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Abstract

As satisfiability (SAT) solver performance has improved, so has their complexity, which
make it more likely that SAT solvers contain bugs. One important source of increased
complexity is clause sharing in parallel SAT solvers. SAT solvers can emit a proof of
unsatisfiability to gain confidence that their results are correct. Such proofs must contain
deletion information in order to check them efficiently. Computing deletion information is
easy and cheap for parallel solvers without clause sharing, but tricky for parallel solvers
with clause sharing.

We present a method to generate unsatisfiability proofs from clause sharing parallel SAT
solvers. We show that the overhead of our method is small and that the produced proofs
can be validated in a time similar to the solving (CPU) time. However, proofs produced
by parallel solvers without clause sharing can be checked in a time similar to the solving
(wall-clock) time. This raises the question whether our method can be improved such that
the checking time of proofs from parallel solvers without clause sharing is comparable to
the time to check proofs from parallel solver with clause sharing.

1 Introduction

Satisfiability (SAT) solvers have become more complex in recent years due to inprocessing
techniques [21] and parallel computing [14, 18, 22]. This raises the question whether to results
of these solvers can be trusted. To gain confidence in the correctness of the results, SAT solvers
can emit unsatisfiability proofs that can be validated using a checker. The main challenge to
check unsatisfiability results of SAT solvers is obtaining a relatively compact proof that can be
validated in a reasonable time. We present a first approach in this direction for parallel SAT
solvers with clause sharing [1, 11–13].

Initially, checking unsatisfiability results of SAT solvers was based on constructing a reso-
lution proof [7, 27]. It was relatively easy to obtain a resolution proof of SAT solvers a decade
ago, but due to the increased complexity it is harder for contemporary SAT solvers. Hardly
any the state-of-the-art SAT solver can produce resolution proofs. Another major disadvan-
tage of resolution proofs is their size. Resolution proofs of hard application benchmarks can
be hundreds of gigabytes large. Additionally, emitting resolution proofs significantly increases
the memory consumption. For sequential solvers memory usage can increase by two orders of
magnitude [15]. For parallel SAT solvers, the space and memory requirements to emit reso-
lution proofs will scale linearly in the number of solver incarnations. So the disadvantages of
resolution proofs are even more severe for parallel SAT solvers compared to sequential SAT
solvers.
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Alternatively, one can check unsatisfiability results via clausal proofs [10], also known as
reverse unit propagation (RUP) [28]. For example, Beame et. al showed that learned clauses
can be checked using RUP [4]. Clausal proofs are easy to emit and much smaller than resolution
proofs. Also, emitting clausal proofs hardly increases the memory consumption of solvers.
Consequently, this alternative is a more viable option to validate results of parallel SAT solvers.
However, clausal proof are costly to check. In order to validate clausal proofs reasonably
efficiently, proofs must contain deletion information, resulting in so-called DRUP proofs [15].
Some techniques cannot be checked with resolution and RUP. Such techniques can be checked
using resolution asymmetric tautology checks [21, 29].

In this paper, we propose a method to produce DRUP proofs from parallel SAT solvers
with clause sharing. Clause sharing makes it complicated to add deletion information to clausal
proofs: a clause should only be marked as deleted when it is removed from all solver incarnations.
Our ethod uses a counting mechanism to track how many solver incarnations use a certain
clause. As soon as a counter is reduced to zero, then the corresponding clause is added as
deletion information to the proof. We implemented our method in the portfolio solver Priss
and evaluate it on application benchmarks from SAT Competition 2013.

The paper is structured as follows: in Section 2 we give the notation that is used in the
paper and present the proof format DRUP. Next, we present how to generate DRUP proofs for
portfolio solvers in Section 3, and prove that the presented approach is sound in Section 4. Af-
terwards, we analyze the presented approaches empirically in Section 5 and present a conclusion
in Section 6.

2 Preliminaries

2.1 The Satisfiability Problem

We assume a fixed infinite set V of boolean variables. A literal is a variable x (positive literal)
or a negated variable v (negative literal). The complement x of a positive (negative, resp.)
literal x is the negative (positive, resp.) literal with the same variable as x. For a set of literals
S, the complement of S, denoted with S is defined as S = {x | x ∈ S}. In SAT, we deal with
finite clause sets, called formulas. Each clause C is a finite set of literals. We write a clause
{x1, . . . , xn} also as disjunction (x1 ∨ . . . ∨ xn) and a formula {C1, . . . , Cn} as a conjunction
(C1 ∧ . . . ∧ Cn). The empty clause is denoted with ⊥.

Asymmetric literal addition [21], ALA(F,C), is the unique clause resulting from repeating
the following until fixpoint: if x1, . . . , xn ∈ C, and there is a clause (x1∨ . . .∨xn∨x) ∈ F \{C}
for some literal x, let C := C ∪{x}. We consider the redundancy criteria asymmetric tautology
(AT) [21]. A clause C has AT if ALA(C,F ) is a tautology.

A DRUP derivation of a formula F is a finite sequence of proof instructions (αi | 0 ≤ i ≤
n), where a proof instruction α is either of the form Cdel or Crup. The empty derivation is
denoted with ε. A RUP derivation is a DRUP derivation in which no Cdel occurs. For a proof
derivation (αi | 1 ≤ i ≤ n) in the formula F , we assign a view of the formula F and the DRUP
derivation α, in symbols, view(α, F ), as follows view(ε, F ) = F , view(αCrup, F ) = view(α, F )∧C,
view(αCdel, F ) = view(α, F ) \ {C}. A proof derivation (αi | 1 ≤ i ≤ n) in the formula F is
correct if and only if for all 1 ≤ i ≤ n with αi = Crup it holds that the clause C has AT in
view(α1 . . . αi−1, F ). A refutation for the formula F is a proof derivation α in F such that we
find that ⊥ ∈ view(α, F ).
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2.2 Parallel SAT Solving

Parallelization is a promising approach to solve hard instances. We identify two approaches in
parallel SAT solving (see [16,25,26] for an overview):

The Parallel Portfolio approach [14] made the breakthrough in 2008, and exploits different
search strategies by running multiple SAT solvers on the same input formula. This means that
these SAT solvers are competing in answering the satisfiability question. This solving approach
is the most widely used approach, due to its simplicity, as well as due to its robustness.

The Search Space Decomposition approach [30] was introduced in 1996. The search space,
i.e. the set of interpretations, is decomposed into different spaces by guiding paths, that are
then explored in parallel by modern sequential SAT solvers. This means that the solvers are
competing in finding a model of the formula, and cooperating in proving its unsatisfiability.
The solvers PCASSO [19] and Treengeling [5] have shown that the decomposition approach
is competitive with their recent impressive performance, showing that the approach can compete
with state-of-the art parallel SAT solvers.

For both the portfolio and the decomposition approach, clause sharing has been discussed:
learned clauses from one solver incarnation are distributed to other incarnations. For plain
portfolio solvers without inprocessing clause sharing is straightforward, because all learned
clauses are entailed by all formulas, many clause sharing schemes and heuristics have been
analyzed [1, 11, 13]. As soon as inprocessing is used, shared clauses have to be selected care-
fully to ensure the soundness of the portfolio solver [24]. For decomposition solvers clause
sharing is even more complicated. Nevertheless, clause sharing is also possible for this solving
approach [17,22].

In the following, we consider the parallel portfolio approach.

3 DRUP Derivations in Parallel Portfolios

This paper investigates the question how compact DRUP proofs can be easily constructed in
the parallel portfolio setting. In the parallel portfolio setting, the input formula F0 is spread
among the solver incarnations. Each solver incarnation then tries to find a model of the input
formula or to prove the unsatisfiability of the input formula. Additionally, the solvers can share
learned clauses.

3.1 No Clause Sharing

If no clause sharing is applied, we can easily construct DRUP proofs: each solver incarnation
Solveri constructs a DRUP proof αi as in the case for sequential SAT solvers. When a solver in-
carnation Solveri terminates with the answer UNSAT, it returns DRUP proof αi. Consequently,
the derivation αi is a DRUP refutation for the input formula, since the solver incarnations do
not interact.

3.2 RUP Proofs with Clause Sharing

We now consider RUP proofs for the parallel portfolio setting in which the solver incarnations
cooperate by clause sharing. In this case, we propose to merge the RUP proofs that the solver
incarnations produce: we have a single RUP derivation α, and whenever a solver incarnation
learns a clause C, we add Crup to the derivation α in the correct chronological order. If a solver
incarnation Solveri imports a clause C from another solver, nothing is added to the derivation
α, because this clause is already added by another solver.
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This procedure is sufficient and sound. Any new clause that is generated by the clause
learning procedure is added immediately to the derivation. By clause sharing, only duplicate
clauses are introduced, which are already present in the proof. Since no deletion information
is added to the proof, we do not need to add duplicates. However, deletion instructions can
significantly reduce the costs to validate unsatisfiability proofs [15].

3.3 DRUP Proofs with Clause Sharing

The combination of deletion information and clause sharing is problematic. Suppose a clause
C is learned in Solver1, which is shared with Solver2. Afterwards Solver1 eliminates C from its
working formula and the proof. However, C is still present for Solver2. Now, Solver2 can learn
a clause D, which is not necessarily an asymmetric tautology, i.e. the RUP check for D may
depend on C. Consequently, there are learned clauses that can no longer be validated using a
RUP check.

Example 1. Consider the formula F = (x∨y∨ z)∧ (z∨y)∧ (x∨y∨ z)∧ (y∨ z). The resolvent
of the clauses (x∨ y ∨ z) and (z ∨ y) is C = (x∨ y), and the resolvent of the clauses (x∨ y ∨ z)
and (y ∨ z) is D = (x∨ y). Finally, the resolvent of the clauses C and D is the unit clause (x).
Suppose that a solver incarnation learns the clause C, and then D. The proof is then CrupDrup.
After sharing D with all other incarnations, suppose the clause D is deleted in the proof. Then,
the clause (x) has no AT in view(CrupDrupDdel, F ), but has AT in F ∧ C ∧D.

We can avoid the above scenario by treating the proof as a multiset. This concept allows
to have duplicates such that each clause in the proof is owned by a specific solver. In this way,
the procedure ensures that any clause that is deleted by a solver is owned by this solver, and if
the same clause is used by some other solver, then this other solver has its private copy of the
clause.

Adding Redundant Duplicates. Given a portfolio of n solver incarnations, we first repli-
cate the input formula F0 n times, such that each solver owns each clause. Whenever a solver
incarnation learns the clause C, we add this clause to the proof. Likewise, when a solver incar-
nation removes a clause C, we remove C from the proof as well. Finally, when an incarnation
receives a clause C from some other incarnation, we add the clause C to the proof again, such
that both incarnations have a private copy of the clause C.

Tracking the Number of Occurrences. The above procedure produces correct DRUP
proofs. However, the length of the proof is enormously increased compared to the proof without
deletion information (see Section 3.2). The increased length comes from the duplicated clauses
in the proof. We can avoid adding duplicates by counting the number of occurrences of a clause
in the solver incarnations: before we add a clause to the proof, we test whether the clause is
already present. If the clause is not present, then we add the clause to the proof. Otherwise,
we still want to ensure that each solver can delete its private copy of the clause. Hence, we
add a counter to each clause, which represents the number of occurrences of the clause in the
current proof. When the clause is added to the proof, the counter is initialized to 1. The
counter is incremented whenever a copy of the clause is learned or imported due to sharing.
When a clause is deleted, the counter is decremented, and if the counter reaches 0, we remove
the clause from the proof. In this case, the clause is not present in any solver. This procedure
avoids duplicating clauses in the proof. However, we now need an additional component that
tracks the occurrences of clauses in the solver incarnations.
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4 The DRUP Refutation Construction is Sound

In this section, we formally prove that the proposed techniques for constructing DRUP refuta-
tions in the parallel portfolio approach are sound. First, we model parallel portfolio solvers in
terms of a state transition system and afterwards show that the constructed DRUP refutations
are sound: a state of a sequential solver Solveri is the formula Fi. Then, the state of a par-
allel portfolio solver with a DRUP proof is a snapshot of its incarnations Solver1, . . . , Solvern
together with a DRUP derivation α and counters, i.e. it is a tuple (F1, . . . , Fn, α, cnt).

UNSAT-rule: (F1, . . . , Fi, . . . , Fn, cnt, α) ;UNSAT UNSAT α
iff ⊥ ∈ Fi for some i ∈ {1, . . . , n}.

LEARN-rule: (F1, . . . , Fi, . . . , Fncnt, α) ;LEARN

(F1, . . . , Fi ∧ C, . . . , Fn, cnt
′, α′)

iff there is a linear resolution derivation to C in Fi,
cnt′(C) = cnt(C) + 1
α′ = α if cnt(C) ≥ 1, otherwise α′ = αCrup.

SHARE-rule: (F1, . . . , Fi, . . . , Fn, cnt, α) ;SHARE

(F1, . . . , Fi ∧ C, . . . , Fn, cnt
′, α)

iff C ∈ Fj for some j ∈ {1, . . . , n} \ {i}, cnt′(C) = cnt(C) + 1.

FORGET-rule: (F1, . . . , Fi ∧ C, . . . , Fn, cnt, α) ;FORGET

(F1 . . . , Fi, . . . , Fn, cnt, α).

DELETE-rule: (F1, . . . , Fi ∧ C, . . . , Fn, cnt, α) ;DELETE

(F1 . . . , Fi, . . . , Fn, cnt
′, α′)

with α′ = α if cnt(C) > 1,
otherwise α′ = αCdel and cnt′(C) = cnt(C) − 1.

Figure 1: Transition relations used to characterize clause sharing models by means of portfo-
lio systems with input formula F0 and multiplicity n. These definitions apply to all formu-
las F1, . . . , Fn, F

′
1, . . . , F

′
n, clauses C, DRUP derivations α, α′ and i ∈ {1, . . . , n}.

We consider the state transition system RUP and DRUP, whose set of states is

{(F1, . . . , Fn, cnt, α)} ∪ {SAT,UNSAT α},

where Fi are formulas, α is a DRUP derivation, and cnt are counters. The initial state for the
input formula F0 with multiplicity n is initn(F0) = (F0, . . . , F0, cnt, ε), where cnt(C) = n for
every C ∈ F0 and cnt(D) = 0 for every clause D 6∈ F0. The single terminal state is UNSAT α,
and we consider two different transition relations, which differ in the clause deletion rule.

;RUP := {;UNSAT,;LEARN,;SHARE,;FORGET}
;DRUP := {;UNSAT,;LEARN,;SHARE,;DELETE}.

The detailed rules of the transition system are presented in Fig. 1.
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4.0.1 System RUP

System RUP models parallel portfolio solvers with clause sharing where the solver incarnations
apply conflict-directed backtracking and learning. The system produces RUP derivations and
its transition relation is composed of the UNSAT-, LEARN-, SHARE-, and FORGET-rule: the
UNSAT-rule terminates the computation in the final state UNSAT α, if some formula Fi contains
the empty clause ⊥. The LEARN-rule adds a clause C to the formula Fi, if there is a linear
resolution derivation in Fi to the clause C and increments the counter cnt(C) by one. If cnt(C)
is 1, Crup is added to the proof derivation α. The SHARE-rule models clause sharing and adds a
clause C ∈ Fj to the formula Fi and increments the counter cnt(C) by one. The FORGET-rule
models clause forgetting, i.e. we eliminate the clause C from the solver incarnation Solveri,
but it does not modify the RUP derivation α nor the counters. We demonstrate System RUP
in the following example:

Example 2. Consider the input formula F0 = (x)∧ (x∨y)∧F ′0, where F ′0 is some unsatisfiable
formula. Then init2(F0) = (F0, F0, cnt0, ε), where cnt0(x) = 2 and cnt0(x ∨ y) = 2. Solver2
then learns the clause (y), i.e. init2(F0) ;LEARN (F0, F0 ∧ (y), cnt1, (y)rup). The counter cnt1
is obtained from cnt0 by incrementing cnt(y) by one. Afterwards, it shares (y) with Solver1:
(F0 ∧ y, F0 ∧ (y), cnt2, (y)rup), where cnt2 is obtained from cnt1 by incrementing cnt1(y) by one.
Then, let Solver1 deletes its clause (x ∨ y) as it is subsumed by (y), resulting in the state
((x) ∧ (y) ∧ F ′0, F0 ∧ (y), cnt2, (y)rup).

4.0.2 System DRUP

System DRUP extends System RUP by clause deletion information. The DELETE-rule eliminates
a clause from the formula and, if the clause does not occur in another solver, it is also eliminated
from the proof. This is the case when counter cnt(C) becomes 0. We demonstrate System DRUP
in the following example.

Example 3. Consider the input formula F0 = (x) ∧ (x ∨ y) ∧ F ′0, where the formula F ′0 is
unsatisfiable not containing (x ∨ y). Then init2(F0) = (F0, F0, cnt0, ε). First, Solver1 deletes
the subsumed clause (x ∨ y): ((x) ∧ F ′0, F0, cnt1, ε), where cnt1(x ∨ y) = 1. Afterwards Solver2
does the same: ((x) ∧ F ′0, (x) ∧ F ′0, cnt2, (x ∨ y)del), where cnt2(x ∨ y) = 0. Consequently, the
clause (x ∨ y) is not present any more in the proof.

In the next subsection we investigate the question whether System RUP and DRUP produce
a correct DRUP refutations for unsatisfiable input formulas. For a state transition relation ;,

the symbol
∗; denotes the reflexive and transitive closure of ;. Let x

0; x for all states x, and

x
n; z for all natural numbers n ∈ N if and only if there exists a state y such that x

n−1; y ; z.
Formally, we define a state transition system to be sound iff for all unsatisfiable formulas F0

we have that init(F0)
∗; UNSAT α implies that α is a DRUP refutation for F0. In particular,

this means that the input formula F0 is then unsatisfiable.

4.1 System RUP

We begin our investigation with invariant properties in System RUP in the proposition below:
1. states that the constructed proof derivation is correct, i.e. if the proof derivation α is of
the form βCrupβ′, then the clause C has AT in view(β, F ). 2. states that the counter for
the clause C is always greater than one, if the clause C occurs in some formula Fi. 3. states
that for every clause having a counter cnt(C) ≥ 1, the clause C is present in the proof, i.e.
C ∈ view(α, F0).
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Proposition 1 (Invariants RUP). Let n ≥ 1, F0, F1, . . . , Fn be formulas, and let m ≥ 0. If

initn(F0)
m;RUP (F1, . . . , Fn, cnt, α), then the following holds:

1. The derivation α is correct for F0,

2. cnt(C) ≥ 1 for every clause C ∈ Fi and i ∈ {1, . . . , n},
3. C ∈ view(α, F0) for every clause C with cnt(C) ≥ 1, and

4. α is a RUP derivation.

Proof. We show the claims by induction on the number m of transition steps. For the base
case m = 0, the claims 1. is easy to see since α is the empty derivation, and 2. and
3. follows immediately form the definition of the initial state for the input formula F0. For
the induction step, assume that the claim holds for the state (F1, . . . , Fn, cnt, α) and that
(F1, . . . , Fn, cnt, α) ;R (F1, . . . , Fi−1, F

′
i , Fi+1, . . . , Fn, cnt

′, α′) for some rule R in System RUP.
Note that invariant 4. follows easily from the definitions of the rules. For the remaining claims,
we distinguish between the applied rule R ⊆ {LEARN,SHARE,FORGET}:

• LEARN-rule: Suppose that cnt(C) > 0. Then 1. follows immediately by induction, because
α = α′. Otherwise, we know that the clause C has AT in the formula Fi. By 2. and 3.,
we conclude that the clause C has AT in the formula view(α, F0). Hence, the derivation
αCrup is correct for F0. Invariant 2. follows immediately since we increase cnt(C) by
one. Invariant 3. holds immediately in the case that cnt(C) ≥ 1. If cnt(C) = 0, then
cnt′(C) = 1 and C ∈ view(α′, F0).

• SHARE-rule: Invariant 1. follows immediately by induction. Invariant 2. follows immedi-
ately since cnt(C) is increased by one. Invariant 3. follows immediately.

• FORGET-rule: Invariant 1. follows immediately by induction, because α = α′. Invariant
2. follows easily as we have to consider less clauses. Invariant 3. follows immediately by
induction, because α = α′ and cnt = cnt′.

We can now proceed to the statement that System RUP produces correct RUP refutations.

Theorem 1. System RUP is sound.

Proof. Suppose that initn(F0)
∗;RUP (F1, . . . , Fn, cnt, α) ;UNSAT UNSAT α. By the definition

of the UNSAT-rule we know that ⊥ ∈ Fi for some i ∈ {1, . . . , n}. From Prop. 1 2. and 3. we
know that ⊥ ∈ view(α, F0). By Prop. 1 1. and 4. we know that the RUP derivation α is correct
for the input formula F0. Consequently, α is a RUP refutation for input formula F0.

Note that all solver incarnations in System RUP are allowed to eliminate clauses in their
formula, but not to add deletion information the proof derivation. In fact, System RUP distin-
guishes only whether a clause C has a counter cnt(C) = 0 or cnt(C) > 0. Therefore, an efficient
counter implementation can be done by clause hashing.

4.2 System DRUP

The proposition below states the invariants of System DRUP, which are slightly different than
for the System RUP: 1. states that the derivation α is correct for the input formula F0. 2.
states that the number of occurrences of the clause C in the formula F1, . . . , Fn is exactly equal
to cnt(C). 3. states that a clause C is in the formula view(α, F0) if and only if its counter is
greater or equal than 1.
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Proposition 2 (Invariants DRUP). Let n ≥ 1, let F0, F1, . . . , Fn be formulas, and let m ≥ 0.

If initn(F0)
m;DRUP (F1, . . . , Fn, cnt, α), then the following hold:

1. the derivation α is correct for F0,
2. the number of occurrences of the clause C in F1, . . . , Fn is cnt(C),
3. C ∈ view(α, F0) if and only if cnt(C) ≥ 1.

Proof. We show the claims by induction on the number m of transition steps. For the base
case m = 0, the claims 1. is easy to see since α is the empty derivation, and 2. and
3. follows immediately form the definition of the initial state for the input formula F0. For
the induction step, assume that the claim holds for the state (F1, . . . , Fn, cnt, α) and that
(F1, . . . , Fn, cnt, α) ;R (F1, . . . , Fi−1, F

′
i , Fi+1, . . . , Fn, cnt

′, α′) for some rule R in System 1.
We distinguish between the applied rule R ⊆ {LEARN,SHARE,DELETE}:

• LEARN-rule: Suppose that cnt(C) > 0. Then 1. follows immediately by induction. Other-
wise, we know that C is RUP-inferable in Fi. By 3., we then know that C is RUP-inferable
in view(α, F0)- Hence, the derivation αCrup is correct for F0. Invariant 2. follows imme-
diately since we increase cnt(C) by one. Invariant 3. holds immediately in the case that
cnt(C) ≥ 1. If cnt(C) = 0, then cnt′(C) = 1 and C ∈ view(α′, F0).

• SHARE-rule: Invariant 1. follows immediately by induction. Invariant 2. follows immedi-
ately since cnt(C) is increased by one. Invariant 3. follows immediately.

• DELETE-rule: Invariant 1. is clear from the definition of correctness of DRUP derivations.
Invariant 2. follows immediately since cnt(C) is decreased by one. Invariant 3. follows
immediately since we delete the clause C from the proof, if cnt(C) = 1.

We can now show the main theorem, stating that the constructed DRUP proofs are refuta-
tions for the input formula.

Theorem 2. System DRUP is sound.

Proof. The proof is analogous to the proof of Theorem 1, but uses Prop. 2 instead of Prop. 1.

5 Empirical Investigation

For the empirical evaluation we use the SAT solver Riss [23], and turned it into a simple
parallel portfolio solver Priss with clause sharing.1 Any learned clause that has at most 10
literals, and whose LBD [2] is less than 6 is shared with all solver incarnations. Any shared
clause is received by all solver incarnations, if the clause is not yet satisfied. Clauses are received
whenever the search of a solver is at level 0. The pool for shared clauses is a ring buffer with a
capacity of 16000 clauses. Old clauses are overwritten in a FIFO manner.

5.1 The Proof Master

For the portfolio solver the proof master, which is a shared object, is added to the portfolio
solver. The proof master takes care of generating the DRUP proof for the solver, and is the
only object in the system that has access to the proof file. This proof master can apply the

1The implementation is available at http://tools.computational-logic.org/content/riss/
riss427.tar.gz.
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counting scheme that has been presented above, or it simply prints each request directly to the
proof file. Both cases have its benefits: when the counting scheme is applied, then no duplicate
clauses will be placed on the proof. On the other hand, the whole proof has to be kept in main
memory. The current implementation of this scheme does not support garbage collection, and
therefore the required main memory for longer proofs is very high. However, for shorter proofs
this implementation yields as a proof of concept. Consequently, when no duplicate clauses are
not managed, then the proof becomes longer, but the required memory of the proof master is
much lower.

Tracing duplicate clauses is done with a hash table: we represent literals in the memory as
natural numbers: the representation l of the positive literal x is l = 2x, and for negative literals
x it is l = 2x+ 1. Then, the clause C is stored in a hash table using the hash function below:

unsigned int getHash (int* clause) {
unsigned int sum = 0, prod = 1, xor = 0;
while (*clause) {

prod *= *clause; sum += *clause;
xor ˆ= *clause; clause++; }

return (1023 * sum + prod ˆ (31 * xor)) % HASHMAX; }

When a new clause D is added to the proof, or the clause D is removed, the proof master
checks the hash table for a clause with the same hash, and next identifies the right clause by
comparing all the literals in the two clauses C and D. When D is added and no matching clause
is present, then D is added to the hash table, and the counter is initialized to 1. Additionally,
we add the clause D to the proof file. Otherwise, the counter of the matching clause is increased.
When D is removed, the counter of the matching clause C is decreased. If this counter becomes
zero, we remove the clause C from the hash table, and the corresponding deletion line is added
to the proof file. For testing purposes, we require that every deleted clause must be present in
the hash table.

5.2 Generating the Proof

Let n be the number of used threads in Priss. The formula F is first read by the first
solver incarnation and simplified resulting in the formula F ′. All simplification techniques
that can be expressed in DRUP proofs, as for example variable elimination [9] or blocked clause
elimination [20], could be performed by this solver. Then, the n−1 remaining solver incarnations
are created, and initialized with the simplified formula F ′. In this paper the preprocessor is
turned off, so that the two formulas F and F ′ match. As discussed above, each clause in the
formula F ′ has to be present in the generated proof n−1 times, so that each solver incarnation
is allowed to delete such a clause again. Therefore, for each initialized solver incarnation, the
formula F ′ is added to the proof once more.

When the proof master uses counting, then for each clause C ∈ F ′ the counter is set to the
requested value. For the added checks, the counter for each clause C is set to n, so that the
deletion of the n solver incarnations can be traced. This way, the generated proof contains each
clause C ∈ F ′ one time more than actually necessary. Due to the counting no duplicates are
added to the proof. The only drawback here is that the clause is added to the proof additionally
to the clauses in F , which are added to the proof by the proof verification tool.

Handling Shared Clauses. Shared clauses are added in the following way: whenever a
shared clause C is added to the clause pool, then this clause is also sent to the proof master.
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Consequently, any solver incarnation that receives this clause, adds the clause C to the proof
once more. If an incarnation wishes to delete this clause again, this request is submitted to the
proof master. Finally, when the clause C is removed from the ring buffer in the clause pool,
then this clause C is removed from the proof by the proof master as well. This way, the size of
the portfolio solver without counting clauses might become much larger than for a sequential
solver, because for n solver incarnations any learned clause that becomes a shared clause might
be added n + 1 times to the proof. Therefore, very good clause sharing filters are not only
necessary for reducing the communication overhead for portfolio solvers, but also to keep the
size of the generated proof reasonable.

5.3 Experimental Evaluation

We use the tool drat-trim [29] to verify the generated DRUP proofs. Priss uses four threads,
which differ only in the way they schedule their restarts, and how to increase the activity
of variables. The evaluation of the techniques is performed on all unsatisfiable application
instances of the SAT Competition 2013. The wall clock limit for solving the formula is set to
1800 seconds and the wall clock limit for verifying the proof is 7200 seconds. A memory limit of
18 GB and a maximum file size of 16 GB is applied. The used cluster uses Intel Xeon E5-2670
CPUs with 8 cores and 20 MB level 3 cache that is shared by all cores. Due to the cluster
architecture, the experiment uses a pair of CPUs exclusively for one solver. For the empirical
evaluation we set up different configurations of the portfolio solver. Seq is the sequential
solver of the solver incarnation S0. NoShareNoDRUP runs the portfolio without sharing
and without generating proofs. NoShare additionally generates a DRUP proof with using
counting. ShareNoDRUP uses sharing, but does not generate a proof. Share also generates
a proof with counting. Finally, ShareNoCount generates a proof, but without counting.

The run time and the used memory for the solving the formulas without verification is
presented in Fig. 2. The memory consumption for the sequential solver is smallest among the
configurations that generate a proof, because only the formula and the learned clauses have
to be maintained once. For the parallel configurations memory consumption is much higher.
Surprisingly, for the plain portfolio solver, the consumption is the highest, followed by the
Share variant. Moreover, the diagram shows that clause sharing improves the performances
of parallel SAT solvers. However, when DRUP proofs are generated, the sequential solver can
produce more verifiable proofs in the resource limit. When counting is used, then the best
parallel overall procedure is obtained. Not using the counting mechanism slightly decreases the

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  20  40  60  80  100  120

ti
m

e
 i
n
 s

e
co

n
d
s

solved instances

Seq
NoShareNoDRUP

NoShare
ShareNoDRUP

Share
ShareNoCount

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  20  40  60  80  100  120

m
e
m

o
ry

 i
n
 M

B

solved instances

Seq
NoShareNoDRUP

NoShare
ShareNoDRUP

Share
ShareNoCount

Figure 2: Run time and memory consumption.
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Figure 3: Proof length (left) and proof verification time (right) for the sequential solver and
the counting clause sharing portfolio solver.

overall run time of the tool chain. Consider the 96 instances that were solved by the Share and
the ShareNoCount configuration. Then, 32 generated proofs without the counting scheme
could not be verified within the time bound. The counting scheme improves the number of
verified proofs within the resource limit to 26, i.e. with the counting scheme we can verify 6 more
proofs. Moreover, the counting scheme increases the speed of proof verification: The average
time for the successfully verified proofs is 2012 seconds for the ShareNoCount configuration
and 1550 seconds for the Share configuration.

5.4 Proof Size

The size of the generated proof is considered as one of the most important properties. Fig. 3
shows this property, and furthermore gives the verification time for the configurations Share
and Seq. The proof length of the parallel solver is bounded by the length of the sequential
proof and the number of threads as factor. The tendency is that the longer the sequential proof
is, the closer is the parallel proof.

The time to verify the proof does not share these boundaries. The reason for this effect is
the way the proof verification works: instead of processing each clause from the beginning of
the proof to the end, drat-trim starts at the end of the proof and only checks clauses that
are relevant to prove unsatisfiability. Hence, both in the sequential as well as in the parallel
proof, there might be short-cuts in the one proof, which are not present in the other proof, also
resulting in parallel proofs that can verified faster.

5.5 Discussion

Given the implementation with the metrics for clause sharing and handling the proof, under
the specified resources the sequential version of the solver can produce more verified results
than the used portfolio. Still, from the given results an outlook to future solvers with improved
parameters and an improved implementation is interesting. First, the ratio between the solving
time and the verification time is shifted to the proof verification tool, since the parallel SAT
solver solves its formula faster. For the verified output, the current difference is shown in Fig. 4.
Sequential proofs can be verified in a time of up to four times the solving times. This ratio does
not hold for the parallel solver, and within the given resource limits, not all generated proofs
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Figure 4: Solving time compared to verification time for the clause sharing portfolio (left) and
the sequential solver (right).

can be verified. Hence, a parallel proof verification tool would be the next step to set this ratio
into the right shape again.

Next, the overhead of logging the DRUP proof is interesting, since for the parallel solver
the proof needs to be locked. In our implementation we used a lock to maintain the hash table.
With the same lock we also granted access to the proof file. Our experiments showed, that
the overhead of this simple locking scheme is already very low. An improved version of the
proof master could separate between locally learned clauses, that need to be present only for
the proof of a single solver incarnation. Only when this incarnation shared the next clause with
the whole solver, this local proof needs to be made available to the global proof. This way, lock
accesses can be avoided. However, on the other hand, more memory becomes necessary for the
local proof of each solver incarnation. An analysis into this direction is considered as future
work.

The presented results show that portfolio solvers can be used to generate proofs, and that the
generated proofs do not contain much redundancy. However, currently the required resources
enforce a limitation. As soon as ordinary machines offer sufficient main memory, and there
is enough space for the proof files, using a portfolio solver to produce verified unsatisfiability
answers for formulas should be considered. This paper presented how such a portfolio can be
built, such that the generated proof is valid.

6 Conclusion

In this paper we showed how the unsatisfiability answer of modern portfolio solvers can be
verified. By exploiting a counting mechanism, the generated proof is compact and can be
verified in reasonable time. Still, this development is only a first step and opens the door for
many improvements and further investigations.

First, the results are only presented for parallel portfolio SAT solvers without inprocess-
ing. Consequently, the next step is incorporating inprocessing into the model, as well as
extending the proof generation to other parallel solving approaches, for example to instance-
decomposition-based solvers such as PCASSO [19] and Treengeling [6].

Furthermore, not all simplification techniques can be described with DRUP. Hence, we plan
to analyze how we can model simplification techniques with the extended format DRAT. Then,
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we would like to incorporate these simplification techniques into the portfolio solver and still
generate valid DRAT proofs for such a parallel system.

On the verification side our run time analysis showed that with the parallelization of the
SAT solver, most of the run time is spend on proof verification. Hence, a natural next step is
to parallelize the proof verification, to achieve a ratio between solving the formula and checking
the unsatisfiability proof for the parallel scenario, which is equal to the sequential scenario.

Acknowledgments The author thanks the ZIH of TU Dresden for providing the computa-
tional resources to produce the experimental data for the empirical evaluation.
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in grids. In Armin Biere and Carla P. Gomes, editors, SAT 2006, volume 4121 of LNCS, pages
430–435. Springer, 2006.

[19] Ahmed Irfan, Davide Lanti, and Norbert Manthey. PCASSO — a Parallel CooperAtive Sat SOlver.
In Balint et al. [3], pages 64–65.

[20] Matti Järvisalo, Armin Biere, and Marijn J. H. Heule. Blocked clause elimination. In Javier
Esparza and Rupak Majumdar, editors, TACAS 2010, volume 6015 of LNCS, pages 129–144,
Heidelberg, 2010. Springer.

[21] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In Bernhard Gram-
lich, Dale Miller, and Uli Sattler, editors, IJCAR 2012, volume 7364 of LNCS, pages 355–370,
Heidelberg, 2012. Springer.

[22] Davide Lanti and Norbert Manthey. Sharing information in parallel search with search space
partitioning. In Giuseppe Nicosia and Panos Pardalos, editors, Proceedings of the 7th International
Conference on Learning and Intelligent Optimization (LION 7), volume 7997 of LNCS, 2013.

[23] N. Manthey. The SAT solver RISS3G at SC 2013. In Balint et al. [3], pages 72–73.

[24] Norbert Manthey, Tobias Philipp, and Christoph Wernhard. Soundness of inprocessing in clause
sharing SAT solvers. In Matti Järvisalo and Allen Van Gelder, editors, SAT 2013, volume 7962 of
LNCS, pages 22–39, Heidelberg, 2013. Springer.

[25] Ruben Martins, Vasco Manquinho, and Inês Lynce. An overview of parallel SAT solving. Con-
straints, 17(3):304–347, 2012.

[26] Daniel Singer. Parallel Resolution of the Satisfiability Problem: A Survey, chapter 5, pages 123–
148. Wiley Interscience, 2006.

[27] Allen Van Gelder. Extracting (easily) checkable proofs from a satisfiability solver that employs
both preorder and postorder resolution. In Symposium on Artificial Intelligence and Mathematics
2002, 2002.

[28] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In International Sympo-
sium on Artificial Intelligence and Mathematics (ISAIM). Springer, 2008.

[29] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim efficient checking and
trimming using expressive clausal proofs. In SAT 2014, 2014, accepted.

[30] H. Zhang, M. P. Bonacina, and J. Hsiang. PSATO: a distributed propositional prover and its
application to quasigroup problems. Journal of Symbolic Computation, 21, 1996.

25


	Introduction
	Preliminaries
	The Satisfiability Problem
	Parallel SAT Solving

	DRUP Derivations in Parallel Portfolios
	No Clause Sharing
	RUP Proofs with Clause Sharing
	DRUP Proofs with Clause Sharing

	The DRUP Refutation Construction is Sound
	System RUP
	System DRUP

	System RUP
	System DRUP

	Empirical Investigation
	The Proof Master
	Generating the Proof
	Experimental Evaluation
	Proof Size
	Discussion

	Conclusion

