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Abstract

We introduce a novel Public Key Encryption with Equality Test supporting Flexible Authoriza-
tion scheme offering User-Level, Ciphertext-Level, and User-Specific-Ciphertext-Level authoriza-
tions. Notably, our construction achieves security under the Decisional Diffie-Hellman assumption
with a tight reduction, whereas the existing works are either not tightly secure or rely heavily on
the random oracles. By relying solely on the standard DDH assumption, our scheme offers practical
implementation without specialized cryptographic structures.

1 Introduction
The fundamental importance of encryption [22] in safeguarding sensitive data within increasingly in-
terconnected digital environments cannot be overstated. As data proliferates across cloud platforms,
databases, and collaborative networks, the ability to perform meaningful operations on this encrypted
information without compromising its confidentiality becomes paramount. Public Key Encryption with
Equality Test (PKEET), which was first conceptualized in [25], emerges as a crucial cryptographic prim-
itive in addressing this challenge. Specifically, PKEET enables the verification of whether two indepen-
dently encrypted datasets contain the same underlying plaintext, a capability essential for applications
like efficient cloud data deduplication [12, 21, 27] to minimize storage overhead, privacy-preserving
database [26,29] querying to identify matching encrypted records, etc. Lots of PKEET [5,10,11,13,16]
have been proposed in literature since the work of [25]. However, the varied security and operational
requirements of these diverse applications necessitate a more flexible approach to controlling who can
perform these equality tests and under what circumstances, thereby highlighting the critical need for
adaptable authorization mechanisms within PKEET schemes. Therefore, the concept of PKEET sup-
porting flexible authorization (PKEET-FA, for short) has been proposed in [17].

In the context of cloud data deduplication, diverse needs necessitate different authorization strategies
for equality tests on encrypted data. For scenarios where a service provider aims for efficient dedupli-
cation within a trusted group, allowing any encrypted file of a user within that group to be compared
against all encrypted files of other users in the same group proves beneficial. This approach streamlines
storage and collaboration among team members. In [17], this case is named User-Level Authorization.
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Conversely, users might desire finer control, wanting only specific encrypted files to be considered for
deduplication. By associating a unique identifier with these particular encrypted files, equality tests are
restricted to files sharing the same identifier. This granular control over deduplication participation is
Ciphertext-Level Authorization in [17]. In highly specific collaborative settings, users might need to
limit comparisons even further, allowing a particular encrypted file of theirs to be tested only against
a designated specific encrypted file belonging to another specific user, catering to very targeted data
sharing. This highly restricted comparison is User-Specific-Ciphertext-Level Authorization in [17].
Lastly, in scenarios involving potentially public or community-driven content, a user might want their
specific encrypted file to be compared against all encrypted files uploaded by any other user on the plat-
form to identify potential duplicates across a wider user base. This broader comparison initiated from a
single ciphertext is Ciphertext-to-User-Level Authorization in [17].

1.1 Related Works

The first Public Key Encryption with Equality Test (PKEET) scheme was introduced by Ma et al. in
2014 [17]. As previously discussed, their work also proposed four distinct authorization models for
PKEET. The scheme presented in [17] is constructed over pairing groups and its security is proven
within the random oracle model. To address the performance limitations often associated with pairing-
based constructions, Lin et al. proposed a pairing-free PKEET scheme in 2021 [15]. However, it’s
worth noting that their scheme’s security is also proven under the random oracle model. On the other
hand, Nguyen et al. [20] and Li [14] give the ID-based variant of PKEET-FA, named IBEET-FA. While
the ID-based setting elegantly eliminates the certificate authority and its associated management over-
head, it inherently suffers from the key-escrow problem, where a central Private Key Generator (PKG)
possesses the ability to generate the private keys of all users. This fundamental issue restricts the appli-
cability of IBEET-FA primarily to smaller-scale deployments due to the potential for a single point of
failure. Furthermore, the schemes presented in [20] and [14] exhibit additional drawbacks compared to
other approaches. The construction in Nguyen et al. [20], while offering resistance to quantum attacks
due to its foundation in lattice cryptography, typically incurs a performance penalty due to the large pa-
rameter sizes inherent in lattice-based systems. As for Li’s work [14], it relies on a specialized algebraic
structure known as Trapdoor Discrete-Log (TDL) Groups, where the group generator holds a trapdoor
enabling the efficient solution of the discrete logarithm problem within the group. Unfortunately, TDL
groups currently lack practical and widely adopted implementations. A significant challenge in existing
PKEET-FA schemes lies in the security proofs, which are often established either under the random
oracle model or are non-tight. While the random oracle model is widely regarded as a useful heuristic
within the realm of provable security, it is crucial to acknowledge that it lacks a concrete realization in
practical systems. Furthermore, notable counterexamples [4, 18] have demonstrated that cryptographic
primitives proven secure in the random oracle model may not retain their security properties in real-
world deployments. Consequently, the standard model, which imposes no additional restrictions on the
adversary’s computational capabilities, is a more desirable framework for security proofs. Regarding
tightness, a tight security reduction ensures that the security level of the scheme is directly linked to the
hardness of its underlying computational assumption. This allows for the selection of smaller security
parameters, leading to improved performance compared to schemes with non-tight security proofs.

1.2 Contribution

After our survey, existing PKEET-FA schemes exhibit certain limitations, which serves as the primary
motivation for our work. In this manuscript, we propose a novel PKEET-FA scheme that offers the
following advantages:
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• Flexible Authorization Support: Our scheme natively supports three distinct authorization mod-
els: User-Level Authorization, Ciphertext-Level Authorization, and User-Specific-Ciphertext-
Level Authorization. This comprehensive support allows for a wider range of application sce-
narios compared to schemes supporting fewer authorization types.

• Provable Security in the Standard Model with Tight Reduction: The security of our proposed
scheme is rigorously proven under the Decisional Diffie-Hellman (DDH) assumption within the
standard model, eliminating the reliance on the heuristic random oracle model. Furthermore, to
achieve tight security, our security proof employs a technique inspired by [16], which strategically
embeds the instance of the DDH assumption into the public keys of all users, rather than a specific
one. This tight security reduction provides stronger security guarantees and potentially allows for
the use of smaller security parameters without compromising the security level.

2 Preliminaries

2.1 Definition for PKEET-FA
In this section, we give the definition of a PKEET scheme with flexible authorization. A PKEET scheme
consists of a tuple of (at least) six algorithms (Setup,KG,Enc,Dec,Aut,Test). Setup(1λ) algorithm
takes as input a security parameter λ ∈ N, and outputs a public parameter pp, which will be an implicit
input to all the following algorithms. The algorithm KG(pp) is performed by each user to generate
her/his own public/private key pair (PK,SK). Enc(PK,M) takes inputs a public key PK and a message
M, and outputs a ciphertext CT. Dec(PK,SK,M) then takes as inputs (PK,SK) and a ciphertext to
output a message M or an error symbol⊥. As for the authorization algorithm Aut and the test algorithm
Test, we adopt the definition of flexible authorization given in [17]. Let Ui be a user indexing by
a positive integer i. There are four types of authorizations, each type has their own Aut and Test
algorithms:

• User-Level Authorization: All the ciphertext of a specific user can be compared to all the cipher-
texts of any other users. In this type of authorization,

– Aut1(SKi) generates a token tok
(1)
i upon inputting the secret key of a user Ui;

– Test1(CTi, tok
(1)
i ,CTj , tok

(1)
j ) takes Ui’s ciphertex CTi and her token tok

(1)
i , and Uj’s ci-

phertext CTj and her token tok
(1)
j , outputs 1 if CTi and CTj is the encryption of the same

message; output 0 otherwise.

• Ciphertext-Level Authorization: In this type of authorization, A token is bound with a specific
ciphertext, and the test algorithm is then used to check whether two specific ciphertexts encrypts
the same message. Formally,

– Aut2(SKi,CTi) takes Ui’s private key SKi and a Ui’s ciphertext CTi, outputs tok(2)CTi
relates

to CTi;
– Test2(CTi, tok

(2)
CTi

,CTj , tok
(2)
CTj

) outputs 1 if CTi and CTj is the encryption of the same
message, and output 0 otherwise.

• User-Specific-Ciphertext-Level Authorization: A specific ciphertext of a user Ui can only be
compared with a specific ciphertext of a specific user Uj . In this case,

– Aut3(SKi,CTi,PKj ,CTj) takes as inputs Ui’s private key SKi and a ciphertext CTi, and
Uj’s public key PKi and a ciphertext CTj , outputs a token tok

(3)
CTi,CTj

;

124



Tightly Secure PKEET-FA in the Standard Model Y.-F. Tseng et al.

– Test3(CTi, tok
(3)
CTi,CTj

,CTj , tok
(3)
CTj ,CTi

) outputs 1 if CTi and CTj is the encryption of the
same message, and output 0 otherwise.

• Ciphertext-to-User-Level Authorization: A specific ciphertext CTi of Ui can be compared with
all the ciphertext of any other user. As claimed in [17], such setting can be achieved by simply
combining User-Level Authorization and Ciphertext-Level Authorization. For instance, If Ui

wishes to authorize the cloud to check whether a ciphertext CTi encrypts a message identical
to any ciphertext of user Uj , then we require Ui runs tok

(2)
CTi
← Aut2(SKi,CTi), and Uj runs

tok
(1)
j ← Aut1(SKj). Then Test4 is the combination of Test1 and Test2.

2.2 Security Models for PKEET-FA
In PKEET-FA, two types of adversaries are considered:

• Type-I Adversary AI : This type of adversary is allowed to obtained tokens for equality test, and
its goal is to recover the encrypted message from a given challenge ciphertext.

• Type-II Adversary AII : This type of adversary is an analogue to the CPA/CCA adversary of
public-key encryption, where an adversary given a challenge ciphertext, which is the encryption
of one of the two massage chosen by the adversary, is asked to determine which of the two mes-
sages is encrypted. A natural restriction then rises from the functionality of PKEET, that is AII

is not allow query the token of the challenge ciphertext.

In the following we show two security games defining the security against Type-I and Type-II ad-
versaries respectively. In both the security games there are two roles in this game, a Type-I adversary
AI and a challenger C. In order to reduce the literal repetition, we first describe several oracle that the
adversary would query in the security games. A list Luser is maintained by C to record the public/private
key of users.

• Ocreate(i): Upon inputting an index i ∈ N, C runs (PKi,SKi) ← KG(pp) and record
(PKi,SKi, tagi = honest) in Luser.

• Ocorr(i): Upon inputting an index i, the oracle returns SKi and updates the record
(PKi,SKi, tagi = corrupt) in Luser.

• OAut: The input of this oracle contains an index i = 1, 2, 3, which indicates the authorization
types, and a string inpi, which depends on the authorization type. Formally, for i = 1, 2, 3,

– inp1 = i and the oracle returns tok(1)i ← Aut1(SKi);

– inp2 = (i,CTi) and the oracle returns tok(2)CTi
← Aut2(SKi,CTi);

– inp3 = (i,CTi, j,CTj) and the oracle returns tok(3)CTi,CTj
← Aut3(SKi,CTi,PKj ,CTj).

• ODec(i,CTi): Upon inputting an index i and a ciphertext CTi, the oracle outputs the result of
Dec(SKi,CTi).

We then give the following two security games.

OW-CCA Game: This game consists of the following phases.
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1. Setup: The challenger C runs pp ← Setup(1λ), and sends pp to the adversary AI . A list Luser is
maintained by C.

2. Phase 1: In this phase, the adversary is allowed to query the oracles Ocreate,Ocorr,OAut,ODec.

3. Challenge: AI submits an index i∗ with restriction that tagi∗ = honest in Luser. C then chooses
a random message M∗ and returns CT∗ ← Enc(PKi∗ ,M

∗).

4. Phase 2: The adversary is allowed to query the oracles identical to those in Phase 1, except for
Ocorr(i

∗) and ODec(i
∗,CT∗).

5. Guess: AI outputs a message M′, and wins the game if M′ = M∗.

The advantage for AI in winning the game is defined as

AdvOW-CCA
AI

(λ) = Pr[M′ = M∗].

Definition 1 (The One-wayness against Chosen-Ciphertext Attacks). We say that a PKEET-FA scheme
satisfies the one-wayness against chosen-ciphertext attacks (OW-CCA) if for all PPT Type-I adversary
AI , AdvOW-CCA

AI
(λ) is negligible.

IND-CCA Game: This game consists of the following phases.

1. Setup: The challenger C runs pp← Setup(1λ), and sends pp to the adversary AII . A list Luser is
maintained by C.

2. Phase 1: In this phase, the adversary is allowed to query the oracles Ocreate,Ocorr,OAut,ODec.

3. Challenge: AII submits an index i∗ and two distinct messages M0,M1, with restriction that

Ocorr(i
∗) and OAut(1, (i

∗)) have not been queried. C then selects b $←− {0, 1} and returns CT∗ ←
Enc(PKi∗ ,Mb).

4. Phase 2: The adversary is allowed to query the oracles identical to those in Phase 1, except for
Ocorr(i

∗), ODec(i
∗,CT∗), OAut(1, (i

∗)), OAut(2, (i
∗,CT∗)), and OAut(3, (i

∗,CT∗, ·, ·)).

5. Guess: AII outputs a bit b′, and wins the game if b′ = b.

The advantage for AII in winning the game is defined as

AdvIND-CCA
AII

(λ) = Pr[b′ = b]− 1

2
.

Definition 2 (The Indistinguishability against Chosen-Ciphertext Attacks). We say that a PKEET-FA
scheme satisfies the indistinguishability against chosen-ciphertext attacks (IND-CCA) if for all PPT
Type-II adversary AII , AdvIND-CCA

AII
(λ) is negligible.

3 Our Construction
In this section, we show the proposed PKEET-FA scheme as follows. Our scheme is constructed based
on the PKEET scheme shown in [16], which achieves only CPA security. As we claimed in the previous
papers, ciphertext-to-user-level authorization can be obtained from others, and hence we omit it here
due to the length limitation.

Setup(1λ).
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1. Generate the description for a multiplicative group (G, q, g), where |G| = q and g generates G.

2. Choose α
$←− Zq and compute h = gα.

3. Select a cryptographic hash function H : {0, 1}∗ → G.

4. Choose a strongly unforgeable OTS Σ = (Σ.KG,Σ.Sign,Σ.Vrf)

5. Output pp = (G, q, g, h,H,Σ).

KG(pp).

1. Choose x, y, u, v
$←− Zq .

2. Compute K = gxhy = gx+αy,K ′ = guhv = gu+αv.

3. Output PK = (K,K ′) and SK = (x, y, u, v).

Enc(PK,M).

1. Run (vk, sk)← Σ.KG(1λ).

2. Choose randomly s
$←− Zq .

3. Compute E1 = gs, E2 = hs, E3 = Ks · (M∥vk), E4 = (K ′)s · (H(M)∥vk), E5 =
Σ.Sign(sk, (E1, . . . , E4)).

4. Output CT = (E1, E2, E3, E4, E5).

Dec(SK,CT).

1. Compute (M′∥R′) = E3/(E
x
1E

y
2 ),

(h′∥R′′) = E4/(E
u
1E

v
2 ).

2. Output M′ if (h′ = H(M′)) ∧ (R′ = R′′) ∧ (Σ.Vrf(vk, E5, (E1, . . . , E4)) = 1); output ⊥
otherwise.

User-Level Authorization:
Aut1(SKi). Parse SKi = (xi, yi, ui, vi) and output tok(1)i = (ui, vi).

Test1(CTi, tok
(1)
i ,CTj , tok

(1)
j ).

1. Parse tok
(1)
i = (ui, vi), tok

(1)
j = (uj , vj).

2. Parse CTi = (Ei,1, Ei,2, Ei,3, Ei,4, Ei,5), CTj = (Ej,1, Ej,2, Ej,3, Ej,4, Ej,5).

3. Compute (hi∥Ri) = Ei,4/(E
ui
i,1E

vi
i,2), (hj∥Rj) = Ej,4/(E

uj

j,1E
vj
j,2).

4. Output 1 if hi = hj ; output 0 otherwise.

Ciphertext-Level Authorization:
Aut2(SKi,CTi). Parse CTi = (Ei,1, Ei,2, Ei,3, Ei,4, Ei,5),SKi = (xi, yi, ui, vi), and output tok(2)CTi

=
Eui

i,1E
vi
i,2.

Test2(CTi, tok
(2)
CTi

,CTj , tok
(2)
CTj

).

1. Parse CTi = (Ei,1, Ei,2, Ei,3, Ei,4, Ei,5), CTj = (Ej,1, Ej,2, Ej,3, Ej,4, Ej,5).

2. Compute (hi∥Ri) = Ei,4/tok
(2)
CTi

, (hj∥Rj) = Ej,4/tok
(2)
CTj

.

3. Output 1 if hi = hj ; output 0 otherwise.
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4 Security Analysis
Due to the page limitation, we only give the intuition of our security proof in this section.

Theorem 1. The proposed scheme is OW-CCA secure against Type-I adversary if the DDH assumption
holds for G, H is one-way, and Σ is strongly unforgeable.

Proof. This theorem can be proven via a sequence of games as follows.
Let CT∗ = (E∗

1 , E
∗
2 , E

∗
3 , E

∗
4 , E

∗
5 ) be the challenge ciphertext send to the adversary AI .

• Game 0: This game is identical to the OW-CCA game. That is, the challenger C generates all
the parameters following the algorithms shown in Section 3. Let CT∗ = (E∗

1 , E
∗
2 , E

∗
3 , E

∗
4 , E

∗
5 )

where E∗
1 = gs, E∗

2 = hs, E∗
3 = Ks · (M∗∥vk∗), E4 = (K ′)s · (H(M∗)∥vk∗), E∗

5 =
Σ.Sign(sk∗, (E∗

1 , . . . , E
∗
4 )).

• Game 1: This game is identical to Game 0, except for the way to answer ODec query. Now the
challenger answers the query as follows.

1. Parse CT = (E1, E2, E3, E4, E5).

2. Search PKi∗ = (xi∗ , yi∗ , ui∗ , vi∗ , zi∗) from Luser.

3. Recover (M′∥R′) and (h′∥R′′) as the same way to Dec algorithm shown in Section 3.

4. Output ⊥ if R′ ̸= R′′ or h′ ̸= H(M′).

5. Output ⊥ if (E1, E2, E3, E4) ̸= (E∗
1 , E

∗
2 , E

∗
3 , E

∗
4 ), R

′ = vk∗,
and Σ.Vrf(R′, E5, (E1, E2, E3, E4)) = 1.

6. Otherwise, output M′.

• Game 2: This game is identical to Game 1, except that, E∗
2 ← gs̃, E∗

3 ← gxi∗s+yi∗ s̃ ·
(M∗∥vk∗), E∗

4 ← gxi∗s+yi∗ s̃ · (H1(M
∗)∥vk∗), for some s̃

$←− Zq .

• Game 3: This game is identical to Game 2, except that, E∗
3 ← gxi∗s+yi∗ s̃ · (M̃∥vk∗) for a uni-

formly chosen message M̃.

It is not hard to see that, in Game 3, the messages used in E∗
3 and E∗

4 are independent of each others,
and hence we can reduce the one-wayness of H to breaking Game 3. That is, an adversary wins in
Game 3 can be transformed into an algorithm breaking the one-wayness of H . What remains is to
show the indistinguishability between each pair of adjacent games. Let Evi be the event that AI wins
in Game i for i = 0, 1, 2, 3. Observing that, in Game 1 the decryption oracle outputs ⊥ when there
are two one-time signatures with respect to the same verification key vk∗, which obviously violates the
strong unforgrability of Σ. Thus, according to the Difference lemma shown in [24], we have |Pr[Ev0]−
Pr[Ev1]| ≤ AdvSUF

C01
(λ). Besides, as (g,E∗

1 = gs, h = gα, E∗
2 = hs) si a DDH tuple, Game 1 and 2 are

indistinguishable due to the DDH assumption in G. As for the indistinguishability between Game 2 and
3, we give the following lemma.

Lemma 1. |Pr[Ev2]− Pr[Ev3]| ≤ 1
q

Proof. This lemma can be proven by showing that E∗
3 in Game 2 is exactly a one-time pad. Given CT∗

and PKi∗ , one can observe that the exponent of the ciphertext component E∗
3 and public key component

Ki∗ satisfy the following equation(
xi∗ + yi∗ · α

xi∗ · s+ yi∗ · s̃

)
=

(
1 α
s s̃

)(
xi∗

yi∗

)
.
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Since xi∗ , yi∗ are uniformly chosen at random from Zq , we have that (xi∗ + yi∗ · α, xi∗ · s + yi∗ · s̃)

is indistinguishable from uniformly random element in Z2
q , if

(
1 α
s s̃

)
is invertible. This is equivalent

to the statement s̃ ̸= αs (mod q). In other word, Game 2 and Game 3 are indistinguishable from AI ’s
view except that s̃ = αs (mod q), which holds only with probability 1

q .

Finally, we conclude the proof as follows.

AdvOW-CCA
AI

(λ) ≤ AdvSUF
C01

(λ) + AdvDDH
C12

(λ) + 1/q + AdvOW
C3

(λ).

Theorem 2. The proposed scheme is IND-CCA secure against Type-II if the DDH assumption holds for
G and Σ is strongly unforgeable.

Proof. The proof of Theorem 2 is very similar to that of Theorem 1, which can be proven via the fol-
lowing game sequence.

• Game 0: This game is identical to the IND-CCA game.

• Game 1: This game is identical to Game 0, except the way to answer ODec query. The challenger
answers ODec in the same way shown in the proof of Theorem 1. We omit the detail due to the
page limitation.

• Game 2: This game is identical to Game 1, except that, E∗
2 ← gs̃, E∗

3 ← gxi∗s+yi∗ s̃ ·
(Mb∥vk∗), E∗

4 ← gxi∗s+yi∗ s̃ · (H1(Mb)∥vk∗), for some s̃
$←− Zq .

• Game 3: This game is identical to Game 2, except that, E∗
3 ← gxi∗s+yi∗ s̃ · (M̃∥vk∗), E∗

4 ←
gui∗s+vi∗ s̃ · (H(M̃)∥vk∗) for a uniformly chosen message M̃.

Since in Game 3, CT∗ is generated independently of the bit b, AII only makes a right guess on b with
probability 1

2 . The proofs for the indistinguishability between each pair of adjacent games are similar to
that shown in the proof of Theorem 1, we directly give the following conclusion and omit the proof due
to the page limitation.

AdvIND-CCA
AII

(λ) ≤ AdvSUF
C01

(λ) + AdvDDH
C12

(λ) +
1

q
.

5 Comparison
In this section, we demonstrate the comparison between our work and others supporting flexible au-
thorization [14, 15, 17, 20]. First, we show the performance comparison in Table 1, where shows the
comparison in terms of |CT|, |SK|, and the computation cost of Enc,Dec,Test1,Test2 algorithms. We
further convert each values in terms of numbers of bytes and clock cycles, in order to give a compre-
hensible result. For the hash functions in each scheme, we choose SHA3-256 [7], and hence ℓH s set
to be 32 bytes. Besides, we choose hash-based signature SPHINCS+ [3, 6] as the candidate for OTS.
According to [6, 9], ℓOTS = 7856 bytes and TSign, TVrf are 112937, 13117 clock cycles for 128-bit se-
curity, respectively. For the pairing function, we choose Tate pairing over MNT curves with 80-bit
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security. As shown in the results of [2,8], we have |G| = |Zq| ≈ 37.25 bytes, and the execution time of
a pairing is 13.5 times to that of a scalar in G under the implementation environment with Core-i7 3.4
GHz processor and 16GB RAM, i.e., TP ≈ 13.5TS . As for the scalar operation, a recent research [28]
shows that, such an operation in GF(2k) requires 4k + 14 clock cycles. Besides, according to [19, 23],
a modular multiplication for k-bit numbers is about 3k clock cycles. Therefore, TS needs 1206 clock
cycles, and Tmul needs 894 clock cycles. As for the lattice-based construction, we refer to the param-
eter set shown in [1], which is a LWE-based KEM submitted to NIST PQC competition. In [1], q and
n are set to 4096 bytes and 640 for 128-bit security. Note that, as the large value of q in [20], Tmul

here needs 98304 clock cycles. Finally, each parameter in [20] depends on |M|, and thus we need to
decide the message size of their work. Since the one-wayness of a PKEET is highly related to the size
of message space, we set |M| = 80 bits to satisfy 80-bit security. As shown in Table 1, the ciphertext
size |CT| and Enc/Dec performance may not own advantage compared to [14, 15, 17], due to the usage
of OTS. Nevertheless, the performance of Test1 and Test2 are comparable to others. We then give the
property comparison to others in Table 2. First, we should explain some abbreviations in the table. We
use “ROM” and “STD” to denote “random oracle model” and “standard model”, respectively. By “CDH
groups” and “DDH groups” we mean “the groups where the CDH/DDH assumption holds”. The notion
“TDL group” means a group where the group builder holds a trapdoor to solve the discrete-log problem.
All the five scheme support flexible authorization. Since [14, 20] are constructed in ID-based setting,
and thus their schemes suffer from the key escrow problem, which may limit the scenario for use due to
the single point of failure. Besides, as TDL groups have no practical implementation now, the practical
value of [14] is limited. Besides, only ours and [20] are proven secure in the standard model, which is
a more desirable result in provable security. In a word, though our scheme may not gain advantage in
performance against the others, our work achieves better security guarantee.

[17] [20] [15] [14] Ours

|CT| 2|G|+ 2ℓH
≈ 106.5

(2|M|+ 6m+m2)|Zq |+ ℓH

≈ 1, 694, 105, 632
2|G|+ 2ℓH
≈ 106.5

|G|+ 2ℓH
≈ 69.25

4|G|+ ℓOTS

≈ 8, 005

|SK| 3|Zq|
≈ 111.75

(8m2)|Zq|
≈ 2, 097, 152, 00

2|Zq|
≈ 74.5

2|Zq|
≈ 74.5

4|Zq|
≈ 149

Enc
6TS

≈ 4, 824
(2n|M|+ 3mn+ 4m2)Tmul

≈ 291, 923, 558, 400
4TS

≈ 4, 824
3TS

≈ 3, 618
4TS + TSign

≈ 117, 761

Dec
5TS

≈ 6, 030
(2m|M|)Tmul

≈ 10, 066, 329, 600
3TS

≈ 3, 618
2TS

≈ 24, 12
6TS + TVrf

≈ 20, 353

Test1
2TS + 2TP

≈ 34, 974
(2m|M|)Tmul

≈ 10, 066, 329, 600
2TS + 15Tmul

≈ 15, 822
2TS + 2Tmul

≈ 4, 200
6TS

≈ 7, 236

Test2
2TP

≈ 32, 562
(2m|M|)Tmul

≈ 10, 066, 329, 600
15Tmul

≈ 13, 410
2Tmul

≈ 1, 788
2TS

≈ 2, 412

Table 1: Performance Comparison
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[17] [20] [15] [14] Ours
Flexible

Aut. Y Y Y Y Y

Key-Escrow
Freeness Y N Y N Y

Mathematical
Structure

Pairing
Groups Lattices CDH

Groups
TDL

Groups
DDH

Groups
OW ROM STD ROM ROM STD
IND ROM STD ROM ROM STD

Table 2: Property Comparison
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