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Abstract

We report the results of the first experiments with learning proof dependencies from the formal-

izations done with the Coq system. We explain the process of obtaining the dependencies from the

Coq proofs, the characterization of formulas that is used for the learning, and the evaluation method.

Various machine learning methods are compared on a dataset of 5021 toplevel Coq proofs coming from

the CoRN repository. The best resulting method covers on average 75% of the needed proof dependen-

cies among the first 100 predictions, which is a comparable performance of such initial experiments on

other large-theory corpora.

1 Introduction

In the last decade, a number of bridges between interactive theorem provers (ITPs) and various
external proof-advising systems have been built. The best-known examples of such systems are
today the bridges between ITPs such as Isabelle, Mizar and HOL Light and automated theorem
provers (ATPs) such as Vampire, E, and Z3. The success rate of such bridges for Mizar and HOL
Light has recently reached 40% in a scenario that assumes no assistance from the users, only the
ability to learn from the previous proofs that are already available in the large libraries of these
ITP systems. Important components of these systems are the premise-selection algorithms, i.e.,
algorithms that for a given conjecture choose the most relevant theorems and definitions that
are already available in the large libraries. Such algorithms can be actually used separately as
a search engine available to the ITP users in cases when the full automated proof is too hard
to find. Such functionality has been implemented early for the Mizar system and integrated in
its Emacs authoring environment in the form of the Mizar Proof Advisor [14]. Good premise
selection is thus a prerequisite for the fully automated AI/ATP systems, and also a functionality
that can be immediately given to the ITP users.

In this work, we develop premise selection techniques for the Coq proof assistant and evaluate
their performance on the Constructive Coq Repository at Nijmegen (CoRN) [2], containing 5021
toplevel proofs of theorems such as the Fundamental Theorem of Algebra [3]. The necessary
work involves extraction of proof dependencies, for which we re-use previous work targeted at
Coq user interfaces by Mamane, see Section 2. In the type-theoretical context used by Coq there
is no clear distinction between theorems and definitions on one side, and formula symbols and
terms on the other side. This makes it difficult to see from the extracted dependency data
which of the dependencies characterize the conjecture to be proved, and which of them are the
“proper” proof dependencies that we would like to recommend to the user (and ultimately to
an ATP system). Section 3 explains how we heuristically differentiate between these two kinds
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of data. Section 4 briefly explains how we learn premise selection from such data, and Section 5
presents the first experimental results. It is shown that the best resulting method covers on
average 75% of the needed proof dependencies among the first 100 predictions, which is a
comparable performance of such initial experiments on other large-theory corpora. Section 6
discusses future work and concludes.

2 Extracting Coq Dependencies

The processs of extracting proof dependencies from Coq developments that we use in this work
is described in detail in [1]. Here we give a brief overview of this process and related issues.

Coq is based on the Curry-Howard isomorphism, which means that statements (formulas)
are encoded as types, and at the logical level there is no essential difference between a definition
and a theorem: they are both just the binding (in the environment) of a name to a type (type
of the definition, statement of the theorem) and a term (body of the definition, proof of the
theorem). Similarly, there is no essential difference between an axiom and a parameter: they
are both just the binding (in the environment) of a name to a type (statement of the axiom,
type of the parameter, e.g. “natural number”).

As part of the development of tmEgg [11], Mamane added to Coq a partial facility to com-
municate proof dependencies to the user interface. This facility has been already integrated in
the official release of Coq. Since then this facility was extended to be able to treat the whole
of the CoRN library, however these changes are not yet included in the official release of Coq.
This facility works by tracking dependencies for various Coq commands. There are essentially
three groups of Coq commands that need to be treated:

1. Commands that register a new logical construct (definition or axiom), either

• From scratch. That is, commands that take as arguments a name and a type and/or
a body, and that add the definition binding this name to this type and/or body. The
canonical examples are

Definition Name : type := body

and

Axiom Name : type

The type can also be given implicitly as the inferred type of the body, as in

Definition Name := body

• Saving the current (completely proven) theorem in the environment. These are the
“end of proof” commands, such as Qed, Save, Defined.

2. Commands that make progress in the current proof, which is necessarily made in several
steps:

(a) Opening a new theorem, as in

Theorem Name : type

or

Definition Name : type

(b) An arbitrary strictly positive amount of proof steps.
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(c) Saving that theorem in the environment.

These commands update (by adding exactly one node) the internal Coq structure called
“proof tree”.

3. Commands that open a new theorem, that will be proven in multiple steps.

The dependency tracking is implemented as suitable hooks in the Coq functions that the three
kinds of commands eventually call. When a new construct is registered in the environment,
the dependency tracking walks over the type and body (if present) of the new construct and
collects all constructs that are referenced. When a proof tree is updated, the dependency
tracking examines the top node of the new proof tree (note that this is always the only change
with regards to the previous proof tree). The commands that update the proof tree (that is,
make a step in the current proof) are called tactics. Coq’s tactic interpretation goes through
three main phases:

1. parsing;

2. Ltac1 expansion;

3. evaluation.

The tactic structure after each of these phases is stored in the proof tree. This allows to collect
all construct references mentioned at any of these tree levels. For example, if tactic Foo T is
defined as

t ry apply BolzanoWeierst rass ;
s o l v e [ T | auto ]

and the user invokes the tactic as Foo FeitThompson, then the first level will contain (in parsed
form) Foo FeitThompson, the second level will contain (in parsed form)

try apply BolzanoWeierst rass ;
s o l v e [ FeitThompson | auto ] .

and the third level can contain any of:

• refine (BolzanoWeierstrass ...),

• refine (FeitThompson ...),

• something else, if the proof was found by auto.

The third level typically contains only a few of the basic atomic fundamental rules (tactics)
applications, such as refine, intro, rename or convert, and combinations thereof.

Dependency tracking is available in the program implementing the coq-interface protocol
which is designed for machine interaction between Coq and its user interfaces. The dependency
information is printed in a special message for each progress-making Coq command that can
give rise to a dependency. After some postprocessing, the dependency data obtained from
such commands will look as follows (first comes the defined/proved construct, then a list of its
dependencies):

"CoRN.algebra.Basics.NEG_anti_convert"

("Coq.Init.Datatypes.S" "Coq.Init.Datatypes.nat" "Coq.Init.Datatypes.nat_ind"

"Coq.Init.Logic.eq" "Coq.Init.Logic.refl_equal" "Coq.NArith.BinPos.P_of_succ_nat"

"Coq.NArith.BinPos.Psucc" "Coq.NArith.BinPos.xH" "Coq.ZArith.BinInt.Z"

"Coq.ZArith.Bi nInt.Z_of_nat" "Coq.ZArith.BinInt.Zneg" "Coq.ZArith.BinInt.Zopp")

1Ltac is the Coq’s tactical language, used to combine tactics and add new user-defined tactics.
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3 Learning Data

In order to use machine learning for guessing proof dependencies, two sets of data need to
be extracted from a proof assistant library: suitable features of the theorems and their proof
dependencies. Machine learning for premise selection (i.e., for guessing the necessary proof
dependencies) has so far been successfully applied and evaluated for systems based on set
theory (MizAR [15]) and higher order logic (Sledgehammer:MaSh [10], HOL(y)Hammer [9, 8]).
In both kinds of systems, the available concepts are clearly divided in different categories by
the implementation: In HOL-based systems types, type-classes and function symbols are all
distinct from theorems. In particular, theorems can not appear inside terms. Similarly in
Mizar, the meta-logic functions, predicates, modes, and registrations are separate from the
defined set-theory objects.

This is no longer true in type-theory based systems which implement the Curry-Howard
correspondence treating propositions as types, and proofs as terms of such (proposition) types.
Each time a named theorem T is used in a proof of theorem S, we are actually using (a reference
to) the (named) proof term of T . Such named proof terms are in Coq treated the same way as
any other defined constants. It is not possible to distinguish named theorems from other defined
constants without checking whether the type of the constant is of a propositional type. This is
however not sufficient for us: the user may state (as a goal) and prove the existence of values in
any type (such as nat->nat), and premise selection should also help in such non-propositional
proofs. The users may even define their own proposition type (different from the default type
Prop) and this is actually done in some Coq developments, for example in the case of the CProp

used pervasively in CoRN.

The most straightforward way of adapting the machine learning infrastructure to Coq, could
be as follows. For each defined constant T , the features F (T ) of T would be the set of defined
constants present in the type (statement) of T , and the dependencies D(T ) of T would be the
set of defined constants used in the proof term of T . This has however one obvious disadvantage:
all theorems that talk about natural numbers would include nat, O, and Suc as their dependen-
cies. Learning such constants would also predict them, however they are currently useless in
automated techniques. To avoid learning such constants as dependencies, we first globally (for
a given corpus C, such as CoRN) partition the set of all defined constants into those that may
be used as features (FC), and those that may be used as dependencies (DC), using the following
heuristic. The set FC (allowed features) will consist of all the defined constants that appear
in the types of theorems (and definitions, etc.) of C. The set DC (allowed dependencies) will
consist of all the defined constants that appear in all the proof terms, minus the set FC .

Given a named theorem T , F (T ) is then defined as the elements of FC present in the type
(statement) of T , while D(T ) are the elements of DC used in the proof term of T . This heuristic
might not work well in the case where necessary propositional constants also appear in the types
(statements) of theorems; however it works well with most Coq developments, in particular we
have manually checked (on a random subset) that it behaves well with the CoRN development,
which we focus on in this paper.

Table 1 shows some statistics for the machine learning data obtained. These are comparable
to the data for the initial experiments done for other systems [5, 4]. Note that we do not yet
work with more advanced features such as terms, subterms, patterns, etc.
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Accessible part of Coq Standard Library: 5099 available facts
Evaluated CoRN proofs 5021 defined (proved) theorems
Distinct features 2683
Average number of features in a CoRN theorem 9.82
Average number of dependencies for a CoRN theorem 11.27

Table 1: Statistics for the machine learning data

4 Machine Learning

In the evaluations we use our custom implementations of three machine learning algorithms
and their combinations. These are k-Nearest Neighbours [7], sparse Naive Bayes [10], and our
modified version of the Meng-Paulson (MePo) relevance filter [12]. In order to combine the
results of the algorithms we consider the Ensemble methods [13], in particular the weighted
harmonic average of the classifications [6]. All these methods are implemented as fast tools
(written either in OCaml or in C++) that are external to the Coq implementation.

k-Nearest Neighbours: The (distance-weighted) k-Nearest Neighbours learning algorithm
first finds a fixed number (k) of proved facts nearest (in its feature representation) to the
conjecture c, and then weights the dependencies of each such fact f by the distance between
f and c. The final ranking (relevance) of dependencies is obtained by summing their weights
across the k nearest neighbors.

Naive Bayes: Naive Bayes is a statistical learning method based on Bayes theorem with a
strong (or naive) independence assumption. Given a conjecture c and a fact f , naive Bayes
computes the probability of f being needed to prove c, based on the previous use of f in proving
conjectures that are similar to c. The similarity is in our case expressed using the features F
of the formulas. The independence assumption says that the (non-)occurrence of a feature is
not related to the (non-)occurrence of every other features. The predicted relevance of a fact f
with the set of features F (f) is estimated by the conditional probability P (f is relevant|F (c)).

MePo: The MePo (Meng–Paulson) filter keeps track of a set of relevant features initially
consisting of all the conjecture’s features. It performs the following steps iteratively, until
n facts have been selected: (i) Compute each fact’s score, as roughly given by r/(r + i), where
r is the number of relevant features and i the number of irrelevant features occurring in the
fact. (ii) Select all facts with perfect scores as well as some of the remaining top-scoring facts,
and add all their features to the set of relevant features.

Each of the above algorithms orders the available (accessible) premises w.r.t. the likelihood
that it is useful in proving the goal. In order to evaluate such orderings, we compute the first
1024 advised premises and compute five machine learning statistics for each of them: cover,
precision, full recall, AUC, and the average rank. Below we provide the definitions of these
concepts:

Definition 1 (100Cover). The average coverage of the set of proof dependencies by the first
100 suggestions is called the (100-)Cover; it is usually expressed as a percentage of the covered
proof dependencies.
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Definition 2 (100Precision). The ratio of the correctly predicted proof dependencies in the first
100 suggestions is called (100-)Precision.

Definition 3 (Recall). Full Recall (also called 100% Recall) is the minimum number of predic-
tions needed to include the whole set of proof dependencies; or the number of predictions plus 1
if the considered predictions set is not large enough.

Definition 4 (Rank). (Average) Rank is the average position of a proof dependency in the
sequence of suggestions ordered by their expected relevance.

The AUC (Area under the ROC Curve) is the probability that, given a randomly drawn
used premise and a randomly drawn unused premise, the used premise is ranked higher than
the unused premise. Values closer to 1 show better performance.

Definition 5. Let x1, .., xn be the ranks of the used premises and y1, .., ym be the ranks of the
unused premises. Then, the AUC is defined as

AUC =

∑n
i

∑m
j 1xi>yj

mn

where 1xi>yj
= 1 iff xi > yj and zero otherwise.

5 Results

For the evaluation we first topologically sort all the available CoRN facts using their proof
dependencies, and then for each of these facts we try to predict its proof dependencies by
learning on all the previous (in the topological sorting) facts and their proofs. As usual in such
large-theory evaluations, we thus emulate the standard situation of using AI/ATP assistance in
interactive theorem proving: For each conjecture C we assume that all formulas stated earlier in
the development can be used to prove C, and that all the proofs of previously stated theorems
are available for learning.2

Table 2 shows the results. While the performance of k-NN and naive Bayes is quite compa-
rable to similar early evaluations done for other systems and libraries, we get comparatively low
performance of MePo, which does not correspond to its good behavior in our experiments with
other systems. This could mean that the relations between symbols in the Coq propositions
differ quite significantly from such relations in the other systems, and MePo-style heuristics
need some modifications for Coq. The best (Ensemble) performance means that on average
75% of the dependencies needed in the actual Coq proof will be present among the first 100
hints recommended by the Ensemble predictor trained on the previous proofs.

6 Conclusion

As far as we know, this is the first large-scale evaluation of learning proof dependencies done on
a larger library written in the Coq system. The overall results are quite encouraging, showing
that guessing of the relevant parts of the library necessary for proving a new Coq conjecture is
not significantly harder than in other ITP systems.

Future work includes better features for learning as already mentioned above, and obviously
also research on good automated proof techniques for the Coq logic which could use the guessed

2The standard (randomized) 10-fold cross-validation would in general allow to prove a conjecture using a
theorem that was only proved later, resulting in cyclic proofs.
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- 100Cover (%) 100Precision Recall Auc Rank

MePo 17.0 0.01004 954.45 0.2020 817.21
k-NN 72.3 0.07466 451.28 0.8341 173.45
NBayes 72.6 0.08089 448.80 0.8366 171.06
Ensemble 74.9 0.08093 428.70 0.8490 158.37

Table 2: Experimental Results

premises for finishing off smaller proofs automatically. These could be either translations into
the formats and logics used by the currently strongest ATP systems, or direct implementations
of custom proof-search methods working directly in the Coq logic.
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