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Abstract

This paper presents a discussion of alternatives for protein structure prediction, showing
the advantages and problems of recent alternatives based on deep learning and approaches
based on energy optimization of protein solutions. A SARS-CoV-2 protein is included to
exemplify the results.

1 Introduction

The structure of proteins largely determines their function, hence the great importance of deter-
mining their three-dimensional native structure. For this, traditional laboratory methods, such
as X-ray crystallography and nuclear magnetic resonance, are expensive and time-consuming.
Therefore, computational Protein Structure Prediction (PSP) methods attempt to close the
gap between the number of proteins with known sequence (order of millions) and the number
of solved proteins with known structure (about 180,000 in the PDB database [5]).

In the most difficult and challenging alternative of PSP, called ab initio, only the primary se-
quence information of the protein (its amino acid sequence) is used. This is based on Anfinsen’s
dogma [1], which states that the native structure is determined only with the primary sequence
information and corresponds to the minimum Gibbs free energy. Consequently, an alternative
in ab initio PSP is the use of search methods that try to discover the structure with mini-
mum energy, once a protein representation and energy models are established. The problem is
that PSP energy landscapes are high-dimensional and full of local minima. Thus, evolutionary
computing search or optimization methods were intensively used, given their global search in
multidimensional and multimodal energy landscapes.

In this line, our previous research used memetic algorithms (MAs) with protein atomic
models, using the protein representation and energy model of Rosetta [7] (one of the most widely
used software environments in PSP and protein design). Our HybridDE MA [9] combines the
global search of Differential Evolution [6] with the local search provided by the protein fragment
replacement technique, where the latter can locally refine protein structures maintained in the
genetic population. Furthermore, given the inaccuracies of the Rosetta energy model, which
provides a deceptive energy landscape in which the energy minimum need not correspond to
the native structure, the crowding niching method was integrated into the MA (CrowdingDE)
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[9][10]. This incorporation allows obtaining energy-optimized structures but, at the same time,
with structural diversity, with the aim of discovering structures close to the native conformation.

As a different alternative, in recent years, the use of deep learning architectures for PSP has
provided successful results in many proteins. For example, Rose TTAFold [2] and DeepMind’s
AlphaFold [8] provided predictions with higher accuracy on many proteins with respect to
energy minimization approaches. The high capability of the deep learning methods is based
on two aspects: i) the input information is given by the Multiple Sequence Alignment (MSA)
of the target protein, which provides homologous protein information useful to know where
there are possible amino acid contacts in the three-dimensional structure; ii) the training of
the prediction models with a large number of known structures, the complete set of structures
solved in the PDB [5] with the aforementioned PSP systems.

However, these deep learning-based methods do not work properly for proteins with poor
MSA information. Moreover, their predictions may present flaws, such as amino acid conflicts,
which require refinement based on energy minimization approaches. Therefore, here, building
on the initial work published in [3], we present an example to show the pros and cons of both
PSP alternatives (energy minimization and deep learning), with a SARS-CoV-2 protein.

2 Results and discussion

Figure 1 includes an example with a protein of SARS-CoV-2 virus. Protein orf8 has 104 amino
acids. This protein has no homologous proteins in the PDB database [5]. Its MSA coverage is
poor, even searching for more homologous sequences in different genetic databases (Fig. 1, left
part). Consequently, the prediction confidence of AlphaFold2 models is low, as seen in Figure
1, with the PAE (Predicted Alignment Error) graph (Fig. 1, center). The Predicted Alignment
Error at position (x, y) corresponds to the expected position error at residue z, when the
predicted and real structures are aligned on residue y. This PAE level of confidence is poor at
many positions (areas with red color, corresponding to high expected error). AlphaFold2 model
with the best confidence was selected, since AlphaFold2 has a stochastic component (dropout
during inference) and it can be run to provide several models. Likewise, RoseTTA Fold solutions
have similar confidence measures (not shown).

Sequence coverage
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Figure 1: Left: MSA sequence coverage for SARS-CoV-2 protein orf8. MSA is input to Al-
phaFold2 and RoseTTAFold. Center: PAE (Predicted Aligned Error) of the highest rated
AlphaFold2 model. Right: Energy (score3) vs. RMSD with different PSP approaches. Gray:
Rosetta ab initio (run several times). Blue: HybridDE and Red: CrowdingDE (final optimized
solutions). Green: AlphaFold2 and Pink: RoseTTAFold (the 5 highest rated solutions).

Moreover, neither approach presents accurate solutions, as shown by the distribution of
solutions in the energy vs. RMSD plot in Figure 1 (Fig. 1, right part). The z-axis corresponds
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to the RMSD (Root Mean Squared Deviation) distance between the superimposed structures
(predicted conformations and the native structure). The distances are higher than 9 A in all
solutions, indicating that these are quite far from the native structure. The y-axis corresponds
to the Rosetta energy (called score3) of the predicted solutions. The graph shows that the
energy minimization-based approaches provide solutions with better energy compared to the
deep learning-based approaches. This indicates the inaccuracies of the energy model, as the best
solutions in energy terms do not correspond to those closest to the native structure. Finally,
the evolutionary algorithm-based approaches perform better optimization (in energy terms)
compared to the Rosetta ab initio protocol (based on a local search with fragment replacements),
where, in this protein, CrowdingDE presents the solutions with the lowest energy and also a
larger distribution of the optimized solutions with respect to HybridDE.

More examples of comparison of the different alternatives are included in [3], where, for most
proteins, the deep learning approaches present more accurate solutions in terms of distance to
the native structure. Moreover, visualizations of predictions with SARS-CoV-2 proteins can be
seen in [4]. Future work is aimed at integrating the capabilities of both approaches in structure
refinement, which is the main research line of the first author’s PhD thesis.
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