf is Church-Rosser modulo ≈α.

In the above example, the set of PBCPs is finite since the rule (DNE) has no atoms, but in
general, PBCPs involve permutations as parameters (cf. Examples 33 and 34).

Next we present a confluence criterion for linear rewriting systems, which works not only
for terminating systems but also for non-terminating ones. Observing the proof of Lemma 23,
we can specialise the critical pair lemma for linear rewriting systems.

Lemma 30 (Critical pair lemma for linear systems). Let R be a uniform linear rewriting
system, and let R1, R2 ∈ R. If ∆ ` t1 ←R1 s→R2 t2 then one of the following holds:

165

Critical Pair Analysis in Nominal Rewriting Suzuki, Kikuchi, Aoto and Toyama

1. There exist terms t′1 and t′2 such that ∆ ` t1 →=
R2

t′1 ≈α t′2 ←=
R1

t2.

2. There exist Γ ` 〈u, v〉 ∈ BCP(R1, R2) ∪ BCP(R2, R1), π, θ and C[] such that ∆ ` Γπθ,
∆ ` t1 ≈α C[uπθ] and ∆ ` t2 ≈α C[vπθ].

The criterion is obtained via strong local confluence modulo ≈α.

Definition 31. A nominal rewriting system R is strongly locally confluent modulo ≈α if ∆ `
s (←R ◦ →R) t implies ∆ ` s (→=

R ◦ ≈α ◦ ←∗R) t.

Theorem 32. Let R be a uniform α-stable linear rewriting system. Then R is Church-Rosser
modulo ≈α if Γ ` u (→=

R ◦ ≈α ◦ ←∗R) v and Γ ` u (→∗R ◦ ≈α ◦ ←=
R) v for any Γ ` 〈u, v〉 ∈

PBCP(R).

Proof. By Corollary 22, R is strongly compatible with ≈α. Also, in a similar way to the proofs
of Theorems 25 and 27, we see that R is strongly locally confluent modulo ≈α, using Lemma 30
instead of Lemma 23. Then, by the results in [7] (see also [8, Section 2.5]), R is Church-Rosser
modulo ≈α.

Example 33. Consider the linear rewriting system Rcom with the only rewrite rule (COM∀):

Rcom =
{

` forall [a]forall [b]X → forall [b]forall [a]X (COM∀)

PBCPs of Rcom are induced by overlaps of (COM∀) on its renamed variant, all of which arise
from the unification problem {forall [a]forall [b]X ≈ (forall [a]forall [b]Y)π|11(= forall [π(b)]Y)}.
In the following, we write down all patterns of the PBCPs according to the permutation π (we
abbreviate forall [a]t as ∀[a]t).

1. Case π(b) = a. Then the problem {∀[a]∀[b]X ≈ ∀[a]Y } has an mgu 〈∅, {Y := ∀[b]X}〉.
Hence, the pattern of PBCPs in this case is ` 〈∀[π(a)]∀[b]∀[a]X,∀[a]∀[π(a)]∀[b]X〉, for
which we have

` ∀[π(a)]∀[b]∀[a]X →=
Rcom
∀[π(a)]∀[a]∀[b]X ←=

Rcom
∀[a]∀[π(a)]∀[b]X

2. Case π(b) = b. Then the problem {∀[a]∀[b]X ≈ ∀[b]Y } has an mgu 〈∅, {Y := ∀[a](a b)·X}〉.
Hence, the pattern of PBCPs in this case is ` 〈∀[π(a)]∀[b]∀[a]X,∀[b]∀[π(a)]∀[a](a b)·X〉,
for which we have

` ∀[π(a)]∀[b]∀[a]X →=
Rcom
∀[π(a)]∀[a]∀[b]X

≈α ∀[π(a)]∀[b]∀[a](a b)·X ←=
Rcom
∀[b]∀[π(a)]∀[a](a b)·X

3. Case π(b) = c. Then the problem {∀[a]∀[b]X ≈ ∀[c]Y } has an mgu 〈{c#X}, {Y :=
∀[b](a c)·X}〉. Hence, the pattern of PBCPs in this case is c#X ` 〈∀[π(a)]∀[b]∀[a]X,
∀[c]∀[π(a)]∀[b](a c)·X〉, for which we have

c#X ` ∀[π(a)]∀[b]∀[a]X →=
Rcom
∀[π(a)]∀[a]∀[b]X

≈α ∀[π(a)]∀[c]∀[b](a c)·X ←=
Rcom
∀[c]∀[π(a)]∀[b](a c)·X

Hence by Theorem 32, Rcom is Church-Rosser modulo ≈α.

Now, let us revisit Example 12 in Subsection 3.1. One of the reasons why the resulting two
terms in (1-1) and (1-2) are not joinable modulo ≈α is that they cannot be reduced further as
freshness constraints including variables are not satisfied under the empty freshness context. If
we restrict, however, rewrite relations to those on ground terms, such situation can be avoided.

166

Critical Pair Analysis in Nominal Rewriting Suzuki, Kikuchi, Aoto and Toyama

For ground terms s and t, the relation ∆ ` s→〈R,π,p,σ〉 t is irrelevant to ∆ (cf. the remark
after Proposition 3). So we simply write s →〈R,π,p,σ〉 t etc. instead of ∆ ` s →〈R,π,p,σ〉 t etc.
A rewriting system R is ground Church-Rosser modulo ∼ if the relation →R on ground terms
satisfies (←R ∪ →R ∪ ∼)∗ ⊆ (→∗R ◦ ∼ ◦ ←∗R). The other properties in Definition 10 are
also defined on ground terms. In the next example, we assume that each relation is on ground
terms.

Example 34. Let Rpnfcom be the linear rewriting system in Example 12. Our aim is to prove
that Rpnfcom is ground Church-Rosser modulo ≈α. For this, define an additional symmetric re-
lation à by←COM∀ ∪→COM∀ and an equivalence relation ∼ by (à ∪ ≈α)∗. First we show that
the system Rpnf (= {(∀1), (∀2)}) is ground Church-Rosser modulo ∼, using [8, Corollary 2.6.10].

1. Rpnf is terminating w.r.t. ∼ ◦→Rpnf
◦ ∼. This is seen by defining a map h by h(a) = 1;

h([a]t) = h(t); h(and t) = h(t) × 2; h(f t) = h(t) + 1 for f 6= and; h(〈t1, . . . , tn〉) =
h(t1) + · · ·+ h(tn) + 1, and observing that if s (∼ ◦ →Rpnf

◦ ∼) t then h(s) > h(t).

2. Rpnf is locally confluent modulo ∼. This is shown using the critical pair lemma as follows.
Suppose t1 ←Rpnf

s→Rpnf
t2. Then, one of 1 and 2 in Lemma 30 holds. In the case of 2, we

have some Γ ` 〈u, v〉 ∈ BCP(Rpnf) such that ` Γπθ, ` t1 ≈α C[uπθ] and ` t2 ≈α C[vπθ].
If Γ ` 〈u, v〉 is not a PBCP, then the claim follows by the α-stability of Rpnf . Otherwise,
PBCPs are those as in Example 18 or their symmetric ones. Now, let us consider the first
PBCP ` 〈forall [a]and 〈X1, forall [a]Y2〉, forall [a]and 〈forall [a]X1, Y2〉〉 in Example 18 (the
second PBCP is joinable as in Example 12). Let s1, s2 be any ground terms and c be an
atom that does not occur in s1, s2. Then ` c#s1, c#s2 holds, so we have rewrite steps

forall [a]and 〈s1, forall [a]s2〉 →〈∀2,(a c)〉 forall [a]forall [c]and 〈s1, (a c)·s2〉
→〈COM∀,(b c)〉 forall [c]forall [a]and 〈s1, (a c)·s2〉
≈α forall [a]forall [c]and 〈(a c)·s1, s2〉
←〈∀1,(a c)〉 forall [a]and 〈forall [a]s1, s2〉

Thus we see C[uπθ] ↓∼ C[vπθ], and by Lemma 21, t1 ↓∼ t2.

3. Rpnf is locally coherent with à, i.e., if t1 (à ◦ →Rpnf
) t2 then t1 ↓∼ t2. This is shown again

using the critical pair lemma. Suppose t1 ←COM∀ s→Rpnf
t2. We proceed as in the previous

item, and consider PBCPs induced by overlaps of (COM∀) on (∀1) (or (∀2) symmetrically).
They arise from the unification problem {π(a)#Y1, forall [a]forall [b]X ≈ forall [π(a)]X1}.
In the following, we write down all PBCPs according to the permutation π (we abbreviate
forall [a]t as ∀[a]t).

(a) Case π(a) = a. Then the problem has an mgu 〈{a#Y1}, {X1 := ∀[b]X}〉. Hence, the
PBCP in this case is a#Y1 ` 〈and 〈∀[b]∀[a]X,Y1〉,∀[a]and 〈∀[b]X,Y1〉〉.

(b) Case π(a) = b. Then the problem has an mgu 〈{b#Y1}, {X1 := ∀[a](a b)·X}〉. Hence,
the PBCP in this case is b#Y1 ` 〈and 〈∀[b]∀[a]X,Y1〉,∀[b]and 〈∀[a](a b)·X,Y1〉〉.

(c) Case π(a) = c. Then the problem has an mgu 〈{c#Y1, c#X}, {X1 := ∀[b](a c)·X}〉.
Hence, the PBCP is c#Y1, c#X ` 〈and 〈∀[b]∀[a]X,Y1〉,∀[c]and 〈∀[b](a c)·X,Y1〉〉.

Then, by a similar argument to the last part of item 2, we obtain t1 ↓∼ t2 in each case.

From 1, 2 and 3, it follows by [8, Corollary 2.6.10] that Rpnf is ground Church-Rosser modulo ∼,
which means (←Rpnf

∪ →Rpnf
∪ à ∪ ≈α)∗ ⊆ (→∗Rpnf

◦ (à ∪ ≈α)
∗ ◦ ←∗Rpnf

). From this and

Church-Rosser modulo ≈α of Rcom (cf. Example 33), we obtain (←Rpnfcom
∪ →Rpnfcom

∪ ≈α)∗ ⊆
(→∗Rpnfcom

◦ ≈α ◦ ←∗Rpnfcom
), which means that Rpnfcom is ground Church-Rosser modulo ≈α.

167

Critical Pair Analysis in Nominal Rewriting Suzuki, Kikuchi, Aoto and Toyama

4 Conclusion

Using our notion of critical pairs, we have presented several confluence criteria as applications
of the critical pair lemmas. We have obtained some confluence results for concrete examples of
nominal rewriting systems, illustrating the process of checking joinability of critical pairs.

In future work, we are going to implement a procedure for checking joinability of critical
pairs for automated confluence proving. Such an effort is expected to be useful in developing
automated theorem proving techniques like Knuth-Bendix completion. Confluence criteria for
non-terminating left-linear systems with critical pairs are also to be investigated.

Acknowledgements We thank the anonymous referees for useful comments. This research
was supported by JSPS KAKENHI Grant Numbers 25330004, 25280025 and 15K00003.

References

[1] J. Cheney. Equivariant unification. J. of Automated Reasoning, 45:267–300, 2010.

[2] M. Fernández and M. J. Gabbay. Nominal rewriting. Inform. and Comput., 205:917–965, 2007.

[3] M. Fernández, M. J. Gabbay, and I. Mackie. Nominal rewriting systems. In Proc. of PPDP’04,
pages 108–119. ACM Press, 2004.

[4] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal
Aspects of Computing, 13:341–363, 2002.

[5] J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems: introduc-
tion and survey. Theoret. Comput. Sci., 121:279–308, 1993.

[6] R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Theoret. Comput.
Sci., 192:3–29, 1998.

[7] E. Ohlebusch. Church-Rosser theorems for abstract reduction modulo an equivalence relation. In
Proc. of RTA’98, LNCS 1379, pages 17–31. Springer-Verlag, 1998.

[8] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag, 2002.

[9] A. M. Pitts. Nominal logic, a first order theory of names and binding. Inform. and Comput.,
186:165–193, 2003.

[10] T. Suzuki, K. Kikuchi, T. Aoto, and Y. Toyama. Confluence of orthogonal nominal rewriting
systems revisited. In Proc. of RTA’15, LIPIcs 36, pages 301–317, 2015.

[11] T. Suzuki, K. Kikuchi, T. Aoto, and Y. Toyama. Basic properties on nominal rewriting. http:

//www.nue.riec.tohoku.ac.jp/user/kentaro/cr-nominal/proofs-basic.pdf.

[12] T. Suzuki, K. Kikuchi, T. Aoto, and Y. Toyama. Proof of critical pair lemma. http://www.nue.

riec.tohoku.ac.jp/user/kentaro/cr-nominal/proof-cplemma.pdf.

[13] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoret. Comput. Sci., 323:473–
497, 2004.

168

http://www.nue.riec.tohoku.ac.jp/user/kentaro/cr-nominal/proofs-basic.pdf
http://www.nue.riec.tohoku.ac.jp/user/kentaro/cr-nominal/proofs-basic.pdf
http://www.nue.riec.tohoku.ac.jp/user/kentaro/cr-nominal/proof-cplemma.pdf
http://www.nue.riec.tohoku.ac.jp/user/kentaro/cr-nominal/proof-cplemma.pdf

	Introduction
	Nominal rewriting
	Nominal terms
	Alpha-equivalence and nominal rewriting systems

	Confluence and critical pairs in nominal rewriting
	Problems on confluence in nominal rewriting
	Basic critical pairs
	Confluence criteria

	Conclusion

