

Concurrency and Models of Abstraction:
Past, Present and Future

Jeremy M. R. Martin
Lloyd’s of London
One Lime Street

London EC3M 7HA
UK

Abstract. I will present a personal view of some of the key historical developments in Concurrency Theory
and how abstract models have been used to make it easier to develop concurrent systems. I will then provide an
assessment of certain concurrency issues facing us today and make predictions as to how these will be solved in
the future.

Keywords—Concurrency, Abstraction, CSP, Map-Reduce, Microservices, Data Lake, Quantum Computing,
Cyber Terrorism.

I. INTRODUCTION
Concurrency in a computer system is the phenomenon of multiple computations and processes

happening at the same time [1,2]. It is an inevitable feature of many problem domains that will need to
be embraced when designing solutions. However, in its most general and complex form, it presents
serious challenges to software and hardware engineers to understand how to manage it and be able to
deliver reliable and efficient systems.

Therefore there has been a long history of developing abstract models of concurrency for specific

problem domains, which conceal certain details and focus only on the essential concepts needed to be
understood by engineers in each particular field. Providing engineers with a suitably abstract model
can significantly aid their intuitive understanding of their problem domain and thereby enable them
confidently to create extremely complex systems which are nonetheless reliable and effective.

An iconic early example of using abstraction to aid comprehension of a complex concurrent system

was the use of the iconic London Underground Map which concealed the geographical complexity of
the actual system behind a topologically-equivalent but easy-to-follow abstract map.

In this paper, I shall present an overview of some successful concurrency abstractions which I shall

argue have supported major technical advances and efficiencies from which we benefit today.

Kalpa Publications in Computing

Volume 17, 2023, Pages 31–47

Proceedings of 2023 Concurrent Processes Architectures
and Embedded Systems Hybrid Virtual Conference

L. Quarrie (ed.), COPA 2023 (Kalpa Publications in Computing, vol. 17), pp. 31–47

II. SOME KEY CONCURRENCY ABSTRACTIONS FROM THE PAST

A. The Internet
Arguably the most significant engineering achievement of the past sixty years has been the
development of the internet, which now connects billons of people with each other and with billions of
devices, enabling rapid exchange of digital information in many different formats. This was built about
foundations of telegraphy going back to the early nineteenth century.

How could it be that such a complex system, constantly being modified and added to, relied upon by so
many for critical services, can perform so well?

One of the major building blocks is the Internet Protocol Suite [3], which abstracts the internet into four
layers. From the bottom up these layers are called Link, Network, Transport and Application. Each one
provides services for connecting machines and people. The services of a particular layer are consumed
by the services from the layer above, and in turn also consume services from the layer below.

Figure 1. Internet Protocol Suite

The Link Layer provides services which control the physical aspects of network communication. It
includes protocols and technologies that govern the transmission of data over a specific physical
medium, such as Ethernet, Wi-Fi, or fibre optic.

The Network Layer is responsible for routing data packets between different networks. The Internet
Protocol is used for addressing and routing data packets so they can traverse multiple networks to reach
their destination. Every device on the internet is given a unique address which is used for sending and
receiving messages.

The Transport Layer is responsible for end-to-end communication – it has to ensure that data is reliably
transmitted between devices on different networks.

The Application Layer deals with end-user applications and services. It includes a wide range of
protocols such as the web browsing, email, and file transfer.

Concurrency and Models of Abstraction: Past, Present and Future J. Martin

32

The Internet Protocol Suite is highly modular and flexible, allowing different layers to evolve
independently and supporting a wide range of applications and technologies. It has been instrumental
in the success of the Internet, perhaps the most complex man-made structure built in history. And yet,
in essence, it has a very simple abstract structure, which can be described by four layers of protocols,
each providing client-server[19] connections to the layer above

B. Microprocessor Architecture
The success of the internet has been underpinned by an exponential increase in the performance and
complexity of computer processors. A modern processor may contain as many as 20 billion transistors.
And process instructions at a rate of 100 billion per second. This requires incredibly precise engineering
and manufacturing to be performed at a microscopic level, where quantum mechanics effects come
strongly into view, and yet with the resulting systems reliably performing complex digital operations
at breath taking speed.

Figure 2. Basic MIPS Architecture

A very important abstract pattern which has supported the rapid evolution of microprocessors is MIPS
architecture (Microprocessor without Interlocked Pipeline Stages) [4]. Its simplicity and elegance has
made chip design easier in several ways, for example:

• Reduced Instruction Set Computing (RISC) - the instruction set architecture contains a limited
number of instructions, each of which performs a specific and simple operation, hence
reducing the complexity of executing instructions in hardware.

• Fixed Instruction Length - instructions are of uniform length (typically 32 bits). This fixed-
length encoding simplifies the instruction fetch and decode stages of the pipeline, making it
easier to design and implement.

• Load-Store Architecture - all operations are performed on registers, and memory operations
are limited to load and store instructions. This simplifies the data path and control logic, as
there are separate paths for data transfers between registers and memory.

Concurrency and Models of Abstraction: Past, Present and Future J. Martin

33

• Pipelined Architecture - the architecture is structured into a pipeline with five stages
(instruction fetch, instruction decode, execute, memory access, and write-back). This
pipelining simplifies the design by breaking down instruction execution into smaller, simple
sequential stages. It also allows multiple instructions to be passing through the processor
simultaneously to increase the efficiency of the computation and keep each of the five pipeline
stages constantly busy.

• Compiler Friendliness - the simplicity of the instruction set and architecture makes it easier
for compilers to generate highly efficient code

These and other factors made the MIPS pattern a widely used abstract design in the highly competitive
and specialised domain of Chip Design, leading to rapid progress in microprocessor technology.

C. Parallel Scientific Computing
Another bastion of complex concurrent systems lies within the world of Parallel Scientific Computing.
Scientists and Engineers harness state of the art Supercomputers and Computational Grids to perform
simulations of physical systems as accurately and as fast as possible, pushing processors, networks and
storage systems to their limits for extended periods.

The PRAM (Parallel Random Access Machine) model[11] provides an abstract model of parallel
computation that simplifies the analysis of parallel algorithms by assuming an idealized parallel
machine with shared memory and a fixed number of processors.

OpenMP (Open Multi-Processing) is a widely used programming abstraction for the development of
parallel programs in shared-memory multiprocessing environments, such as the PRAM. It extends C,
C++, and Fortran programming languages with parallel directives (expressed as comments within the
code) to manage multithreaded execution.

Figure 3. Parallel Random Access Machine

For example, here is a simple Fortran program for matrix addition with an OpenMP parallel loop
directive.

SUBROUTINE add(left right,out)
REAL(KIND=dp), INTENT(IN) :: left(:,:), right(:,:)
REAL(KIND=dp), INTENT(OUT) :: out(:,:)

Concurrency and Models of Abstraction: Past, Present and Future J. Martin

34

INTEGER :: i, j
!$OMP PARALLEL DO
DO j = 1, UBOUND(out,2)
 DO i = 1, UBOUND(out,1)
 out(i,j) = left(i,j)+right(i,j)
 END DO
END DO
!$OMP END PARALLEL DO
END SUBROUTINE add

The OpenMP directive tells the compiler that the commands within the two nested loops may be run
concurrently as these are independent calculations. (Unfortunately it is possible to add a directive to a
program that will make the answer wrong if you are not careful. It is really important to ensure that
there are no dependencies between the commands being executed in parallel!)

The emergence of OpenMP, PRAM, and other similar abstract models for Parallel Scientific
Computing, including MPI and BSP, has enabled scientists to create high performance simulation
programs that run on the world’s most powerful computers without having to understand all the
complex details of the underlying machines. This has helped to accelerate research and development
in many diverse areas, such as Medicine, Human Genetics, Astronomy, Seismology, and Defence. It
is another example of how abstraction can free-up and empower people to achieve extraordinary things.

D. Structured Query Language and Transactions

The world is full of data which need to be processed, updated, protected, transmitted and validated. A
very significant development in the field of Data Management has been the definition of the Structured
Query Language. This is essentially a textual representation of two branches of Mathematics:
Relational Algebra and Relational Calculus, which enables its users to carry out precise and complex
mathematic operations on sets of data without having to use any mathematic notation. So SQL in itself
is an abstraction away from mathematical notation to code, e.g.

SELECT name
FROM players;
WHERE age BETWEEN 18 and 25
AND club = ‘Chelsea’

The concurrency factor is that databases are often accessed by many people or processes at the same
time. For instance consider two people trying to book the last pair of tickets for a theatre show at the
same time.

Potentially using a website, each person will log in to see which tickets are available, see the two that
are available and then purchase them. Depending on how this is implemented, there could be a problem
where the tickets are sold to both people by mistake. And this is where the concept of transactions is
useful.

The system can create a transaction for each person which could manage this conflict should the need
arise, by use of locks and rollbacks and other concurrency controls.

Using SQL transactions, the consistency of a system can be maintained, even though there may be many
users reading it and updating it simultaneously.

Concurrency and Models of Abstraction: Past, Present and Future J. Martin

35

Transactions are used to group database operations, expressed in SQL, into a single unit. They are
started with a BEGIN TRANSACTION statement and are concluded with a COMMIT or ROLLBACK
statement. The ACID properties (Atomicity, Consistency, Isolation, Durability) ensure that transactions
are reliable and maintain data consistency. Locks are used to control access to data during transactions.
They prevent multiple transactions from simultaneously modifying the same data item, which could
lead to conflicts and data inconsistencies. Once a transaction is committed, the changes made by that
transaction must be made permanent and durable. If two or more transactions attempt to modify the
same data simultaneously, a conflict can occur.

Deadlocks can occur when transactions wait indefinitely for each other to release locks. Relational
databases employ deadlock detection and resolution mechanisms to detect and break deadlocks[20],
allowing the affected transactions to continue.

Additional complications arise for transactions across distributed collections of databases, for which
distributed protocols have been developed for maintaining consistency.

By employing these mechanisms, relational databases ensure that concurrent queries and updates
maintain data consistency and prevent corruption due to simultaneous access by multiple users or
transactions.

Figure 4. SQL Concurrent Transaction Management

E. Simple Network Management Protocol

We have already discussed how the Internet Protocol Suite has been a huge factor in driving the huge
expansion of the Internet in recent times. We shall now focus on one particular protocol which provides

Concurrency and Models of Abstraction: Past, Present and Future J. Martin

36

a simple, abstract model to help ensure the smooth operation of the internet - managing and monitoring
network devices, such as routers, switches, servers, printers.

The Simple Network Management Protocol (SNMP) is a widely used protocol which allows network
administrators to collect information and manage network devices efficiently using a simple client-
server model [12, 19].

SNMP follows a manager-agent model, where there are two primary components. The SNMP Manager
is a software application that runs on a network management system (NMS). It is responsible for
sending SNMP requests to devices and receiving responses from those requests or asynchronous alerts.
The SNMP Agent is embedded in network devices and provides information about the device's status,
configuration, and performance to the manager.

Figure 5. Simple Network Management Protocol

Each device maintains a Management Information Base, which is a standardised, hierarchical, data
structure where device attributes and performance metrics are tracked.

Essentially a network manager can configure and monitor all the devices in their network by issuing
simple SNMP ‘get’ and ‘set’ commands and tracking responses. This model has significantly helped
to transform and simplify the automated management of the vast collection of local area networks which
span the internet.

F. Process Algebra
A process algebra is a mathematical model of processes, that act and interact continuously with each
other and with their common environment. One of the most successful process algebras is CSP
(Communicating Sequential Processes) which was invented by C. A. R. Hoare and then developed
further in partnership with A. W. Roscoe and S. D. Brookes [1,2].

CSP has been instrumental in enabling deep understanding and analysis of complex concurrent systems,
through abstraction, by providing a structured and rigorous approach to reasoning about concurrency.

Processes are defined using events, operations and parallel combinations of other processes.
Abstraction is provided through the use of non-determinism: behaviours which are irrelevant to the

Concurrency and Models of Abstraction: Past, Present and Future J. Martin

37

purpose of creating an abstract model of a concurrent system are represented as unpredictable internal
decisions.

The basic syntax of CSP processes and operations is described by the following grammar

Figure 6. CSP Syntax

This notation allows for a precise and unambiguous description of concurrent systems. Processes which
are defined using this language obey a set of algebraic rules which enables formal mathematical
reasoning to be conducted concerning their behaviour [2, 20].

Figure 7. Some Laws of CSP

Concurrency and Models of Abstraction: Past, Present and Future J. Martin

38

These algebraic laws of CSP can be used to prove properties of arbitrary CSP networks. Fortunately
there also exists a mature and established automated proof tool for checking properties of finite-state
networks. This is FDR (Failures Divergences Refinement) [8], which can prove that a CSP process
network implements a specification, also modelled in CSP, using the principle of refinement. In CSP,
a system is said to refine a specification if its behaviours are a subset of the specification system. Hybrid
proofs using a combination of algebra and automation can also be very effective [21].

At the COPA2021 conference I presented a case study of a prototype insurance claims automated
payment system, modelled as a set of CSP parallel processes [9] (see figure 8). The system had been
observed to contain a bug which allowed payment of a claim to erroneously repeated. Having coded
up an abstract representation of the system and the requirement for a claim to be paid no more than
once, I ran a refinement check in FDR which reported a counter example and provided me with a
possible sequence of events that could lead to a double payment. I was then able to modify the logic
of the implementation to remove the bug, and also to verify this new design with FDR.

Figure 8 - Microservices for Insurance Claims System

This was a simple example where the FDR engine was able to formally verify the existence of a bug in
a realistic concurrent system, making use of abstraction to hone in on the problematic aspects of the
solution.

CSP has been phenomenally successful as an abstract model for driving forward both theoretical results
and also practical results of immense significance, such as cracking the famous Needham-Schroeder
cryptographic protocol [22].

Concurrency and Models of Abstraction: Past, Present and Future J. Martin

39

Figure 9. Output from FDR model checker

III. MORE RECENT CONCURRENCY ABSTRACTIONS

A. Cloud Computing
One of the most significant steps in computer evolution over the past decade, has been the wholesale
adoption of Cloud Computing [13, 23].

An abstract model for cloud computing that hides both physical infrastructure and geographical location
can be described using several layers or components, as shown in figure 10. This model
compartmentalises the underlying hardware, the data centres, and their physical locations, in lower
levels – hence allowing the users to focus solely on their computing needs in the presentation layer.

Cloud managers can easily construct and maintain virtual data centres for their organisations, installing
new servers and networking devices at the click of a button.

Concurrency and Models of Abstraction: Past, Present and Future J. Martin

40

Figure 10. Abstract cloud computing model

The emergence of cloud computing has hugely facilitated business agility and innovation. And it has
stimulated the important emergence of the DevOps movement - where organisations can combine their
development and operations teams, with infrastructure and information security requirements being
defined as code.

B. Google Map-Reduce
The launch of Google's search engine had a seismic impact on the internet, technology, and the way
people access information for both work and leisure. It offered unprecedented speed, efficiency and
quality of results. At its heart was an abstract design pattern called Map-Reduce, named after two
functional programming paradigms [5].

Google's web crawlers continuously gather and index web pages from the internet. Although the full
details are proprietary, it is believed that their process runs as follows. The collected pages are stored
in a distributed file system and divided into smaller units for parallel processing which are distributed
to multiple worker processes. The ‘Map’ function is then performed, whereby a user-defined function
processes each shard of data in parallel, extracting relevant information from the web pages, such as
keywords, links, and metadata. The results are emitted as intermediate files containing key-value pairs.
These intermediate files are then passed to another set of worker processes which apply the ‘Reduce’
function to consolidate the final results into a condensed form that can be used to answer search queries
very efficiently.

Concurrency and Models of Abstraction: Past, Present and Future J. Martin

41

Figure 11. Basic MapReduce pattern

C. Data Lake
The Google Map-Reduce abstraction has subsequently been adopted by the Data Science community
for so-called ‘Big Data Analysis’ and is at the heart of the Data Lake architectural abstraction [15]
model for storing and managing vast amounts of diverse data in a centralized repository

Data Lake is intended to provide organizations with a flexible and scalable solution for storing,
processing, and analysing both structured and unstructured data.

Figure 12. The Data Lake

Concurrency and Models of Abstraction: Past, Present and Future J. Martin

42

A data lake ingests external data sources into a storage area, known as the Raw Zone. The data typically
arrive from a wide variety of sources, such as traditional databases, IoT devices, social media, and
surveillance videos. The data pass through transformation steps, to be cleaned, analysed and joined as
appropriate. Ultimately they arrive in output data stores, ready for external data consumption. ‘Big
Data’ analytic tools, such as Hadoop and Spark, which are based on Map-Reduce, are used to perform
the data transformations on grids of parallel computers.

A key element of the pattern is the Data Directory, which maintains metadata related to every data set
that passes through the lake: type, lineage, ownership, access rights, quality, and adherence to policies
such as GDPR.

Adoption of this simple pattern is transforming data management and governance of many enterprises
which previously struggled to maintain their data in complex collections of aging data siloes.

D. Microservices – Chaos Monkey
Microservices Architecture [6, 7, 9] is a modern flavour of Communicating Process Architecture, based
on fine-grained services and lightweight protocols. It represents a fundamental shift in Solution
Delivery practice away from building complex, multi-tiered monoliths. Its main principles are as
follows:

• A microservices-based IT system is delivered as a set of loosely coupled components;
• Each component service implements one specific capability from an enterprise perspective;
• Components can be independently developed, potentially harnessing different technologies as

appropriate;
• Communication uses technology agnostic protocols (which means you can design them

independent of infrastructure needs to run anywhere);
• Microservices are small in size so that they are suitable for implementation and support by a

DevOps team with a continuous delivery software development mind-set.
Microservices are used for replacing the individual monolithic services with collections of simple,
single-purpose, lightweight processes and are highly concurrent. There might be many instances
running of each microservice, from different locations, with the numbers scaled up and down on
demand.

One of the early adopters of Microservices was Netflix for their video streaming service which was
implemented using the AWS Cloud. They took a strategic decision to develop a culture among their
engineers of building redundancy and automation into the system to make it resilient to AWS outages
without any impact to the millions of Netflix members around the world. They did this by introducing
the Chaos Monkey which randomly chooses servers in their production environment and turns them off
during business hours.

Concurrency and Models of Abstraction: Past, Present and Future J. Martin

43

Figure 13. Microservices Architecture Pattern

The Microservices and the Chaos Monkey abstractions work together to help organizations build and
maintain resilient highly concurrent and distributed systems. Production microservices are periodically
deliberately caused to fail, providing invaluable data and insights to the product team, enabling them to
ensure that their services are resilient to unexpected disruptions, leading to a more reliable system.

IV. CONCLUSIONS AND POTENTIAL FUTURE ABSTRACTIONS
I have presented some significant concurrency abstractions from the past sixty years and illustrated how
they have facilitated major technological advances to take place which have transformed certain aspects
of how we live. These advances have facilitated major improvements to the general efficiency and
prosperity of the modern world. (But it should be said that there is also a downside to some of these.)

I shall now describe two currently challenging areas of technical research where new concurrency
abstractions are needed to help drive them forward.

A. Quantum Computing Simple Language
Quantum computing [16] is a rapidly evolving field that leverages the principles of quantum mechanics
to perform computations in a fundamentally different way than classical computers. They were
originally proposed in 1984 independently by Feynman [25] and Manin. At the time of writing, small-
scale quantum computers have become a reality and are available for hire from cloud service providers.
However they are not yet sufficiently powerful to carry out useful computations, they are still primarily
a research tool.

Theoretical work has shown that certain calculations have a lower quantum complexity than
computational complexity. For instance a quantum computer could potentially carry out integer
factorisation exponentially faster than a traditional computer, make it feasible to break many of the
cryptographic systems in use today, with potentially devastating consequences for global commerce
and national security.

Concurrency and Models of Abstraction: Past, Present and Future J. Martin

44

But there is also a school of thought that it might never be possible to create sufficiently powerful
quantum computers to realise this potential because of problems with managing increasing error-rates
as the number of components increases.

Quantum computers are analogous to classical computers in that they consist of circuits with gates that
process bits of information. In classical computing a bit can only take the value 0 or 1, but in Quantum
Computing the qubit can exist in multiple states simultaneously, due to the property of superposition.

These computers also exhibit the strange phenomenon of entanglement between qubits. Their states
can become linked together so that the measurement of one instantly affects the state of the other.

Quantum gates are used to process the qubits. These are analogous to classical logic gates but may
perform more complex operations, taking advantage of superposition and entanglement.
Whereas the gates of a digital circuit perform simple Boolean operations, like AND, OR, and NOT, on
classical bits, which can only take the values 0 or 1, quantum circuits require a more advanced level of
mathematics to describe. Qubits are unit length complex vectors in a Hilbert vector space, and may take
an infinite number of possible values. Quantum gates perform operations on one or more qubits by
applying a tensor product between the gate's matrix representation and the state vector(s) of the qubits.

The mathematical properties of superposition and entanglement can be used to design highly efficient
quantum algorithms for solving important problems, potentially processing vast amounts of information
in parallel.

However, Quantum Computing, like Quantum Mechanics, is hard to grasp intuitively because of the
strangeness of the concepts of superposition and entanglement. This makes the entry bar seem rather
high for becoming a quantum developer.

But there was a time when programming a classical computer would have required a significant
understanding of electronic circuits and components. And we have moved a very long way from that in
the past eighty years with a stack of abstractions for digital circuits, microprocessors, distributed
memory protocols, machine code, assembly language, and high level programming languages.

Simulators exist for quantum circuits, using classical computing, with mathematical concepts, such as
complex vectors, matrices and tensor products used to represent the entities and operations. One way
for traditional programmers to understand Quantum Circuits as a kind of restricted programming
language, where the only data type is qubit and the operators are defined as matrices. But, because of
the nature of Quantum Physics, some of these operations can lead to more efficient execution than
would be possible in a simulator.

Building abstraction models for quantum computing has become a rich area of research. Languages,
such as Q#, Qiskit, or Cirq, provide high-level abstractions for programming quantum algorithms.
Programmers can express quantum operations and algorithms using familiar syntax. Quantum Libraries
are available for these languages providing pre-built quantum algorithms and circuits that programmers
can use as building blocks. This is essentially at the same level as assembly language for classical
computing, and further layers of abstraction and simplicity are needed to drive progress.

So the race is on to come up with an abstract model for quantum computing, that makes the field
more accessible to conventional programmers without requiring them to have an advanced
understanding of Quantum Physics.

Concurrency and Models of Abstraction: Past, Present and Future J. Martin

45

It would be interesting to explore whether use of a process algebra, such as CSP, could be
instrumental in achieving this. After all, entanglement is a similar concept to synchronous
communication, and circuits represent a process workflow.

B. Defence Against Cyber Terrorism
Cyber Terrorism is one of the major threats to peace and stability that the world now faces, part of the
flip side of the many advantages that technical advances have brought us.

Lowe [22] and Roscoe [2] performed some seminal work using CSP and FDR to model a spy attempting
to compromise many established cryptographic protocols, most of which they found ways to crack. In
Roscoe’s approach the spy was modelled as a process which can ‘overhear’ certain messages and
accumulate facts which will enable them to fake certain new messages. The spy is able to fake messages
based on any facts they have accumulated and will arbitrarily do so with no particular strategy.
However the exhaustive nature of the validation carried out meant that the existence of an intelligent
strategy that would crack the protocol would be revealed using the approach.

We now face a cyber terrorism threat where very significant resources are being dedicated to attempting
to infiltrate many IT systems that are vital to our security and prosperity. These attacks can take place
on many fronts using all relevant state-of-the-art technical capabilities available, such as AI, big data
analytics, social media indoctrination [17], and also breaching physical security controls to gain direct
access to critical systems.

In order to protect our society against these threats we need to develop abstract models to support the
rapid development by our engineers and technical security experts of innovative and powerful terrorism
defence tools.

Creating tools to protect against cyber terrorism requires a multi-faceted approach that involves
technology, policies, and expertise from various domains.

Developing an abstraction model for such tools would involve simplifying and structuring the process
of cybersecurity in a way that enables efficient development, deployment, and management of
protective measures against cyber terrorism. This could become a natural successor to Lowe’s
CASPER language - Compiler for the Analysis of Security Protocols – which is based on CSP and FDR
[26].

Concurrency and Models of Abstraction: Past, Present and Future J. Martin

46

REFERENCES

[1] C.A.R. Hoare, “Communicating Sequential Processes,” Prentice-Hall, 1985.
[2] A.W. Roscoe, “The Theory and Practice of Concurrency,” Prentice-Hall, 1998.
[3] Andrew S. Tanenbaum and David J. Wetherall. “Computer Networks”, 5th Edition, Prentice-Hall, 2010.
[4] David A. Patterson, John L, Hennessey. “Computer Organization and Design: The Hardware/Software Interface”. 5th Edition,
Morgan Kaufmann, 2013
[5] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters”, Communications of the
ACM, 2008
[6] Sam Newman, “Building Microservices: Designing Fine-Grained Systems,” O’Reilly, ISBN: 978149195 0357, 2014.
[7] Leonard Richardson and Sam Ruby, “RESTful Web Services,” O’Reilly, 2007.
[8] T. Gibson-Robinson, P. Armstrong, A, Boulgakov and A. W. Roscoe. “FDR3: a parallel refinement checker for CSP,” Int
J Softw Tools Technol Transfer 18, 149–167 2016.
[9] Jeremy M. R. Martin. “Designing and Verifying Microservices Using CSP”. Proceedings of 2021 IEEE Concurrent
Processes Architectures and Embedded Systems Virtual Conference, IEEE
[10] Henry F. Korth. “Locking Primitives in a Database System”, Journal of the Associatio12n for Computing Machinery, Vol
30, No 1, January 1983, pp 55-79.
[11] Jörg Keller, Christoph Kessler, Jesper Träff. ”Practical PRAM Programming”, J. Wiley & Sons, 2001
[12] JD Case, M Fedor, ML Schoffstall, J Davin. “A Simple Network Management Protocol (SNMP)”, Network Working Group
Request for Comments: 1098 1990
[13] Brian Hayes. “Cloud Computing”, Communications of the ACM Volume 51, Number 7 (2008), Pages 9-11
[14] Michael Alan Chang, Brendan Tschaen, Theophilus Benson, Laurent Vanbever. “Chaos Monkey: Increasing SDN
Reliability through Systematic Network Destruction”, SIGCOMM ’15 August 17-21, 2015, ACM
[15] Fatemeh Nargesian, Erkang Zhu, Renee J. Miller, Ken Q. Pu, Patricia C. Arocena. “Data Lake Management: Challenges
and Opportunities”, Proceedings of the VLDB Endowment, Vol. 12, No. 12 ISSN 2150-8097 2019
[16] Robert Hundt, “Quantum Computing for Programmers”, Cambridge University Press 2022.
[17] Sinan Aral, Dean Eckles. “Protecting elections from social media manipulation”, Science Vol 365, Issue 6456. 2019
[18] James A. Lewis. “Assessing the Risks of Cyber Terrorism, Cyber War and Other Cyber Threats”, Center for Strategic and
International Studies 2002.
[19] J. Martin and P. Welch. “A Design Strategy for Deadlock-Free Concurrent Systems”, Transputer Communications Volume
3 Number 4 (1996)
[20] J. Martin, “The Design and Construction of Deadlock-Free Concurrent Systems”, D. Phil Thesis (1996), University of
Buckingham
[21] P. H. Welch and J. M. R. Martin “A CSP Model for Java Multithreading”. Proceedings of the International Symposium on
Software Engineering for Parallel and Distributed Systems (PDSE 2000), IEEE Press 2000
[22] Gavin Lowe. “Breaking and Fixing the Needham-Schroeder Public-Key Protocol using FDR”, in Margaria, T., Steffen, B.
(eds) Tools and Algorithms for the Construction and Analysis of Systems. TACAS 1996. Lecture Notes in Computer Science,
vol 1055. Springer, Berlin, Heidelberg 1996
[23] Jeremy M. R. Martin, Steven J. Barrett, Simon J. Thornber, Silviu-Alin Bacanu, Dale Dunlap, Steve Weston. “Economics
of Cloud Computing : a Statistical Genetics Case Study”, Proceedings of Communicating Process Architecture 2009, IOS Press
2009
[24] C. Bennett and A. Tseitlin. “Netflix: Chaos monkey released into the wild. netflix tech blog” 2012
[25] Feynman, Richard. "Simulating Physics with Computers", International Journal of Theoretical Physics. 21 (6/7): 467–488
1982
[26] Gavin Lowe, “Casper: A Compiler for the Analysis of Security Protocols”,
https://www.cs.ox.ac.uk/gavin.lowe/Security/Casper/

Concurrency and Models of Abstraction: Past, Present and Future J. Martin

47

https://www.cs.ox.ac.uk/gavin.lowe/Security/Casper/

