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Abstract

The artificial pancreas concept automates the delivery of insulin to patients with type-1
diabetes, sensing the blood glucose levels through a continuous glucose monitor (CGM)
and using an insulin infusion pump to deliver insulin. Formally verifying control algorithms
against physiological models of the patient is an important challenge. In this paper, we
present a case study of a simple hybrid multi-basal control system that switches to different
preset insulin delivery rates over various ranges of blood glucose levels. We use the Dalla-
Man model for modeling the physiology of the patient and a hybrid automaton model of
the controller. First, we reduce the problem state space and replace nonpolynomial terms
by approximations with very small errors in order to simplify the model. Nevertheless, the
model still remains nonlinear with up to 9 state variables.

Reachability analysis on this hybrid model is used to verify that the blood glucose
levels remain within a safe range overnight. This poses challenges, including (a) the model
exhibits many discrete jumps in a relatively small time interval, and (b) the entire time
horizon corresponding to a full night is 720 minutes, wherein the controller time period is
5 minutes. To overcome these difficulties, we propose methods to effectively handle time-
triggered jumps and merge flowpipes over the same time interval. The evaluation shows
that the performance can be improved with the new techniques.

1 Introduction

The artificial pancreas concept refers to a series of increasingly sophisticated devices that au-
tomate the delivery of insulin to patients with type-1 diabetes in a closed loop, automatically
responding to changes in the patient’s blood glucose levels and activities such as meals and
exercise [29, 16, 34]. Currently, patients self-regulate their own insulin delivery in response
to their blood glucose levels measured through a “finger-stick” blood glucose meter or a con-
tinuous glucose monitor [47, 9]. Short-term risks include extremely low blood glucose levels
called hypoglycemia, technically defined as blood glucose levels below 70 mg/dl and high blood
glucose levels called hyperglycemia that occur when blood glucose levels are above 180 mg/dl.
Hypoglycemia can lead to seizures, loss of consciousness, coma or even death in extreme cases.
Extreme hyperglycemia involving blood glucose levels consistently higher than 300 mg/dl can
lead to a dangerous condition called ketoacidosis. Long term risks of elevated blood glucose
levels include widespread damage to critical organs such as kidneys, heart and the nervous
system. As a result, the need to maintain blood glucose levels inside a relatively narrow range
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Figure 1: Overview of the key components of an artificial pancreas control system. b(t): external
user commanded insulin, u(t): insulin infused to patient, G(t): blood glucose level of the patient,
n(t): sensor measurement error (noise), Gs(t): glucose level estimated/reported by sensor, uc(t):
insulin infusion commanded by the algorithm.

requires the patients to periodically monitor their blood glucose levels and adjust their insulin
dosages [9]. This can be complicated during night time when the patient is asleep, during meal
times when the patient ingests significant amounts of carbohydrates, and during strenuous
exercise.

Figure 1 shows the overall closed loop at a glance. Typical artificial pancreas systems use
continuous glucose monitors to measure blood glucose levels periodically, and insulin pumps
to deliver artificial insulin analogs at precisely programmable rates over time. To close the
loop, a control algorithm uses the sensor readings to automatically decide the future insulin
delivery. The design of control algorithms is complicated by many factors including (a) the
presence of large unanticipated disturbances such as meals and exercise, (b) the action profile
of insulin has delays including peak action two hours after infusion and persistence up to 7
hours. Thus, insulin delivered at any point in time incurs a nontrivial delay before it begins
to act, and will continue to act long after it is potentially “needed”, and (c) the continuous
glucose monitors are noisy and prone to systematic errors including dropouts and pressure
induced sensor attenuation [22]. These errors affect the insulin dosing decisions made by the
algorithm.

At the same time, the artificial pancreas is safety critical. Excess insulin delivered to the
patient can carry with it severe risks associated with hypoglycemia. On the other hand, insuffi-
cient insulin delivery can lead to elevated glucose levels for long periods of time, risking longer
term consequences to the patient.

Closed-loop functional verification seeks to verify that the closed loop formed by the compo-
sition of the software with the glucose sensors, insulin pump and the patient satisfies important
safety and liveness properties. Safety properties include “the user will not experience extremely
high (G ≥ 300mg/dl) or low (G ≤ 70mg/dl) levels of blood glucose under an assumed set of
meal behaviors”. The properties in question can involve real-time liveness properties as well.
For example, “If the blood glucose level falls continuously for at least 30 minutes and the blood
glucose level is less than 180 mg/dl, then the pump should be shut off”.

In this paper, we present the Dalla-Man et al. model for human insulin glucose regulation
and a simple multiple basal control system. We present some safety properties of the system.
Next, we use the Flow* tool to perform a reachability analysis of the resulting closed loop.
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Table 1: An overview of selected differential equation-based modeling approaches for human
insulin-glucose regulation.

Model Name Vars Remarks
Bergman 3 2 insulin + 1 glucose compartment [3, 4]
Li (DDE) 2 1 insulin + 1 glucose compartment [35, 32]

delays between glucose bolus and insulin response.

Cobelli 11 Comprehensive model including glucagon
and renal function submodels [15, 17].

Sorensen 19 Comprehensive model with brain, vascular,
and renal submodels [48].

Hovorka 11 Comprehensive model with brain, endogenous glucose
and renal submodels [28, 27, 53].

Dalla-Man 10 Comprehensive model with brain, endogenous glucose
and renal submodels [19, 40].
including counter-regulatory processes [39]

Finally, we review future challenge problems that will be useful in this space.

2 Related Work

The broader area of closed loop medical devices has received a lot of recent interest from the
formal verification community. This started with work on pacemakers and implantable cardiac
defibrillators (ICDs) that includes hybrid automata models for excitable cells in the heart [44],
leading to approaches that employ these models to test closed loop systems [42, 31, 30]. We
focus on reviewing the current state-of-the-art for verifying artificial pancreas controllers.

Human Insulin-Glucose Models: There have been many attempts to mathematically
model how blood glucose levels respond to the infusion of insulin using ordinary differential
equations (see Table 1). Examples include the well-known Bergman minimal model [3, 4],
Dalla Man et al. model [38, 19, 39] and the Hovorka et al. model [28, 53]. These models
incorporate features including the effect of meals, and more recently, the effects of exercise on
the blood glucose levels [39]. In fact, the concept of in silico pre-clinical trials involves using
these models to test control algorithms over “virtual subjects” by simulating a (virtual) clinical
protocol [37, 43]. The simulation uses fixed meal timings, amounts and boluses, but varying
patient parameter sets that are meant to model inter-patient variations. The simulations col-
lect statistics on performance measures such as the time in euglycemic range to pre-judge the
efficiency of the control algorithm and evaluate suggested changes. However, we note that the
main objective of these trials is not to test the correctness of the closed loop per se. Beyond
ODE-based models, there have been attempts at using delay differential equations (DDEs)
(Cf. [35, 32] for instance) and fractional-order models [26].

Verification and Falsification Efforts: The broader area of hybrid systems verification has
seen promising model checkers such as SpaceEx for affine hybrid systems [24] and tools such as
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dReach, CORA, NLToolBox and Flow* for nonlinear hybrid systems [2, 51, 33, 13].

Chen et al. study a PID-based closed loop system meant for intraoperative use in patients.
They use the dReal SMT solver [25] to find patient parameter ranges and ranges for controller
gains for which a PID controller is proven to be safe with respect to specified safety proper-
ties [10]. The use of dReal SMT solver provides an exhaustive guarantee that all behaviors of
the model are accounted for. The work of Chen et al. represents an important proof of concept
that exhaustive safety verification required for proving the correctness of artificial pancreas con-
trol algorithms can, in principle, be performed by existing tools for nonlinear hybrid systems.
However, major disturbances including patient meals and sensor noise that are common causes
of algorithmic failures are not treated in their study.

Our past work in this space has focused on the problem of falsification rather than verifi-
cation. Through falsification, we perform a best effort search focused on discovering behaviors
of the closed loop system that violate a key property of interest specified using a real-time
temporal logic. In the limit, falsification techniques either terminate with a counterexample to
the property of interest or run for a long time without discovering any violations. In the latter
case, it can output useful information such as the least robust trace but cannot conclude if the
property is in fact valid for the system under test. Recent work on falsification uses the notion
of temporal logic robustness [23, 21] to provide a real-valued distance to satisfaction or violation
for a signal with respect to a property expressed in MTL/STL. This has been incorporated in
tools such as S-Taliro [41, 1] and Breach [20] that search for falsifying traces through minimizing
robustness of the trace. Even though falsification uses a simulation model such as the Dalla
Man model, the final result is a property violation rather than a proof.

In joint work with Cameron and others, we have studied the use of falsification techniques for
verifying closed loop control systems for the artificial pancreas [8]. Our initial work investigated
a PID controller proposed by Steil et al. [52, 50, 49] based on published descriptions of the control
system available. The simulation environment incorporates this controller in a closed loop with
models of the patient [40], the sensors and actuators. We studied nearly six different temporal
properties of the closed loop and obtained falsification for three of them. However, we could
not falsify the remaining three properties that governed the absence of prolonged hypoglycemia
and hyperglycemia in the patient.

Another recent study [45] was performed to test a predictive pump shutoff controller designed
by Cameron et al. [7] that has undergone outpatient clinical trials, recently [36]. This study
involved the entire controller software as is, without any modifications. At the same time,
the closed loop simulation permits us to pose a rich set of questions that compare the closed
loop performance with a corresponding open loop under the same meal inputs and physiological
model conditions. The falsification discovered adverse noise patterns in the CGM sensor that
could trick the Kalman filter into predicting inaccurate forecasts for the future glucose value, and
thus prevent appropriate pump shutoff/resumption. At the same time, critical properties such
as not commanding excess insulin when the patient is in hypoglycemia could not be violated.
The study concluded the need to investigate these violations under more realistic patterns of
CGM noise.

In this paper, we study a simpler hybrid control system that switches between multiple basal
levels based on ranges of blood glucose values reported by the sensor. The control system is very
simple to model using automata. The focus of our work is to explore exhaustive verification in
the presence of sensor noise and meal disturbances using a nonlinear model. We demonstrate
modifications to the Flow* tool that enable us to successfully carry out this verification task
within half an hour for each run of the Flow* tool.
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Figure 2: Overall closed loop controller setup for the artificial pancreas with patient and meal
models and a multi-basal controller.

3 Model and Its Simplification

Figure 2 shows the overall block diagram of the model including the Dalla-Man model for insulin
glucose regulation, a meal model for the gut absorption of ingested meals and the controller
that manages the insulin infusion level as a function of the current glucose level.

3.1 Meal Absorption Model

We first examine the meal absorption model that models the glucose rate of appearance um(t)
corresponding to a meal with D grams of Carbohydrates (CHO) at time t = tm. The original
model is taken from Dalla man et al. [38] has three state variables qsto1, qsto2, qgut which model
the amount of glucose in solid phase in the stomach, liquid phase in the stomach and the
intestine, respectively. These are initialized to 0 at t = 0. Their dynamics are modeled as

.
qsto1 = −k21 · qsto1 +D · δ(t− tm)
.
qsto2 = −kempt(qsto1 + qsto2) · qsto2 + kmax · qsto1.
qgut = −kabs · qgut + kempt(qsto1 + qsto2) · qsto2

um(t) = f · kabs · qgut(t)

(1)

Here kempt(·) is a nonlinear function given by

kempt(q) = kmin +
1

2
· (kmax − kmin) · {tanh(α(q − b ·D))− tanh(β(q − c ·D)) + 2}

Note that the impulse δ(t) = 1 whenever t = 0 and 0 otherwise, modeling the ingestion of
the meal as an instantaneous impulse. However, a more realistic meal is modeled as a square
wave shaped function lasting for td = 15 minutes, with the carbohydrates ingested at a rate of
D
15 grams/minute over this time period.
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Figure 3: (Left) Meal model ODE in Eq. (1) simulated for different meal CHO amounts and
(Right) simulations are scaled down by the amount of CHO to overlay on the simulation for
D = 5 gms of CHO.

The values of the parameters k21, kmax, kabs, kmin, α, β, b, c are estimated by fitting to tracer
labeled meal data collected from nearly 41 subjects [38, 19].

The presence of tanh function makes the model harder to work with inside a set-valued
verification tool. Figure 3 shows the rate of appearance of glucose um(t) as a function of time
for meals with D = 5, 10, . . . , 30 grams of CHO, ingested at tm = 10 minutes. We simplify
the model considerably by noting two properties of the model, empirically using the published
parameter values.

1. Multiphase response to meals: we note that there are six easily identified qualitative
phases in the meal absorption model and further more the switching time is mostly in-
variant to the meal composition.

2. Scaling property: the response for a meal with λD grams of CHO is very close to λ times
that of a meal with D grams of CHO.

We exploit these properties and fit a piecewise quadratic function um,1(t) so that we can
simply obtain

um(t) = Dum,1(t− tm), for meal at time tm .

Here, the function um,1(t) is fit using a regression model based on simulating the ODE
in (1).

um,1(t) =



0 t ≤ 0

1.141× 10−4t2 + 6.134× 10−6t 0 ≤ t ≤ 30

5.25× 10−5t2 − 7.468× 10−3t+ 0.281 30 < t ≤ 80

1.245× 10−7t2 − 9.112× 10−5t+ 2.648× 10−2 80 < t ≤ 360

−6.307× 10−5t2 + 0.0483t− 9.190 360 < t ≤ 400

3.553× 10−6t2 − 3.423× 10−3t+ 0.824 400 < t ≤ 500

1.113× 10−8t2 − 1.482× 10−5t+ 4.9× 10−3 500 < t ≤ 720

0 t ≥ 720

(2)

Note that we do not enforce the continuity of the various pieces of um(t). Empirically,
we note that the piecewise polynomial model in Eq. (2) approximates the model in ODE (1)
within a tolerance of about 0.03D for a meal with D grams of CHO for 0 ≤ D ≤ 150. At the
same time, the quality of the fit, especially the undershoot can be improved further by adding
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Figure 4: The piecewise polynomial (spline) approximation of the meal response Eq. (2) shown
against the original meal response from ODE (1) (dashed line).

more constraints to the regression process for fitting the model. Nevertheless, the relatively
tiny difference between the two models allows us to claim that the meal model model is a good
approximation that can serve the purposes of the verification.

Formally reasoning about ODE (1) requires us to add a suitable interval to the model um(t)
from Eq. (2) and even prove a formal containment relation. We note however, that the original
ODE model is itself an approximation to error prone lab measurements from tracer-labeled meal
studies and intravenous glucose tolerance tests (IGTT). Since the ODE is but an approximation
of this “ground truth”, we will simply adopt the piecewise quadratic model as a more convenient
approximation for our verification purposes.

3.2 Insulin-Glucose Response Model

We now turn to the insulin-glucose response model. Table 2 shows the state variables and
the ODEs for this model [19]. The model captures many aspects of human insulin-glucose
response including the insulin dependent vs. independent uptake of glucose, the endogenous
production of glucose by the liver, the transport of subcutaneously administered insulin and
subcutaneous glucose levels. It does not capture the counter-regulatory system including the
effects of glucagon, prolonged fasting and physical activity. Nevertheless, the model has been
approved by the FDA as a replacement for animal trials. The model depends intimately on
using “virtual patient parameters”: a set of such parameters corresponding to adult, adolescent
and children are available with the commercial UVa-Padova T1D simulation software. The
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Table 2: The state variables in the Dalla-Man model for the human insulin glucose response in
people with type-1 diabetes.

Var. Meaning
X Insulin Conc. in remote chamber
Isc1 Subcutaneous insulin in chamber #1
Isc2 Subcutaneous insulin in chamber #2
Gt Glucose conc. in “rapidly equilibriating” tissues
Gp Glucose conc. in plasma
Il Portal vein insulin concentration
Ip Insulin in plasma
I1 Insulin chamber # 1 concentration
Id “delayed” insulin from chamber #1
Gs subcutaneous glucose concentration.

state variables are shown in Tab. 2. The ODE uses a publicly available parameter set [19].

.
X = −0.0278X + 0.0278(18.2129Ip − 100.25).
Isc1 = 0.0142Isc1 − 0.0078Isc2 + uI(t).
Isc2 = 0.0152Isc1 − 0.0078Isc2.
Gt = −0.0039(3.2267 + 0.0313X)Gt(1− 0.0026Gt + 2.5097× 10−6G2

t )
+0.0581Gp − 0.0871Gt.

Gp = 3.7314− 0.0047Gp − 0.0121Id − 0.0581Gp + 0.0871Gt + um(t).
Il = −0.4219Il + 0.225Ip.
Ip = −0.315Ip + 0.1545Il + 1.9× 10−3Isc1 + 7.8× 10−3Isc2.
I1 = −0.0046(I1 − 18.2129Ip).
Id = −0.0046(Id − I1).
Gs = 0.1(0.5521Gp −Gs)

Control Algorithm: We consider a simple multi-basal control algorithm based on the
control-to-range paradigm that seeks to adjust the insulin rate to treat extreme fluctuations
of the blood glucose levels by switching to progressively higher insulin rates to treat high BG
values and suspending insulin delivery to treat lows. The template for the controller is shown
in Figure 2, wherein the controller switches between discrete insulin delivery rates depending
on the currently sensed glucose value. These levels can be tuned for a particular patient by
carefully examining their recent insulin pump and continuous glucose monitor (CGM) data.
The controller proposed here is a simple automaton-based system proposed as a benchmark for
verification rather than a proposed design for clinical use. The complete algorithm needs to
handle user inputs such as meal boluses or correction factors that the user may command, for
instance by falling back to a fixed basal rate whenever the user commands a manual injection.
Exercise based shutoff is another feature not considered here. The verification of a full-fledged
system with these features will be part of our future work. However, recent open source systems
such as the OpenAP share some of the features such as setting a higher or lower basal insulin
delivery rate based on multiple factors that include the current insulin on board in addition to
the blood glucose levels [18].
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Clinical Simulation Scenario: We will assume the following scenario for our in-silico veri-
fication setup:

1. Patient ingests a meal with D ∈ [50, 90] grams of CHO at time t = 0.

2. The patient’s initial blood glucose levels can be anywhere in the range [120, 160] mg/dl
at time t = 0.

3. The controller is switched on at that time and runs for 720 minutes (12 hours) overnight,
during which time the patient does not ingest any further meals.

4. The continuous glucose monitor (CGM) is subject to a noise that can be ±10 mg/dl away
from the actual value predicted by the model.

We note that the noise model assumes that any possible noise signal within the range is
allowed. This is much more conservative than the CGM errors that are temporally correlated
with each other [22]. On the other hand, miscalibration or faults can often lead to errors much
larger in magnitude than ±10 mg/dl. However, we note that no algorithm can be expected
perform well under large errors, since the algorithm cannot, in general, distinguish a faulty
sensor reading from an accurate value. As a result, we seek to verify the closed loop under
“reasonable” error conditions.

Correctness Properties: We will consider important correctness properties for our work:

• The blood glucose levels should never fall below 70 mg/dl. Levels below 70 mg/dl are
called hypoglycemia, and may lead to loss of consciousness or coma.

• The blood glucose levels should never rise above 300 mg/dl. Levels above 300 mg/dl
expose the patient to a dangerous condition called ketoacidosis.

• The blood glucose should be in the euglycemic range [70, 180] mg/dl during “wakeup”
t ∈ [600, 720].

4 Reachability Analysis

We introduce the algorithm to compute Taylor model flowpipes which are reachable set over-
approximations for the artificial pancreas model shown in Figure 2.

We call a set which consists of all reals between two rational bounds a, b such that a ≤ b
an interval, and denote it by [a, b]. A Taylor Model (TM) is denoted by a pair (p, I), such
that p is a degree-bounded polynomial over a set of variables x1, . . . , x2, collectively denoted
by ~x, each of which ranges in an interval domain, and I is an interval [5]. A continuous
function f(~x) is overapproximated by a TM (p(~x), [a, b]) over a domain D, if for all ~x0 ∈ D
we have that p(~x0) + a ≤ f(~x0) ≤ p(~x0) + b. TMs can also be organized as vectors to provide
overapproximations for vector-valued functions.

Given an ODE
.
~x = f(~x) with an initial condition ~x(0) ∈ X0, the exact solution is denoted

by a flowmap ϕf such that ~x(t) = ϕf (~x0, t). In general, ϕf cannot be obtained in a closed
form. However, it can be tightly overapproximated by a TM (p(~x0, t), I) of some order k > 0
over a small time step [0, δ]. Then the range of (p(~x0, t), I) with ~x0 ∈ X0 and t ∈ [0, δ] forms
an overapproximation of the reachable set, i.e., all ODE solutions, in that time step. Such a
TM is also called a flowpipe. The technique to consecutively compute TM flowpipes is called
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TM integration (see [6]). That is, each TM flowpipe (p(~x0, t), I) is an overapproximation of the
flowmap ~x(t) = ϕf (~x0, t0 + t) with ~x0 ∈ X0, t ∈ [0, δ] for some t0 ≥ 0 which is the total amount
of time covered by the previous flowpipes.

The main algorithm to compute TM flowpipes for the artificial pancreas model is an adap-
tion of the general flowpipe construction framework for hybrid systems [11]. We present it as
Algorithm 1.

Algorithm 1 Flowpipe construction algorithm for the artificial pancreas model

Input: Initial set X0 of the model, initial dynamics D0, control stepsize δc, number of control
steps N .

Output: Overapproximation of the reachable set in N control steps.
1: R ← ∅; # set for resulting flowpipes
2: Enqueue 〈X0, 0,D0〉 to Queue; # Queue for new flowpipes
3: while Queue is not empty do
4: Dequeue a state set 〈X,n,D〉 from Queue;
5: Compute the flowpipes from X in the time interval [0, δc] under D;
6: Add the flowpipes to R;
7: Compute the flowpipe Xδc at the time δc;
8: Decide the possible dynamics D1, . . . ,Dm for the next control step;
9: if n < N then

10: for all i = 1, . . . ,m do
11: Reduce Xδc to Xi according to the condition of Di;
12: Enqueue 〈Xi, n+ 1,Di〉 to Queue; # Add a new flowpipe
13: end for
14: end if
15: end while
16: return R;

In each iteration of the main loop, the algorithm computes all flowpipes in a control step
and determine the dynamics for the next step based on the flowpipe at the end of the current
step along with the control strategy. It terminates when the given maximum number of control
steps are handled. The dynamics in each step is an ODE that is derived from the control
strategy shown in Figure 2. More details are given as follows.

Computing flowpipes in a control step. The flowpipe construction in each control step
can be handled by the TM integration method, since the ODE is fixed. We use the efficient
integrator with adaptive time steps implemented in Flow* [13]. Then, the flowpipe at the end
of the control step can be easily evaluated from the last flowpipe.

Deciding the dynamics for the next control step. Since the discrete controller interferes
the system only at the end of each control step, we only need to update the dynamics at the
end of a step. For the strategy presented in Figure 2, our algorithm first evaluates the range
of the glucose level G from the flowpipe Xδc , and then check the possibility of the insulin rates
for the next step. It could be possible that the range of G covers the conditions for several
insulin rates. If so, we subdivide the flowpipe Xδc according to those conditions and add each
subdivision with the new dynamics into the queue. There are various methods to subdivide
a TM flowpipe, we do it in the following way. Given a flowpipe Xδc whose range satisfies

84



Insulin Infusion Control Verification. Chen et al.

the conditions C1, . . . , Cm, then the subdivision Xi for the condition Ci can be obtained from
reducing Xδc according to Ci by domain contraction [12].

Theorem 1. Algorithm 1 returns an overapproximation of the reachable set of the artificial
pancreas model in N control steps.

Although time triggered jumps can be modeled in a hybrid automaton by adding an extra
timer variable, we need to intersect the flowpipes at the end of each control step using a standard
event triggered semantics. The method not only is less efficient but also produces flowpipes
which are unnecessarily large. The idea in Algorithm 1 is to perform a flowpipe construction for
a control step and simply evaluate the TM overapproximation for the reachable set at the end
of the step, it avoids an intersection computation which is required in the standard reachability
computation framework.

We now consider the problem of incorporating a sensor error in the range [−∆,∆] for each
controller execution.

Sensor Noise. For a glucose value G0, the effect of sensor noise results in a new value
G′0 ∈ [G0 − ∆, G0 + ∆]. Given that the range of the glucose value is overapproximated by a
TM XG at the beginning of a control step, then a dynamics D is possible in the next step if
its condition C is satisfied by a glucose value G′0 ∈ {G0 + u |G0 ∈ XG, u ∈ [−∆,∆]}. If so,
we may further reduce the TM XG properly according to C and add it along with D to the
queue. More precisely, if C is given by G ≤ a, we may reduce XG according to the constraint
G ≤ a + ∆, since any value larger than a + ∆ will not be deviated to a value below a by the
noise. The case of G ≥ a can be treated analogously.

Merging flowpipes. Subdivisions on flowpipes may lead to an explosion of the sets in the
queue. Therefore, we consider to merge flowpipes during the flowpipe construction. When we
enqueue a new flowpipe, we try to merge it with an existing flowpipe in the queue. We say
that two flowpipes are mergeable if they are the reachable set overapproximations at the same
time instance. In our work, we simply compute the merged flowpipe as an interval enclosure
for the mergeable flowpipes. Furthermore, since Algorithm 1 is performing a BFS exploration.
Therefore, the computation of reachable states at the (j + 1)th time step proceeds only after
performing all possible flowpipe merges at step j.

The effectiveness of our algorithms will be evaluated based on the experiments given in the
next section.

5 Experiments

We implemented the flowpipe construction algorithm for the artificial pancreas model from
Figure 2, by combining the piecewise quadratic meal model, the ODE insulin glucose regulation
model with the controller. Our model implements the clinical scenario described in Section 3.
The implementation is performed using an C++ API provided by the Flow* tool. The API will
be documented and made available to developers in the near future. For the model checking,
we consider the time horizon of 720 minutes and a control step size 5 minutes, so there are
totally 144 control steps along each computation path. In all tests, we use an adaptive step size
bounded by 0.2, a TM order of 3, cutoff threshold 10−8, and remainder estimation [−0.01, 0.01].

85



Insulin Infusion Control Verification. Chen et al.

Figure 5: Flowpipes and numerical simulations without sensor noise (Strategy I)

We consider two different control strategies defined by sets of insulin rates. Control strategy
I uses the insulin rates (see figure 2):

i0 = 0.0, i1 = 0.1, i2 = 0.2, i3 = 0.5, i4 = 1.4 .

Figure 5 shows the flowpipes computed by our algorithm without any sensor noise. The
computation time required is 239 seconds. Figure 6 shows the flowpipes that take a sensor noise
with ∆ = 10 into account. The computation time required is 264 seconds.

It is easily seen from the flowpipes that (a) hypoglycemia can never happen under this
clinical scenario since G ≥ 70 mg/dl holds in all situations, (b) the flowpipes indicate the
possibility of G ≥ 300 although simulations do not confirm a violation, and (c) the wakeup
blood glucose levels are not inside the euglycemia range of [70, 180] mg/dl.

Next, we consider strategy II using the insulin rates

i0 = 0.0, i1 = 0.3, i2 = 0.7, i3 = 1.2, i4 = 1.5 .

The computed flowpipes without sensor noise are shown in Figure 7. The time cost is 316
seconds. When a sensor noise of ∆ = 10 is added, we have the flowpipes shown in Figure 8,
the time cost is 223 seconds.

We conclude that using insulin rates given by strategy II, the overall control is improved
since G ≥ 70 mg/dl and G ≤ 300 mg/dl both hold. Nevertheless, the property of wakeup
euglycemia remains violated.

Challenge Problems: We conclude by observing that even though Flow* tool can be used
to systematically verify nonlinear mathematical models of insulin glucose response, the overall
challenge of systematically synthesizing control parameters i0, . . . , i4 to find values that can
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Figure 6: Flowpipes and numerical simulations with a sensor noise (Strategy I)

Figure 7: Flowpipes and numerical simulations without sensor noise (Strategy II)
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Figure 8: Flowpipes and numerical simulations with a sensor noise (Strategy II)

satisfy all three properties remains an open challenge for future verification efforts. Additionally,
we may also consider a rich set of temporal correctness properties and richer clinical scenarios
involving multiple meals. Finally, extending our approaches to the recently proposed extensions
of the Dalla-Man model to incorporate the effect of physical activity remains part of our future
work [39].

6 Conclusion

We present a model of artificial pancreas with a multi-basal controller. We propose a new
flowpipe construction algorithm to compute reachable set overapproximations for the controlled
system. Although such a system has 10 continuous variables and involves a large number of
control switches, our method can still prove the safety for a challenging control strategy. In the
future, we plan to study more complex control strategies using relational abstraction [46] and
decomposition [14].
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