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Abstract 
Residue-residue contact prediction in a protein is one of the most used and informative middle steps to 
ultimately predict the complete 3D structure of a protein. While most previous studies use methods 
relying on statistical analysis of sequential properties to infer these contacts, some recent methods based 
on natural language processing models have gained success in accomplishing the task. However, most 
of these methods and models are built for globular proteins and not intended for specific types of 
proteins such as Transmembrane Proteins, which actually comprise about 30% of the proteome in most 
organisms and play important roles in cellular processes. In this study, we propose a Transmembrane 
Protein Helices Contacts predictor (TMHC-MSA) that utilizes features extracted by a protein language 
model called MSA Transformer and incorporates neighborhood information to enhance the quality of 
the produced contact map. Our proposed model shows that it can successfully outperform the state-of-
the-art method by an average of 7% in terms of L precision and even surpass the MSA Transformer by 
an average of 2.5% on the same metric. Furthermore, we demonstrate that the more accurate contact 
map produced by our model can be used to generate a more accurate 3D structure. 

1 Introduction 
Membrane proteins constitute approximately a third of all proteins in the cell[1], and most of them 

are Transmembrane proteins. Transmembrane (TM) proteins are an integral type that spans the entire 
cell membrane and play a significant role in many biological processes such as facilitating the transport 
of molecules, ions, and information between a cell and its external environment[2]. In addition, they 
are involved in critical functions such as signal transduction, cell adhesion, and the maintenance of cell 
structure and integrity[3]. Alpha-helical transmembrane proteins make up a significant portion of the 
total integral membrane protein content. It’s estimated that they account for approximately 20-30% of 
all protein-coding genes in humans[4]. Despite their abundance and importance, only a very small 
portion of them is determined experimentally due to difficulty in obtaining well-ordered crystals. Such 
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difficulty might hinder the determination of their structures[5]. The need for developing computational 
tools to determine their structure, therefore, becomes essential. However, compared to globular 
proteins, computationally determining TM proteins’ structure can be harder due to the limited 
availability of high-resolution X-ray structures to be used as templates for structural modeling and 
prediction. Inter-helical residue contact is one of the most successful computational approaches to 
reduce the TM protein fold search space and generate an acceptable 3D structure[6]. In this work, we 
use scores extracted from an unsupervised pre-trained language model, MSA Transformer[7], and 
incorporate information from the neighborhood of a residue pair to predict TM protein's inter-helical 
residue contact. To the best of our knowledge, this is the first time that scores extracted from a pre-
trained language model are used to predict TM protein's inter helical residue contacts and, subsequently, 
their 3D structure. Results show that our model can produce a more accurate contact map than the 
current models and outperforms the state-of-the-art inter-helical TM protein residue contacts predictor. 
In addition, we show that the resulting contact map can be further used to generate a better 3D structure 
for helical TM proteins, which can help better understand their structure and functions.  

2 Materials and Methods 
2.1 Dataset 
 
 In this study, we adopt the dataset used in[8], which consists of 222 α-helical TM proteins extracted 
from the Protein Data Bank (PDB) with a resolution better than 3.5 Å and transmembrane helices ranging 
from 2 to 17 helices.  Some proteins used in this dataset have since become obsolete in the new version 
of PDB (PDB 2023), and hence are excluded from this study. The total number of remaining proteins is 
187 α-helical TM proteins divided into two sets TRAIN set (136 proteins) and TEST set (51 proteins).  

Protein Contact Map is a 2D square matrix representation of a protein where each position in the 
matrix 𝑖, 𝑗  can take a binary value of zero (no contact) and one (contact) [9]. It is considered an 
intermediate step in order to reduce the protein’s folding search space and ultimately predict its 3D 
structure[6]. In this study, we follow the contact definition in [8] where a pair of residues are in contact 
if the distance between their heavy atoms is less than 5.5 Å and the sequence separation between these 
pair is not less than 5 positions. The contact map thus constructed from the PDB structures will be used 
as ground truth in training and evaluating the test results. 

2.2 Multiple Sequence Alignment 
 For each single protein sequence in the dataset, Multiple Sequence Alignment (MSA) is extracted 
using the iterative searching tool Hhblits[10] against Uniprot20 E-value cutoff 0.001. While most studies 
aim to generate the largest possible number of multiple sequence alignments for their pipeline, which 
can be computationally expensive, only the top 128 hit MSAs are used in our pipeline due to resource 
limitations. Even with this limitation, as shown in the results section, our method outperforms both 
DeepHelicon and MSA Transformer. Also, the advantage of using a small number of MSAs could reduce 
the computational time considerably, especially for large-size proteins. 

2.3 Extracting coevolutionary features 
The fundamental concept of protein Co-evolutionary features is the utilization of statistical 

techniques capable of discerning direct connections between pairs of columns within a multiple 
sequence alignment and differentiating them from those pairs merely correlated. Co-evolutionary 
features have proved to be discriminative in predicting whether or not a pair of residues in a protein are 
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in contact. For example, according to[11], the Co-evolutionary feature is ranked first in predicting 
protein contacts compared to other less important features, such as amino acid composition and 
evolutionary conservation. Many statistical and machine learning approaches have been applied to 
measure the co-evolutionary score between a pair of residues. For example, Evfold[12] uses a global 
maximum entropy model to calculate the residue coupling score while PSICOV[13] uses sparse 
covariance matrix inversion.  CCMpred[14], plmDCA[15], and GREMLIN[16] learn the direct 
couplings as parameters of a Markov random field by maximizing its pseudo-likelihood. SVMcon [17] 
and TSVMES [18] use inductive and transductive support vector machines, subsequently, to predict 
protein contact map. However, recently, there has been evidence that using large language models and 
approaches, inherited from the natural language processing field, can assist in solving various 
bioinformatics-related problems. For example, in [19], [20], authors show that biological structure and 
function emerge from using a deep contextual language model with unsupervised learning on a large 
database of protein sequences. ESM[20] shows that some proteins’ atomic-level structure started to 
appear by scaling their model up to 15 billion parameters. The MSA Transformer[7] applies an 
unsupervised language model with an axial attention mechanism over the rows and columns of the 
multiple sequence alignment and shows that the extracted features can be useful in some protein-related 
tasks. 

2.4 MSA Transformer  
 

The MSA Transformer is a large unsupervised pre-trained language model that has over 100M 
parameters. The model was trained on a large database containing 26 million multiple-sequence 
alignments[7]. It takes multiple sequence alignment as an input, uses axial attention across the rows 
and columns of the MSA. 

∑ !!"!"
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%
)*+        (1) 

where Q and K are the query and key metrices subsequently and 𝜆(𝑀, 𝑑) is a normalization function. It 
applies the unsupervised masked language modeling as an object for the training. 

ℒ%,%(𝑥; 𝜃) = 	∑ log	 𝑝(𝑥)-|𝒙6 ; 𝜃)(),-)∈)/01    (2) 
 

Where 𝑥 is the input MSA, 𝒙6 is the masked MSA, and 𝜃 represents the model parameters or weights that 
are being optimized during training. The model has proven its success in surpassing Potts model which 
can be used to infer the direct coupling analysis (co-evolutionary score) between two amino acid residues 
in a protein. MSA Transformer outputs an L*L scoring matrix, where L is the length of the protein. Every 
position in the matrix contains a score between 0 and 1. This value can be used to infer the coupling 
strength between residues i, j in the protein. 

2.5 Extracting MSA transformer’s Scores and TM protein’s inter-helical 
residues  

 First, we extract the residues’ coupling score generated by the MSA Transformer for each sequence 
in the dataset (TRAIN and TEST). The input to the MSA transformer model is a  multiple sequence 
alignment of a protein and the output is a scoring matrix 𝑀 =𝑅,∗,. However, since MSA Transformer 
produces a score for any residue pair in a protein sequence, we are only interested in predicting contacts 
between residues located in the transmembrane domain. 

 Many tools have been proposed to annotate each residue in a protein’s sequence as being inside or 
outside the membrane. While previous studies rely on TMHMM[4] to determine the inter-helical 
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residues of each TM protein, DeepTMHMM[21] has been proven to be more accurate and thus used in 
this study. We use the online version of DeepTMHMM (available at: 
https://dtu.biolib.com/DeepTMHMM ) to annotate each residue as I (located inside the membrane) or O 
(located outside) 

After the annotation, for each coupling’s scoring matrix 𝑀, we create a binary matrix 𝑁	of the 
same dimension as 𝑀 where each position takes a value of 1(if the residue is located in the 
transmembrane region) or 0 (if not). Then, the Hadamard product 𝑀	 ∘ 𝑁 is applied to extract the 
transmembrane residues’ coupling scores of each TM protein in the dataset. 

 
Figure 1. An overview of the TMHC-MSAT model. First, (1) the model extracts the coupling scores using 

the MSA transformer model. Then, (2) it uses Deep TMHMM to determine the transmembrane residues. 
The Hadamard product is applied to the coupling scores matrix and the transmembrane residues matrix to 
produce the coupling scores matrix of Transmembrane residues. Subsequently, a 4*4 window and a moving 
window of size 3 are applied to the output matrix resulting in a 75-feature vector per residue pair. A feed-
forward neural network is then used to the predict contact probability of the residue pair. The resulting 
contact map can be used alongside the 2D structure produced by a model like PSI Pred (3) as an input to 
the Confold2 model to generate the predicted 3D structure of the target protein. 

2.6 Classifier and computational pipeline 
After extracting the TM protein’s inter-helical coupling scores for each residue pair, we use a window 

of size 4 ∗ 4 to take into consideration the neighboring residues when predicting the contact between i, j 
residues. Incorporating information about residue neighbors can help in reducing false-positive 
predictions since true contacts often exhibit a pattern of correlated mutations that is consistent across 
their neighborhood, making them more reliable predictions[22]. In our pipeline, we apply the same 
window used in[8].  Specifically, for a residue pair at position (i, j) located in different helices, the 
following residues are considered =i + 	x, j	 + 	yB, =i	 + 	x, j − yB, =i − x, j − 	y	B	𝑎𝑛𝑑	=i − x, j	 +
	yB	𝑤ℎ𝑒𝑟𝑒	(x, y) ∈ {(0, 0), (0, 1), (0, 3), =0, 4B, =1, 0B, =3, 0B, =3, 4B, =4, 0B, (4, 3), (4, 4)} . This results 
in a 25 features vector per residue pair. In addition, to capture more information, a moving window of 
size 3 over residue i is used (𝑖 − 1, 𝑗), (𝑖, 𝑗)	𝑎𝑛𝑑	(𝑖 + 1, 𝑗), which results in a vector of size 75 per residue 
pairs. We found experimentally that increasing the moving window beyond 3 or using an additional 

Accurate Prediction of Inter-Helical Residue Contacts in Transmembrane ... B. Almalki and L. Liao

4

https://dtu.biolib.com/DeepTMHMM


moving window over j has a very minor impact on the performance and hence windows of size higher 
than 3 are not used here.  

The aforementioned features are then used to train a fully connected feedforward neural network 
classifier in order to calculate the contact probability of any residue pairs in the TM protein’s inter-helical 
domain. The network consists of an input layer, an output layer and six dense hidden layers. Relu 
activation is used in all layers except the output layer where sigmoid is being used.  The total number of 
trainable parameters is 13807 parameters with 10 epochs. The batch size is 250 and Adam optimization 
is used as an optimizer. The input to the model is a vector of length 75 per residue-pair and the output is 
a value between 0 and 1 representing the contact probability between residue i and j.  

The binary cross entropy loss is used to train our model.  

𝐵𝑖𝑛𝑎𝑟𝑦	𝐶𝑟𝑜𝑠𝑠	𝐸𝑛𝑡𝑟𝑜𝑝𝑦	𝐿𝑜𝑠𝑠 = −
1
𝑁X𝑦- 	 ∙ log=𝑝(𝑦-)B + (1 − 𝑦-) ∙ log(1 − 𝑝(𝑦-))

3

-*+

						(3) 

A depiction of the pipeline of our method is shown in Figure 1. 

3 Results and Discussions 
3.1 TMHC-MSAT can produce a more accurate contact map. 

To measure the performance of our model in predicting the contact maps, we use the L/n precision 
score, which is a well-known metric used in the proteins’ residues contact prediction field. To calculate 
the L/n score, we first rank the predicted contacts descending by probability and look at the first L/n 
contacts, where L refers to the length of the sequence. Then the top n contact probabilities are predicted 
as 1 (contact) and others as 0 (none-contact). In this study, we use L, L/2, L/5, and L/10 to measure the 
accuracy of our model and compare it with other methods. The results show that our model outperforms 
other state-of-art models in Transmembrane protein contact prediction in almost all L/n average 
precision, recall, and F1 score metrics and can deliver a more accurate contact map. Table.1 shows a 
comparison between TMHC-MSAT versus DeepHelicon and MSA Transformer models. 

 
 

 
Model L/n score Precision Recall F1  

 
DeepHelicon  

L 
L/2 
L/5 
L/10 

0.6135 
0.7475 
0.8364 
0.8754 

0.4618 
0.2865 
0.1329 
0.0722 

0.5087 
0.4012
0.2243 
0.1315 

 

 

 
MSA Transformer 

L 
L/2 
L/5 
L/10 

0.6586 
0.7849 
0.8613 
0.8992 

 

0.5073 
0.3098
0.1397 
0.0758 

0.5526 
0.4296
0.2351 
0.1377 

 

	
TMHC-MSAT 

L 
L/2 
L/5 
L/10 

0.6830 
0.8127 
0.8915 
0.9076 

0.5225 
0.3203
0.1454 
0.0753 

0.5713 
0.4442
0.2442 
0.1371 

 

Table 1: Contact Map prediction accuracy of the MHC-MSAT Vs. DeepHelicon and MSA 
Transformer models. These results represent the average performance across all protein sequences in 

the test set.  
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From Table.1 it is clear that our method TMHC-MSAT surpasses all other models including the 

state of art in the field DeepHelicon and even the MSA Transformer itself. In terms of L precision, 
TMHC-MSAT outperforms DeepHelicon by 6 to 7% and MSA Transformer by 2.5 % on average. In 
the L/10 score, THMC-MSAT lacks just a few fractions of a point behind the MSA Transformer in 
terms of recall and F1 score. Note that the results shown in table.1 are averaged over all the sequences 
in the test set, making the usual relationship between higher precision leading to higher recall 
inapplicable here. Regarding the number of features, DeepHelicon uses a total of 728 features vector 
per residue pair, which can result in a large feature space and consequently slow training time. On the 
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other side, TMHC-MSAT uses only 75 features which makes it considerably faster than DeepHelicon 
and other large models in the field. To investigate the performance of TMHC-MSAT in the residue pair 
contact prediction task, we compare our model with DeepHelicon and MSA Transformer on each 
sequence of the test set individually in term of L precision (Figure2.) and F1 scores (Figure3.) As it can 
be seen, in most sequences, our model outperforms DeepHelicon and does better or as good as MSA 
Transformer. To ensure that the improvement led by our model is statistically significant, we conducted 
the t-test on L precision and f1 scores. The p-value is 3.304𝑒 − 5  for L, 1.8252𝑒 − 25  for L/2, 
3.538𝑒 − 46 for L/5, and 6.1853𝑒 − 51 for L/10.  In a few sequences, DeepHelicon scores better than 
the other models. This might be a result of the deep residual neural network it uses, which is able to 
capture more distinctive features for those sequences. However, in general, TMHC-MSAT is still 
superior to DeepHelicon. For example, Figure4. shows the ROC curve of TMHC-MSAT vs. 
DeepHelicon. It is obvious that our model has a better true/false positive rate and thus a better ROC 
curve. 

 
Figure 4. ROC curve of the TMHC-MSAT Vs. DeepHelicon Model. 

 

3.2 TMHC-MSAT produced contact Map can deliver a better 3D 
structure.   

 
To further evaluate the quality of the produced contact map by our model, we generate a 3D structure 
of a random protein (PDB: 4YRI) from the test set using the contact-map driven 3D structure tool 
CONFOLD2[23]. CONFOLD2 is a tool for building three-dimensional protein models using the 
predicted contact map and secondary structures. The output structure is then compared to the 3D 
structure of the same protein with a contact map produced by another model (here DeepHelicon). Using 
the RMSD score, we measure the accuracy of the two predicted structures by comparing them to the 
ground truth PDB structure. 

𝑅𝑀𝑆𝐷 =	a
1
𝑁X =b|𝑋- − 𝑌-|bB

43

-*+
 

 
Where N is the number of atoms or data points being compared. 𝑋- and 𝑌- represent the coordinates of 
the 𝑖56 atom or data point in two structures being compared. ||.|| denotes the Euclidean distance between 
corresponding atoms or data points. 
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T. cruzi Histidyl-tRNA (PDB:4YRI) is chosen to compare the two 3D structures produced by two 
different contact maps, TMHC and DeepHelicon. "T. cruzi" refers to Trypanosoma cruzi, a parasitic 
protozoan that causes Chagas disease in humans[24]. Histidyl-tRNA synthetase in T. cruzi (TcHisRS) 
is an enzyme specific to this parasite and is essential for its survival[24]. Inhibiting or disrupting the 
function of this enzyme has been explored as a potential target for drug development against Chagas 
disease[24]. Figure5. Shows two 3D structures of the same protein (T. cruzi Histidyl-tRNA) produced 
using two different contact maps. The structure on the left is generated using the DeepHelicon contact 
map while the one on the right is generated using TMHC-MSAT. In Figure5. It is obvious that in the 
generated DeepHelicon 3D structure (Blue), one helix significantly deviates from the true PDB structure 
(Green) causing a high RMSD score of 3.029. This can be a direct effect of the poor contact map 
produced by DeepHelicon. On the other side, the more accurate contact map generated by TMHC-
MSAT led to a better 3D structure with an RMSD score of 2.040. Notice that the two structures use the 
same PSI pred model [25] to acquire the 2D structure of the protein.    

 
 
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4  Conclusion 
In this study, we developed a deep neural network, TMHC-MSA, to predict residues’ contacts in 

alpha-helical transmembrane proteins. The model uses novel features extracted from a protein language 
model trained on a large protein database, where unsupervised masking is used as an objective function. 
Besides the extracted features, TMHC-MSA incorporates information about residue neighborhood 
which can help in reducing false-positive predictions and enhance the quality of the produced contact 
map. The results from a widely adopted benchmark dataset show that our proposed model surpasses the 
state-of-art model in alpha-helical transmembrane protein contacts prediction significantly and is able 
to provide a better contact map that can be used to generate a high-quality 3D structure. 

 
 

   

Figure 5. 4ryi Protein chain A. Comparison between the TMHC-MSAT predicted structure (Orange) 
and DeepHelicon predicted structure (Blue) vs the original PDB structure (Green) 

RMSD= 2.040 RMSD= 3.029 
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