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Abstract

We show how the problem of deciding the existence of uniform interpolants of TBoxes
formulated in the Description Logic EL can be divided into three subproblems based on a
characterisation of the logical difference between EL-TBoxes. We propose a proof-theoretic
decision procedure for subsumer interpolants of general TBoxes formulated in the Descrip-
tion Logic EL, solving one of these subproblems. A subsumer interpolant of a TBox de-
pends on a signature and on a concept name. It is a TBox formulated using symbols from
the signature only such that, both, it follows from the original TBox and it exactly entails
the subsumers formulated in the signature that follow from the concept name w.r.t. the
original TBox. Our decision procedure first constructs a graph that exactly represents
the part of original TBox that is describable using signature symbols only. Subsequently,
it is checked whether a graph-representation of the original TBox can be simulated by
the constructed graph, in which case a subsumer interpolant exists. We also evaluate our
procedure by applying a prototype implementation on several biomedical ontologies.

1 Introduction

Ontologies are widely used to represent domain knowledge. They contain specifications of
objects, concepts and relationships that are often formalised using a logic-based language over
a vocabulary that is particular to an application domain. Description Logics [2] have been
widely adopted as a basis for ontology languages, e.g., the Web Ontology Language (OWL)
and its profiles are based on description logics. Numerous ontologies have been developed, in
particular, in knowledge intensive areas such as the biological and the medical domain.

Ontologies are constantly developed, extended, corrected, and refined. As a result ontologies
tend to become complex in structure and large in size. For instance, the GALEN ontology
contains more than 20 000 term definitions, and the National Cancer Institute ontology consists
of more than 60 000 term definitions. As the size of ontologies increases, being able to focus on
relevant parts of an ontology by forgetting the knowledge about irrelevant or confidential terms
has become an important concern. Forgetting in ontologies can be formalised by employing
the notion of predicate forgetting and its dual uniform interpolation, both of which have been
studied to a large extent in the area of logic and AI [3, 5, 8, 12,13,19,24,26,27].
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The result of forgetting terms from an ontology yields a uniform interpolant, i.e. an ontol-
ogy that is functionally equivalent regarding the terms that remain in the ontology. Several
application scenarios for forgetting have been discussed including predicate hiding (concealing
terms that are not intended for public use), exhibiting hidden relations between terms (making
inferred relations between terms more explicit), and ontology versioning (ensuring that meaning
of certain terms remains unaffected by update) [12,16,18].

Forgetting and uniform interpolation have also been studied extensively in the area of de-
scription logics. Algorithms for forgetting in expressive description logics have been proposed
in [24,25,27], and algorithms for computing uniform interpolants based on resolution have been
developed in [14,15,28]. However, uniform interpolants in such logics may not always exist, and
none of these algorithms have been shown to be complete. This may not be surprising as such
completeness results appear difficult to obtain. Deciding the existence of a uniform interpolant
in ALC has been shown to be 2-ExpTime-complete. On the other hand, it has been shown for
some description logics of the DL-Lite family that uniform interpolants always exist [13,26].

We consider ontologies formulated in the lightweight Description Logic EL [1]. The rele-
vance of EL for ontologies is emphasised by the fact that many ontologies are largely, or even
entirely, formulated in EL. Uniform interpolation for EL-TBoxes of a restricted form (a.k.a.
terminologies) has been shown to be tractable [12]. The size of uniform interpolants for general
EL-TBoxes has been established to be 3-ExpTime in the worst case [21, 22]. The problem for
deciding the existence of uniform interpolants for EL-TBoxes has been shown to be ExpTime-
complete in [18] using a mixture of model-theoretic and automata-theoretic methods from [19].

In [18] the notion of an EL-automaton is introduced to represent a Σ-uniform interpolant
of an EL-TBox. In a second step, Alternating Parity Tree Automata (APTA) are used to
check whether the uniform interpolant can be expressed as an EL-TBox using Σ-symbols only.
However, automata-theoretic techniques do not necessarily facilitate the derivation of practical
algorithms, and to the best of our knowledge, no approach that has been demonstrated to work
in practice has been devised so far. To obtain a method that is easily implementable and that
works in practice, we follow our proof-theoretic approach to the logical difference problem [6,7].
Applications of proof-theory methods have resulted in efficient implementations in many areas,
e.g., the EL-reasoner ELK [10] or the first-order theorem prover VAMPIRE [23].

In this paper, we first show how the problem of deciding the existence of uniform interpolants
of EL-TBoxes can be divided into three subproblems based on a characterisation of the logical
difference between EL-TBoxes [7]. Subsequently, we present a decision procedure for subsumer
interpolants of EL-TBoxes, solving one of these subproblems. A subsumer interpolant of a
TBox T depends on a signature Σ and on a concept name A. It is a TBox TΣ formulated using
symbols from Σ only such that, both, it follows from T (i.e., T |= TΣ) and it exactly entails the
subsumers formulated in Σ that follow from A w.r.t. T . The idea behind the decision procedure
for the existence of subsumer interpolants is the following. We construct a TBox T Σ,A

desc that
describes the part of T relevant for entailing the Σ-subsumers of A w.r.t. T as complete as
possible using Σ-consequences of T only. Since subsumer interpolants do not always exist, we
then check whether T Σ,A

desc captures all the Σ-subsumers of A w.r.t. T .

We proceed as follows. In the next section, we define some preliminary notions. In Section 3,
we formally introduce the notions of a uniform interpolant and of a subsumer interpolant of
an EL-TBox for a signature. We introduce our graph-based approach to characterising the
necessary and sufficient conditions for the existence of subsumer interpolants. Moreover, we
demonstrate the viability of our approach by showing evaluation results of applying a prototype
implementation on several biomedical ontologies in Section 4.
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2 Preliminaries

Let NC and NR be disjoint sets of concept names and role names, which we assume to be
countably infinite. EL-concepts C are built according to the grammar rule C ::= > | A |
C u C | ∃r.C, where A ∈ NC and r ∈ NR. The set of all EL-concepts is denoted with EL.

The semantics is defined using interpretations I = (∆I , ·I), where the domain ∆I is a non-
empty set, and ·I is a function mapping each concept name A to a subset AI of ∆I and every role
name r to a binary relation rI over ∆I . The extension CI of a concept C is defined inductively
as: (>)I := ∆I , (C uD)I := CI ∩DI , and (∃r.C)I := {x ∈ ∆I | ∃y ∈ CI : (x, y) ∈ rI}.

An EL-axiom is either a concept inclusion C v D, or a concept equation C ≡ D, for EL-
concepts C,D. An EL-TBox T is a finite set of EL-axioms. An interpretation I satisfies a
concept inclusion C v D or a concept equation C ≡ D if CI ⊆ DI or CI = DI , respectively.
An interpretation I satisfies a set Φ of EL-axioms iff I satisfies all axioms in Φ; in this case, we
say that I is a model of Φ. A set Φ2 of EL-axioms follows from a set of EL-axioms Φ1, written
Φ1 |= Φ2, iff every model of Φ1 is also a model of Φ2. If Φ2 = {α}, we simply write Φ1 |= α
instead of Φ1 |= Φ2.

A signature Σ is a finite set of concept or role names from NC and NR. The signature sig(ϕ)
is the set of concept and role names occurring in ϕ, where ϕ ranges over any syntactic object.
We set sigNC(ϕ) := sig(ϕ) ∩ NC. The symbol Σ is used as a subscript to a set of concepts or
axioms to denote that the elements only use symbols from Σ, e.g., ELΣ, etc.

An EL-TBox T is normalised iff it only consists of EL-concept inclusions of the forms > v B,
A v B, A1 u A2 v B, A v ∃r.B, or ∃r.A v B, where A,A1, A2, B ∈ NC and r ∈ NR. Every
EL-TBox T can be normalised into a TBox norm(T ) in polynomial time in the size of T with
at most a linear increase in size such that (i) for every C,D ∈ EL with sig(C)∪sig(D) ⊆ sig(T ),
it holds that norm(T ) |= C v D iff T |= C v D and (ii) for every X ∈ sigNC(norm(T ))\ sig(T ),
there exists DX ∈ EL with sig(DX) ⊆ sig(T ) and norm(T ) |= X ≡ DX .

Given an EL-concept C, the depth of C, denoted with depth(C), is inductively defined as
follows: depth(>) = depth(A) = 0 for A ∈ NC, depth(C1 u C2) = max{depth(C1),depth(C2)},
and depth(∃r.C) = 1 + depth(C).

We recall our graph representation of sets of concepts from [7]. A concept set graph is a
finite, labelled, directed, graph (V, E ,L, ρ) with a dedicated root node ρ ∈ V, where V is a finite,
non-empty set of nodes, E ⊆ V ×V is a set of directed edges, L : V ∪E → 2NC ∪NR is a labelling
function, mapping nodes v ∈ V to finite sets of concept names L(v) ⊆ NC, and mapping edges
e ∈ E to a role name L(e) ∈ NR. We say that a concept set graph G′ = (V ′, E ′,L′, ρ′) is a
subgraph of a concept set graph G = (V, E ,L, ρ) iff V ′ ⊆ V, L′(v′) ⊆ L(v′) for every v′ ∈ V ′, and
L′(e′) = L(e′) for every e′ ∈ E ′. A sequence π = v0 · v1 · . . . · vn with n ≥ 1 and (vi, vi+1) ∈ E
for every 0 ≤ i ≤ n− 1 is a path in G. We write v ∈ π iff v = vi for some 0 ≤ i ≤ n. A path π
is called a cycle if v0 = vn and for every i, j ∈ {0, . . . , n− 1} with i 6= j it holds that vi 6= vj ; π
is called acyclic if vi 6= vj for every i, j ∈ {0, . . . , n} with i 6= j.

EL-concepts can be read off concept set graphs by unfolding the graph as follows.
Let UnfoldG(v, 0) :=

d
A∈L(v)A and for n > 0, we set UnfoldG(v, n) :=

d
A∈L(v)A ud

(v,w)∈E,L(v,w)=r ∃r.UnfoldG(w, n − 1). Note that UnfoldG(v, 0) = > if L(v) = ∅. Finally,

let UnfoldG(v) := {UnfoldG(v, n) | n ≥ 0 } and Unfold(G) := UnfoldG(ρ).

For a signature Σ, we define the Σ-reduct of G, denoted with reductΣ(G), to be the subgraph
reductΣ(G) := (VΣ, EΣ,LΣ, ρΣ) of G, where VΣ := V, ρΣ := ρ, EΣ := { e ∈ E | L(e) ∈ Σ }, and
LΣ := { (v, S) | v ∈ V, S = L(v) ∩ Σ } ∪ { (e, S) | e ∈ EΣ, S = L(e) }.

We will use simulations between concept set graphs G1 = (V1, E1,L1, ρ1) and G2 =
(V2, E2,L2, ρ2) to determine whether every unfolding of G1 is entailed by an unfolding
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of G2 [4, 6, 17]. For u1 ∈ V1 and u2 ∈ V2, we say that a relation S ⊆ V1 × V2 is a subsumer
simulation between G1 and G2 iff the following conditions hold:

(i) if (v1, v2) ∈ S, then L1(v1) ⊆ L2(v2); and

(ii) if (v1, v2) ∈ S, e1 = (v1, v
′
1) ∈ E1, and r := L1(e1), then there exists e2 = (v2, v

′
2) ∈ E2

such that r = L2(e2) and (v′1, v
′
2) ∈ S.

We say that u2 subsumer simulates u1, denoted with sim→([G1, u1], [G2, u2]), iff there exists a
subsumer graph simulation S between G1 and G2 with (u1, u2) ∈ S. We write sim→(G1,G2)
iff sim→([G1, ρ1], [G2, ρ2]) holds. One can show that sim→([G1, u1], [G2, u2]) holds iff for every
C ∈ UnfoldG1

(u1) there exists D ∈ UnfoldG2
(u2) with |= D v C [7].

3 Subsumer Interpolants

A uniform interpolant of a TBox T w.r.t. a signature Σ is an exact, finite representation in
terms of a TBox of the (potentially) infinite set of Σ-consequences of T using symbols from Σ
only. A more general notion takes a specific set Φ of Σ-consequences into account. Here we are
interested in the set Φ of EL-subsumers of a concept name w.r.t. an EL-TBox, leading to the
notion of Σ-subsumer interpolants.

Definition 1 (Σ-Uniform Interpolant). Let T be an EL-TBox, let Σ be a signature, and let Φ
be a set of ELΣ-concept inclusions. A TBox TΣ is called a (Σ,Φ)-uniform interpolant of T iff
the following conditions hold: (i) sig(TΣ) ⊆ Σ; (ii) T |= TΣ; and (iii) for every α ∈ Φ with
T |= α it holds that TΣ |= α.

A (Σ,Φ)-uniform interpolant TΣ of T is called a Σ-uniform interpolant if Φ = {C v D |
C,D ∈ ELΣ }; and a Σ-subsumer interpolant of A ∈ Σ w.r.t. T if Φ = {A v D | D ∈ ELΣ }.

The following folklore example shows that Σ-subsumer interpolants do not always exist, in
which case a Σ-uniform interpolants does not exist either.

Example 1. Let T = {A v X, X v ∃r.X} and let Σ = {A, r}. Then a Σ-subsumer interpolant
of A w.r.t. T does not exist as the infinite sequence of consequences A v ∃r.>, A v ∃r.∃r.>,
etc. cannot be captured in a (finite) TBox TΣ with sig(TΣ) ⊆ Σ and T |= TΣ.

The converse does not hold, i.e., the existence of Σ-subsumer interpolants does not imply
the existence of a Σ-uniform interpolant as the following example shows.

Example 2. Let T = {B v X, ∃r.X v X, X v A} and let Σ = {A,B, r}. Then T AΣ = ∅ and
T BΣ = {B v A} are Σ-subsumer interpolants of A and B w.r.t. T , respectively. However, a
Σ-uniform interpolant of T does not exist as the infinite sequence of consequences ∃r.B v A,
∃r.∃r.B v A, etc. cannot be captured in a (finite) TBox TΣ with sig(TΣ) ⊆ Σ and T |= TΣ.

However, there are exceptions as for some EL-TBoxes T all Σ-consequences already follow
from ELΣ-concept inclusions of the form A v D entailed by T . A prominent example of such
a TBox is the (EL-fragment of the) ontology ChEBI (release January 6, 2016).

Lemma 1. Let T be a TBox whose normalisation consists of inclusions of the form X v Y
and X v ∃r.Y , and let Σ be a signature. Then a Σ-uniform interpolant of T exists iff for every
A ∈ Σ, there exists a Σ-subsumer interpolant of A w.r.t. T .1

1The EL-fragment mentioned in Lemma 1 is a fragment of OWL 2 QL and it is expressible in DL-LiteHcore. To
the best of our knowledge, there are no results regarding uniform interpolation for OWL 2 QL and DL-LiteHcore.
Existing results for DL-Lite either do not consider role inclusions or they focus on conjunctive queries as a query
language [13,26].
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We show that the problem of deciding the existence of a Σ-uniform interpolant can be
reduced to deciding the existence of (Σ,Ψ)-uniform interpolants for certain subsets Ψ of the set
of all ELΣ-concept inclusions that follow from T .

Theorem 1. Let T be a normalised EL-TBox, let Σ be a signature, and let Φ = {C v D |
C,D ∈ ELΣ, T |= C v D }. Additionally, let Ψ1, . . . ,Ψn with n ≥ 1 be such that

⋃n
i=1 Ψi |= Φ

and Ψi ⊆ Φ for every 1 ≤ i ≤ n.
Then there exists a (Σ,Φ)-uniform interpolant of T iff for every 1 ≤ i ≤ n, there exists a

(Σ,Ψi)-uniform interpolant of T .

We split the set ΦΣ of all ELΣ-inclusions entailed by T into the following sets: for every
A ∈ Σ, Φ→A := {C v D ∈ ΦΣ | C = A } and Φ←A := {C v D ∈ ΦΣ | D = A }; for every
X ∈ sig(T ) \ Σ, Φm

X := {C v D | C,D ∈ ELΣ, T |= C v X and T |= X v D }; and
Φ→> := {C v D ∈ ΦΣ | C = >}. Similar to the proof of the so-called Witness Theorem for the
Logical Difference of EL-TBoxes (Theorem 7 in [7]), we can show that⋃

A∈Σ

(Φ→A ∪ Φ←A ) ∪
⋃

X∈sig(T )\Σ

Φm
X ∪ Φ→> |= ΦΣ

by analysing the derivation of T |= ϕ for ϕ ∈ ΦΣ in a Gentzen-style calculus for EL-TBoxes
that we have adapted from [9].

In this paper, we develop a technique for deciding the existence of subsumer interpolants.
More precisely, given an EL-TBox T , a signature Σ, and a concept name A ∈ Σ, we want to
decide whether there exists a Σ-subsumer interpolant of A w.r.t. T . It is easy to see that a
Σ-subsumer interpolant of T exists iff a Σ-subsumer interpolant of norm(T ) exists. To simplify
the notation, we concentrate on EL-TBoxes T that are normalised.

In order to facilitate the construction of T Σ,A
desc and to verify that it captures all the Σ-

subsumers of A w.r.t. T , we represent its set of subsumers using dedicated concept set graphs,
called subsumer graphs. Such subsumer graphs are defined using logical reasoning, for which we
make use of our sequent calculus for EL [9] in our correctness and completeness proofs. Similar
graph notions appeared in the literature [11,20].

Definition 2 (Subsumer Graph for a Concept Name w.r.t. a TBox). Let T be a normalised
EL-TBox, and let A ∈ Σ. The subsumer graph of A w.r.t. T , denoted with expT→(A), is a
concept set graph (V, E ,L, ρ), where V := {vεA} ∪ { vrϕ | X v ∃r.ϕ ∈ T }, ρ := vεA,

E := { (vλϕ, v
r
ψ) | X v ∃r.ψ ∈ T , T |= ϕ v X }, and

L := { (vλϕ, S) | vλϕ ∈ V, S = {Y ∈ sigNC(T ) | T |= ϕ v Y } } ∪ { (e, r) | e = (vλϕ, v
r
ψ) }.

For a node vλϕ ∈ V, the concept name ϕ ∈ sigNC(T ) ∪ {A}, denoted with genG(vλϕ), is called the

generating concept name of vλϕ.

The root node of a subsumer graph expT→(A) is denoted with vεA. For every node vλϕ with

λ ∈ NR ∪ {ε} and for every axiom X v ∃r.ψ ∈ T with T |= ϕ v X there is an edge (vλϕ, v
r
ψ)

labelled with r to a successor node vrψ. All nodes vrψ, except the root node, represent the right-
hand side of an axiom of the form X v ∃r.ψ. The concept name ψ is the generating concept
name genG(vrψ) of vrψ. A leaf node v with L(v) = ∅ represents the >-concept.

For every node v in G = expT→(A), one can show that the set of subsumers of the concept
name genG(v) w.r.t. T are equivalent to the set UnfoldG(v). Additionally, by taking the Σ-
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v0 : A,X v1 : Y

v2 : Xv3 : Bv4 : Z
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G = expT→(A)
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rr r r
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r
GΣ = reductΣ(expT→(A))
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r

r r r

r

G′Σ

Figure 1: Subsumer graph and corresponding Σ-reduct for Example 3

reduct GΣ := reductΣ(G) of G we have that the set of ELΣ-subsumers of A w.r.t. T is equivalent
to the set UnfoldGΣ

(v).

Example 3. Let T be the following normalised EL-TBox:

A v X X v ∃r.B ∃r.B v X Z v ∃r.Z
A v ∃r.Z X v ∃r.Y Y v ∃r.X Z v ∃s.V

For Σ := {A,B, r}, it holds that TΣ := {A v ∃r.B, ∃r.B v ∃r.∃r.∃r.B} is a Σ-subsumer
interpolant of A w.r.t. T . However, for Σ′ := {A,B, r, s}, there does not exist a Σ′-subsumer
interpolant of A w.r.t. T .

The subsumer graph G = expT→(A) and the concept set graph GΣ = reductΣ(expT→(A)) are
depicted in Figure 1. Note that in depictions of concept set graphs (V, E ,L, ρ) in this paper,
nodes v ∈ V are represented together with their labels in the form ‘v : L(v)’, and the root node ρ
is underlined. Edges and their labels are represented as labelled arrows between the nodes.

We have genG(v0) = A, genG(v1) = Y , genG(v2) = X, genG(v3) = B, genG(v4) = Z, and
genG(v5) = V . It holds that UnfoldGΣ

(ρ, 0) = A and UnfoldGΣ
(ρ, 1) = A u ∃r.> u ∃r.B u ∃r.>.

In case the Σ-reduct GΣ of the subsumer graph G = expT→(A) is acyclic, there only exist
finitely many non-equivalent Σ-subsumers of A w.r.t. T . In particular, there exists a number
n ≥ 0 such that for every m ≥ n it holds that UnfoldGΣ

(ρ, n) = UnfoldGΣ
(ρ,m). Then {A v

UnfoldGΣ
(ρ, n)} is a Σ-subsumer interpolant of A w.r.t. T . In general, subsumer interpolants

of EL-TBoxes whose Σ-reduct of the subsumer graph of a concept name is acyclic always exist.

Example 4. Let T := {A v X, X v B, X v ∃r.Y, Y v B, A v ∃r.Z, Z v ∃s.Z}, and let
Σ := {A,B, r}. Let G := expT→(A) with root ρ, and let GΣ = reductΣ(G). Observe that G
is cyclic, but, as the role name s is not in Σ, the Σ-reduct GΣ of G is acyclic. It holds that
C := UnfoldGΣ

(ρ, 1) = AuBu∃r.Bu∃r.>, and C = UnfoldGΣ
(ρ,m) for every m ≥ 1. Moreover,

it holds that {A v C} is a Σ-subsumer interpolant of A w.r.t. T .

Handling cycles in GΣ constitutes the main difficulty for deciding the existence of subsumer
interpolants. For instance, the TBox T and the signature Σ in Example 1 give rise to a subsumer
graph whose Σ-reduct GΣ contains a cycle that cannot be described in terms of ELΣ-concept
inclusions that follow from T . Another example is the TBox from Example 4 together with the
signature Σ′ = {A,B, r, s}. However, there are cycles that can be described using ELΣ-concept
inclusions that follow from T . More precisely, a cycle π = v0 · v1 · . . . · vn in GΣ is called
Σ-describable w.r.t. T iff there exists an edge (vi, vi+1) with 1 ≤ i < n such that there exists
an ELΣ-concept C with T |= genG(vi) v C and T |= C v X, where X v ∃r.Y ∈ T such that
Y = genG(vi+1) and L(vi, vi+1) = r.
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Furthermore, there are EL-TBoxes T that together with a concept name A give rise to
subsumer graphs G = expT→(A) whose Σ-reducts GΣ contain both, cycles that are Σ-describable
and cycles that are not Σ-describable. However, a Σ-subsumer interpolant of A w.r.t. T may
exist nevertheless as it is illustrated in Example 3. We can determine whether a Σ-subsumer
interpolant of A w.r.t. T exists in two steps. First, we construct a concept set graph GΣ,A

desc that
is essentially the fragment of GΣ that does not contain any cycles that are not Σ-describable.
Second, we determine whether sim→(GΣ,GΣ,A

desc) holds by checking for the existence of a subsumer

simulation between GΣ and GΣ,A
desc.

Example 5. Let T and Σ be as in Example 3. Consider the Σ-reduct GΣ of the subsumer graph
G = expT→(A) depicted in Figure 1. Let π1 = v2 · v1 · v2 and π2 = v4 · v4 be two paths in GΣ.
The path π1 is produced by the axioms {X v ∃r.B, ∃r.B v X, X v ∃r.Y, Y v ∃r.X} ⊆ T , and
π2 is produced by the axiom Z v ∃r.Z ∈ T . Both paths are cycles: π1 is a Σ-describable cycle
w.r.t. T , whereas π2 = v4 · v4 is not.

To see that π1 is Σ-describable, note that for the edge (v2, v1) in GΣ it holds that T |= X v C,
and T |= C v X for C = ∃r.B with X v ∃r.Y ∈ T , genGΣ

(v1) = Y , and genGΣ
(v2) = X. We

can build a Σ-concept inclusion α that describes π1 and that follows from T by traversing π1,
starting from v2. We set C to be the left-hand side of α, and we iteratively construct its right-
hand side by describing the nodes and edges in π1. We obtain α = ∃r.B v ∃r.∃r.∃r.B.

It holds that sim→([GΣ, v4], [GΣ, v1]), which implies that for every C ∈ UnfoldGΣ
(v4) there

exists D ∈ UnfoldGΣ
(v1) with |= D v C.

In order to obtain GΣ,A
desc, we first construct a TBox T Σ,A

desc that contains a description of all

the Σ-describable cycles in T . GΣ,A
desc is then the subsumer graph of A w.r.t. T Σ,A

desc .
We present a procedure for finding Σ-describable cycles in GΣ in Section 3.1. To decide

whether a Σ-subsumer interpolant of A w.r.t. T exists, it is then sufficient to determine whether
GΣ,A
desc subsumer simulates GΣ. The check for the existence of such a simulation corresponds to

verifying whether the unfoldings of every non-Σ describable cycle in T are covered by a Σ-
describable cycle. The construction of T Σ,A

desc together with the decision procedure for subsumer
interpolants is presented in Section 3.2.

3.1 Identifying Σ-Describable Cycles

We have to find all the edges (v, w) ∈ E in GΣ for which there exists a concept C ∈ ELΣ

such that T |= genG(v) v C and T |= C v X, where an axiom X v ∃r.Y occurs in T with
L(v, w) = r and Y = genG(w). To that end we will search for all pairs of concept names (X,Y )
occurring in T for which there exists C ∈ ELΣ with T |= X v C and T |= C v Y . The
concept C can be seen to be a Σ-interpolation concept between X and Y w.r.t. T .

In the following we introduce a mapping descΣ
T , called the Σ-prime interpolation relation

of T , that assigns pairs (X,Y ) of concept names occurring in T an EL-concept C := descΣ
T (X,Y )

iff there exists an ELΣ-concept D with T |= X v D and T |= D v Y . We call such concepts D
Σ-prime interpolants of X and Y w.r.t. T . Additionally, we construct a TBox T Σ


 from which
one can build up a suitable prime interpolant D by unfolding the concept C, given the definitions
in T Σ


. Intuitively, the TBox T Σ

 allows us to represent the concept D using structure sharing,

which helps to improve the performance of our decision procedure in practice. The formal
definition of the mapping descΣ

T is as follows.

Definition 3 (Prime Interpolants). Let T be a normalised EL-TBox and let Σ be a signature.
For every X,Y ∈ sigNC(T ), let NX,Y ∈ NC \ (sig(T ) ∪ Σ) be a fresh concept name. We define
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descΣ
T ⊆ (sigNC(T ) × sigNC(T )) × EL to be a Σ-prime interpolation relation of T as descΣ

T :=⋃
i≥0 ΦiT ,Σ, where

Φ0
T ,Σ := { ((A,A), A) | A ∈ Σ } ∪ { ((X,Y ),>) | X ∈ sigNC(T ),> v Y ∈ T },

and for i > 0, ΦiT ,Σ, is a smallest set closed under the following conditions:

(i) Φi−1
T ,Σ ⊆ ΦiT ,Σ;

(ii) if (X,Y ) ∈ dom(Φi−1
T ,Σ), X ′, Y ′ ∈ sigNC(T ), T |= X ′ v X, T |= Y v Y ′, and (X ′, Y ′) 6∈

dom(Φi−1
T ,Σ), then ((X ′, Y ′), NX,Y ) ∈ ΦiT ,Σ;

(iii) if (X,Y1), (X,Y2) ∈ dom(Φi−1
T ,Σ), Y1 u Y2 v Z ∈ T , and (X,Z) 6∈ dom(Φi−1

T ,Σ), then

((X,Z), NX,Y1
uNX,Y2

) ∈ ΦiT ,Σ; and

(iv) if (Y1, Y2) ∈ dom(Φi−1
T ,Σ) and there exist X v ∃r.Y1 ∈ T , ∃r.Y2 v Z ∈ T with r ∈ Σ, and

(X,Z) 6∈ dom(Φi−1
T ,Σ), then ((X,Z),∃r.NY1,Y2

) ∈ ΦiT ,Σ.

Finally, we set

T Σ

 :=

⋃
((X,Y ),C)∈descΣ

T

{NX,Y ≡ C}.

The definition of descΣ
T is similar to the inference rules present in consequence-based calculi.

Obviously, all the concept names A ∈ Σ have prime interpolants and they are handled in the
set Φ0

T ,Σ. Then, if we have already found a prime interpolant for a pair (X,Y ) and there exist
concept names X ′, Y ′ with T |= X ′ v X and T |= Y v Y ′, we can immediately derive that the
pair (X ′, Y ′) has the same prime interpolant, which is handled by Condition (ii). Condition (iii)
takes axioms of the form Y1 u Y2 v Z into account. If we know that (X,Y1) and (X,Y2) have
prime interpolants, then also the pair (X,Z) has a prime interpolant. Condition (iv) handles
subsumption via existentials, involving axioms of the form X v ∃r.Y1 and ∃r.Y2 v Z for which it
is known already that (Y1, Y2) has a prime interpolant. Finally, the set Φ0

T ,Σ is also responsible

for handling axioms of the form > v X. Note that the relation descΣ
T is functional and that

(X,Y ) ∈ dom(descΣ
T ) implies T |= X v Y .

Example 6. Let T = {X v A, A v Y, X v ∃r.Z1, ∃r.Z2 v Y, Z1 v B1, Z1 v B2, B1 u B2 v
Z2} and let Σ = {A,B1, B2, r}. Then we have that

descΣ
T := {((A,A), A), ((B1, B1), B1), ((B2, B2), B2), ((X,A), NA,A), ((A, Y ), NA,A),

((Z1, B1), NB1,B1), ((Z1, B2), NB2,B2), ((Z1, Z2), NZ1,B1 uNZ1,B2), ((X,Y ),∃r.NZ1,Z2)}

is a Σ-prime interpolation relation of T . It holds that T Σ

 |= NX,A ≡ A, T Σ


 |= NZ1,Z2
≡

B1 u B2, and T Σ

 |= NX,Y ≡ ∃r.(B1 u B2). Furthermore, we have T |= X v A, T |= A v Y ;

T |= Z1 v B1 uB2, T |= B1 uB2 v Z2; and T |= X v ∃r.(B1 uB2), T |= ∃r.(B1 uB2) v Y .

Note that for a given TBox T and a signature Σ, the Σ-prime interpolation relation is not
unique. However, for our purposes it is sufficient to choose one prime interpolation relation, i.e.
it is not important which interpolation concept D ∈ ELΣ is selected for a prime interpolation
pair (X,Y ) - any will suffice.

We obtain the following correctness and completeness results for our computation procedure
of prime interpolation relations.
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Lemma 2. Let T be a normalised EL-TBox and let Σ be a signature. Then the following
properties hold:

(i) for every ((X,Y ), C) ∈ descΣ
T there exists D ∈ ELΣ with T Σ


 |= C ≡ D, T |= X v D and
T |= D v Y ;

(ii) if there exists D ∈ ELΣ with T |= X v D and T |= D v Y , then (X,Y ) ∈ dom(descΣ
T );

(iii) for every NX,Y ∈ sig(T Σ

) there exists C ∈ ELΣ with T Σ


 |= NX,Y ≡ C;

(iv) the TBox T Σ

 can be computed in polynomial time in the size of T .

The proof of Lemma 2 is based on analysing the derivations produced by our sequent calculus
for characterising subsumption w.r.t. EL-TBoxes.

Finally, we introduce the set EΣ
desc as the set of all edges (v, w) in GΣ = reductΣ(expT→(A)) =

(V, E ,L, ρ) (where T is a normalised EL-TBox and Σ is a signature) for which there exists a
prime interpolant of genGΣ

(v) and X, where X v ∃r.genGΣ
(w) ∈ T and L(v, w) = r. Such

edges will be called Σ-prime edges in GΣ. Formally, given a Σ-prime interpolation relation
descΣ

T of T , we set

EΣ
desc := { (v, w) ∈ E | ∃X v ∃r.Y ∈ T , genGΣ

(w) = Y, (genGΣ
(v), X) ∈ dom(descΣ

T ) }.

Moreover, we define a function descΣ
GΣ

: EΣ
desc → NC mapping (v, w) ∈ EΣ

desc to descΣ
GΣ

(v, w) :=

NX,Y , where X = genGΣ
(v), genGΣ

(w) = Z, and (X,Y ) ∈ dom(descΣ
T ) for some Y v ∃r.Z ∈ T

with L(v, w) = r.

3.2 Decision Procedure for Subsumer Interpolants

We now give a formal definition of the TBox T Σ,A
desc that describes as much as possible of the

structure of GΣ = reductΣ(expT→(A)) using Σ-consequences of T only.

Definition 4 (Maximal Σ-Description). Let T be a normalised EL-TBox, let Σ be a signature,
and let A ∈ Σ. Additionally, let GΣ := reductΣ(exp→T (A)) = (V, E ,L, ρ) and let descΣ

T be a
Σ-prime interpolation relation of T . Moreover, for v0 ∈ V, let Eac(v0) ⊆ V∗ be the smallest set
of sequences over V defined inductively as follows:

(i) v0 ∈ Eac(v0);

(ii) if π · v ∈ Eac(v0), (v, w) ∈ E, w 6∈ π · v, (v, w) 6∈ EΣ
desc, then π · v · w ∈ Eac(v0).

Finally, we assume that for every π ∈ V∗, Nπ ∈ NC is a fresh concept name, and we set:

T Σ,A
desc := T Σ


 ∪ {A v Nρ}
∪ { descΣ

GΣ
(v, w) v ∃r.Nw | (v, w) ∈ EΣ

desc,L(v, w) = r }

∪ {Nπ·v ≡
l

B∈L(v)

B u
l

π·v·w∈ΠΣ

L(v,w)=r

∃r.Nπ·v·w u
l

(v,w)∈EΣ
desc

descΣ
GΣ

(v, w) | π · v ∈ ΠΣ },

where ΠΣ = Eac(ρ) ∪
⋃

(v,w)∈EΣ
desc
Eac(w).

Recall that EΣ
desc contains all the Σ-prime edges (v, w) ∈ E of GΣ and that descΣ

GΣ
(v, w) is a

concept name of the form NX,Y ∈ sig(T Σ

) \ Σ corresponding to a concept D ∈ ELΣ such that

T |= genGΣ
(v) v D and T |= D v ∃r.genGΣ

(v) with L(v, w) = r.
Intuitively, for a node v ∈ V, the set Eac(v) contains all acyclic paths π in GΣ that start at v

and that lead to a leaf node without traversing Σ-prime edges. The set ΠΣ contains all acyclic
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paths starting at the root node ρ or the target nodes of Σ-prime edges. For such paths π = π′ ·v,
the fresh concept name Nπ describes the Σ-structure of the node v in GΣ: the Σ-concept names
that are entailed by genGΣ

(v) and its implied Σ-edges, which can either be Σ-prime edges (v, w)

that are described by the descΣ
GΣ

(v, w) concept name, or regular edges which are axiomatised
using the Nπ′·v·w concept name. The set ΠΣ is of exponential size in V as it enumerates all the
acyclic paths in GΣ. Note that all the role names occurring in T Σ,A

desc are in Σ, which is not the
case for the concept names.

We obtain the following properties of T Σ,A
desc and of its associated subsumer graph GΣ,A

desc. Note

that T Σ,A
desc needs to be normalised first.

Lemma 3. Let T be a normalised EL-TBox, let Σ be a signature, and let A ∈ Σ. Additionally,
let T ′ := norm(T Σ,A

desc ) and let GΣ,A
desc = expT

′

→ (A) = (V, E ,L, ρ). Then

(i) for every C,D ∈ ELΣ with T Σ,A
desc |= C v D, it holds that T |= C v D;

(ii) for every X ∈ sigNC(T ′), there exists C ∈ ELΣ with T ′ |= X ≡ C; and

(iii) EΣ
desc = E.

Property (i) holds by construction of T Σ,A
desc . Using the properties of the TBox T Σ


, it is easy
to see that Property (ii) holds for all concept names of the form NX,Y ∈ sig(T Σ


). For concept
names of the form Nπ the property can be shown by induction on the length of π. Property (iii)
follows from the construction of Eac(v) for v ∈ ΠΣ.

Example 7. Let T and let Σ be defined as in Example 3 and let GΣ be as shown in Fig-
ure 1. Then we have descΣ

T = {((A,A), A), ((B,B), B), ((A,X), NA,A), ((X,X),∃r.NB,B)} and
EΣ
desc = {(v0, v1), (v0, v3), (v0, v4), (v2, v1), (v2, v3)}. Additionally, Eac(v0) = {v0}, Eac(v1) =

{v1, v1 · v2}, Eac(v3) = {v3}, and Eac(v4) = {v4}. Finally, we obtain T Σ,A
desc = T
 ∪ {A v

Nv0
} ∪ TEΣ

desc
∪ TΠΣ

, where

T
 := {NA,A ≡ A, NB,B ≡ B, NA,X ≡ NA,A, NX,X ≡ ∃r.NB,B},
TEΣ

desc
:= {NA,X v ∃r.Nv1 , NA,X v ∃r.Nv3 , NA,A v ∃r.Nv4 , NX,X v ∃r.Nv1 , NX,X v ∃r.Nv3},

TΠΣ
:= {Nv0

≡ A uNA,X uNA,A, Nv1
≡ ∃r.Nv1·v2

, Nv1·v2
≡ NX,X , Nv3

≡ B, Nv4
≡ >}.

We now establish the correctness and completeness of our decision procedure.

Theorem 2. Let T be a normalised EL-TBox. Additionally, let Σ be a signature and let
A ∈ Σ. Finally, let GΣ = reductΣ(expT→(A)) = (V, E ,L, ρ) and let GΣ,A

desc = expT
′

→ (A) for

T ′ := norm(T Σ,A
desc ). Then the following two statements are equivalent

(i) there exists a Σ-subsumer interpolant of A w.r.t. T ;

(ii) sim→(GΣ,GΣ,A
desc).

For the proof of the implication (ii)⇒ (i), we first observe that every X ∈ sigNC(T Σ,A
desc ) \Σ

can be replaced with a concept C ∈ ELΣ such that T ′ |= X ≡ C. In that way we can construct
a TBox T Σ

s-ui such that sig(T Σ
s-ui) ⊆ Σ, and for every α = C v D with C,D ∈ ELΣ it holds that

T Σ,A
desc |= α iff T Σ

s-ui |= α. Then, as sim→(GΣ,GΣ,A
desc) holds by assumption, it follows that T Σ

s-ui is
a Σ-subsumer interpolant of A w.r.t. T .

The implication (i) ⇒ (ii) requires an involved proof, of which we can only give a high-
level overview due to space constraints. As by assumption a Σ-subsumer interpolant T Σ

s-ui of A

w.r.t. T exists, let GΣ
s-ui := reductΣ(expT

′′

→ (A)) for T ′′ := norm(T Σ
s-ui). By definition of subsumer
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|sig(T )|
NC/ NR

|Σ|
NC/ NR

Success

Rate (%)

Subsumer UI exists?

Yes / No

Average

Time (s)

COGAT 1702/6
100/6 100 10/90 17.67

150/6 100 64/36 8.57

CLO 5474/13
200/13 100 100/0 6.65

300/13 100 100/0 5.94

ChEBI 102613/9
100/9 99 59/40 9.95

200/9 100 71/29 16.29

NCI 118158/92

50/50 96 84/12 24.90

100/50 96 82/14 73.09

200/50 89 73/16 164.85

GALEN 23141/404

20/20 97 97/0 36.21

30/30 95 93/2 54.52

75/75 77 74/3 100.12

Table 1: Performance of our prototype implementation

interpolants, there exists a maximal (w.r.t. ⊆) subsumer simulation S1 between GΣ and GΣ
s-ui,

as well as a maximal subsumer simulation S2 between GΣ
s-ui and GΣ. One can then show that

the composition S := S1 ◦S2 together with a special condition on the edges induces a subgraph
G′Σ of GΣ (by restricting GΣ to the nodes v such that (v, v) ∈ S) in which every cycle is Σ-
prime and for which there exists a subsumer graph simulation S between GΣ and G′Σ with
(v′, v′) ∈ S for every node v′ in G′Σ (cf. graph G′Σ in Figure 1 and Example 3). One can show

that sim→(G′Σ,G
Σ,A
desc) and consequently, sim→(GΣ,GΣ,A

desc) holds.
Once it is known that a Σ-subsumer interpolant exists, it can be constructed by unfolding

the TBox T Σ,A
desc as described in the proof sketch above for the implication (ii)⇒ (i). Moreover,

it can easily be seen that T Σ,A
desc completely describes GΣ when GΣ does not contain a cyclic path.

We can thus infer that a subsumer interpolant always exists if GΣ is acyclic.
As the existence of subsumer simulations can be decided in polynomial time in the size of

the input graphs, we obtain the following complexity result.

Corollary 1. Let T be a normalised EL-TBox, let Σ be a signature and let A ∈ Σ. Then it
can be decided in exponential time in the size of T and Σ whether there exists a Σ-subsumer
interpolant of A w.r.t. T .

4 Experimental Evaluation

We conducted an initial experimental evaluation of a prototype implementation of our decision
procedure on five real-world ontologies to assess the practical feasibility of our method. More
precisely, given an EL-TBox Tin, a signature Σ, and a concept name A ∈ Σ as input, in our
prototype implementation the normalisation T of Tin and the Σ-reduct of the subsumer graph
G := (V, E ,L, ρ) of A w.r.t. T is computed first. Subsequently, the Σ-prime interpolation
TBox T Σ


 of T is constructed, which is followed by the computation of the candidate TBox

T ′ = T Σ,A
desc . Finally, the subsumer graph GΣ,A

desc of A w.r.t. norm(T Σ,A
desc ) is constructed and our

implementation checks whether sim→(G,GΣ,A
desc) holds.

As ontologies we selected the version 0.3 of the Cognitive Atlas Ontology (COGAT); release
January 6, 2016 of the Chemical Entities of Biological Interest (ChEBI) ontology; version 2.0
of the Cell Line Ontology (CLO); the version of the Full-GALEN ontology without functional,
inverse and transitive roles; and version 16.03d of the National Cancer Institute Thesaurus
(NCI). We first removed every non-EL axiom from each ontology (including role inclusions).
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In our experiments we focused on forgetting most of the signature symbols of the TBox,
which corresponds to the use case of exhibiting hidden relationships between signature symbols
using uniform interpolation, for instance. We selected the input concept names A and the input
signatures Σ with up to 300 concept names and 75 role names that we used in our experiments
as follows. For each considered signature size x/y (number of concept/role names) we selected
concept names A from the respective ontologies T such that the subsumer graph expT→(A)
is cyclic and such that more than x concept names occur in expT→(A). We only chose con-
cept names A that yield cyclic subsumer graphs expT→(A) as subsumer interpolants of acyclic
subsumer graphs always exist. We then extracted x − 1 concept names and y role names of
those that occur in expT→(A) at random. For each signature size x/y we repeated the process
described above 100 times.

All experiments were run on PCs equipped with an Intel Core i5-4590 CPU running at
3.30GHz. 16 GiB of heap space were allocated to the Java VM and an execution timeout of
10 CPU minutes was imposed on each problem.

The results of our experiments are shown in Table 1. For the fairly small ontologies COGAT
and CLO, we did not encounter any timeouts and the existence of subsumer interpolants could
typically be decided within a few seconds. We obtained similar results for the larger ontology
ChEBI, which is, however, composed of axioms that have a simple structure to which Lemma 1
applies. Our tool has hence been able to decide the existence of uniform interpolants of ChEBI.
Note that subsumer interpolants of CLO were found to exist in all of our test cases.

For the more complicated ontologies NCI and GALEN, we could observe that with increas-
ing signature size the average computation time was also increasing and that the success rate
was slightly decreasing. In most of the cases, our implementation could determine the exis-
tence of subsumer interpolants within a few minutes, even for GALEN, which is renowned for
its complicated cyclic structure. For NCI the number of no-answers remained fairly stable
throughout the various signature sizes, but for GALEN we only started to observe a small
number of no-answers for signature sizes of 30 concept and role names.

The experiments show that deciding the existence of Σ-subsumer interpolants is feasible
in practice despite our prototype not having an efficient implementation for determining the
existence of graph simulations. In most of our test cases that did not result in a timeout the
simulation check required more time than the construction of the TBox T Σ,A

desc .

5 Conclusion

We have shown how the problem of deciding the existence of a uniform interpolant of an EL-
TBox w.r.t. a signature can be divided into three subproblems. Here we have investigated the
existence of subsumer interpolants of EL-TBoxes for a concept name w.r.t. a signature, which is
one of those subproblems. We have characterised the existence of subsumer interpolants using
the proof-theoretic approach from [7]. We believe that the techniques presented in this paper
can lead to a fundamentally new approach to deciding the existence of uniform interpolants
of EL-TBoxes. Moreover, we have presented an evaluation of a prototype implementation for
deciding the existence of subsumer interpolants (and computing subsumer interpolants if they
exist), and we demonstrated its viability in practice on several real-world ontologies, including
the prominent ontologies NCI and GALEN. Our implementation can decide the existence of
uniform interpolants in some cases as subsumer interpolants and uniform interpolants may
coincide, which is the case for the (EL-fragment of the) ontology ChEBI. To the best of our
knowledge, our implementation is the first tool capable of deciding the existence of uniform
interpolants, albeit limited to ontologies of a special form.
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