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Abstract

This is a part of an ongoing research project, with the aim of finding the connections
between properties related to theory combination in Satisfiability Modulo Theories. In pre-
vious work, 7 properties were analyzed: convexity, stable infiniteness, smoothness, finite
witnessability, strong finite witnessability, the finite model property, and stable finiteness.
The first two properties are related to Nelson-Oppen combination, the third and fourth to
polite combination, the fifth to strong politeness, and the last two to shininess. However,
the remaining key property of shiny theories, namely, the ability to compute the cardinal-
ities of minimal models, was not yet analyzed. In this paper we study this property and
its connection to the others.1

1 Introduction
Quisani2 and Author meet in the LPAR waiting room. Their papers are being reviewed.

Quisani: Again with the combination of properties?
Author: Most certainly. We have some new exciting results about this.

Q: Now, there is a pun in your titles right?
A: Yes. We deal with combination of properties of theories. But the properties themselves are
studied in the field of theory combination in Satisfiability Modulo Theories (SMT) [2].

Q: Sure, SMT-solvers, like cvc5, z3, bitwuzla, Yices, and MathSAT [1, 15, 17, 9, 7].
A: Yes, among others.

Q: So what is this theory combination all about?
A: Well, SMT solvers implement decision procedures for various theories. For example, many of
them implement the bit-blasting [13] algorithm for bit-vectors, the simplex algorithm for arith-
metic [10], or the weak-equivalence algorithm for array formulas [6]. But for many applications,
reasoning in just one theory is not enough, and their combination is required.

Q: Like, if I have a formula about arrays of integers, for example?
A: Exactly. And in such cases, one would hope to use the existing decision procedures for arrays
and integers, rather than developing a completely new algorithm for this specific combination.

1This work was funded by NSF-BSF grant 2020704, ISF grant 619/21, and the Colman-Soref fellowship.
2Quisani, formerly known as Quizani, was born in [11].
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Q: I see. I remember reading about this. This is about the Nelson-Oppen method right [16]?
A: Nelson and Oppen’s method is great when the theories are stably-infinite, roughly meaning
that satisfiable formulas have infinite models. There is also a variant of the method for convex
theories (roughly meaning that when a disjunction of equalities is implied, one of them is
implied). But some theories do not have these properties, and then this method does not apply.

Q: That would cause problems when considering arrays of bit-vectors, instead of integers.
A: Spot on, as usual. Several other combination techniques were introduced since the Nelson-
Oppen approach. Each method replaces the stable-infiniteness requirement by another one.
For example, the polite combination method [19] requires a stronger property called politeness,
but only from one of the theories. Another similar notion is that of shininess [23].

Q: But these are properties for different combination methods. Why would you combine them?
A: Besides theoretical interest, this line of research can make it easier to prove that a given
theory can be combined using one of the above methods. For example, Barrett et al. proved
in [3] that, under some conditions, convexity implies stable-infiniteness.

Q: Sounds reasonable. Are there other connections between these properties?
A: Well, when politeness was introduced [19], the authors proved that it is equivalent to shini-
ness. Later, in [12], Jovanović and Barrett found a problem in the definition of politeness
from [19] and corrected it. Their fixed definition was later proven to be equivalent to shiny
theories for the one-sorted case in [5], and then for the many-sorted case [4], under certain
conditions. [5] also named the property with the fixed definition from [12] strong politeness. In
fact, it is possible that some of the authors of these papers sat right here in this room – [5] and
[12] were published in LPAR 2010 and 2013, respectively.

Q: Cool! I wonder which one of them sat on my chair. Well, it’s not mine per se, I mean the
chair I am sitting on. So with all these results, weren’t all the questions answered?
A: Certainly not. To begin with, [12] did not prove that politeness and strong politeness are
different. They only fixed a problem in a proof from [19], by changing the definition. Only
later [21] it was proven that these notions are indeed different. But there is much more into this.
For example, (strong) politeness is actually a conjunction of two primitive properties, namely
smoothness and (strong) finite witnessability. Similarly, shininess is a conjunction of smooth-
ness, stable finiteness (or its weaker form, the finite model property), and the computability
of the function that takes a quantifier-free formula and returns the minimal cardinalities of its
models. For any combination of these properties (and their negations), it is interesting whether
there is a theory exhibiting this combination (for example, there are no theories that are smooth
but not stably infinite, but there are stably infinite theories that are not smooth, etc.).

Q: Wait, so you are considering 2, 4, ... what, 256 possible combinations?!
A: Its actually worse, as some combinations are possible only for empty signatures, or for one-
sorted but not many-sorted signatures. So the total number would be 2, 4, ... yeah, 1, 024
combinations. Now wait, no, no, no, stop jumping up and down. It’s not as crazy as it sounds.
In fact, [24, 25] handle almost all these properties. They obtained very special theories by use
of non-computable functions like the busy beaver function, as unrelated as that may sound.
The only property left is the computability of the aforementioned function (the one with the
minimal cardinalities and whatnot). The current paper considers all combinations, including
this missing property. Now tell me, how would you like this to proceed?

Q: Your next section (Section 2) should review necessary definitions and notions. In Section 3,
please provide more details on this minimal model function. Can you clarify what is minimal
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Signature Sorts Function Symbols Predicate Symbols
Σn {σ1, . . . , σn} ∅ ∅
Σn

s {σ1, . . . , σn} {s : σ1 → σ1} ∅

Table 1: Useful signatures. We often write Σs instead of Σ1
s.

̸= (x1, . . . , xn) =

n−1∧
i=1

n∧
j=i+1

¬(xi = xj) ψσ
≥n = ∃x1 . . . xn. ̸= (x1, . . . , xn)

ψσ
≤n = ∃x1, . . . , xn. ∀ y.

n∨
i=1

y = xi ψσ
=n = ψσ

≥n ∧ ψσ
≤n

Figure 1: Cardinality formulas. All of xi, and y are of sort σ.

about minimal models? Then you can state your main theorem in Section 4, identifying all
possible and impossible combinations. Give it a nice name. “Theorem 3" maybe? Please split
the proof to Section 5 and Section 6. In the first, provide all the impossible combinations, and
in the second, all the possible ones. I wouldn’t be surprised if the Busy Beaver function shows
up there again, or even a completely new non-computable function. If you have room, you
could end with some concluding remarks and future directions in the last section, Section 7.
A: You got it.3

2 Preliminaries

2.1 First-Order Many-Sorted Logic
We fix a many-sorted signature Σ = (SΣ,FΣ,PΣ) where: SΣ is a countable set of sorts; FΣ

a set of function symbols, each with an arity σ1 × · · · × σn → σ for σ1, . . . , σn, σ ∈ SΣ; and
PΣ a set of predicate symbols, each with an arity σ1 × · · · × σn. PΣ includes for every σ ∈ SΣ

an equality =σ of arity σ × σ usually denoted by = when σ is clear. Σ is empty if it has no
function or predicate symbols other than the equalities; Σ is one-sorted if |SΣ| = 1. For each
sort we assume a countably infinite set of variables, those sets being disjoint for distinct sorts.
We then define terms, literals and formulas as usual. The set of quantifier-free formulas on Σ
shall be written as QF (Σ). The set of variables of sort σ in a formula φ is denoted by varsσ(φ),
and the set of all of its variables by vars(φ). We will often use the signatures from Table 1: for
every n, Σn is the empty signature with n sorts, and Σn

s is the n-sorted signature with a single
function symbol s whose arity is σ1 → σ1. We often write Σs instead of Σ1

s.
Σ-interpretations A are defined as usual (see, e.g., [14]). σA denotes the domain of sort σ;

for a function symbol f and a predicate symbol P , fA and PA denote the related function and
predicate in A; for a term α, αA is its value in A, and if Γ is a set of terms, ΓA = {αA : α ∈ Γ}.
If A satisfies φ we write A ⊨ φ, and say that φ is satisfiable. The formulas in Figure 1 will be
important in what is to come: an interpretation A satisfies ̸= (x1, . . . , xn), for xi of sort σ (or
even its existential closure ψσ

≥n) iff |σA| ≥ n; A ⊨ ψσ
≤n iff |σA| ≤ n; and A ⊨ ψσ

=n iff |σA| = n.
If the signature at hand is one-sorted, we drop σ (e.g., when writing ψ≥n).

A theory T is a class of interpretations (called T -interpretations, or the models of T when
3Due to lack of space proofs are omitted, but they can be found in [26].
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disregarding variables) comprised of all the interpretations that satisfy a set Ax(T ) called the
axiomatization of T ; a formula is (T -)satisfiable if it is satisfied by a (T -)interpretation. Two
formulas are (T -)equivalent if they are satisfied by the same (T -)interpretations. A formula φ
is T -valid, denoted ⊨T φ, if A ⊨ φ for all T -interpretations A. The following are many-sorted
generalizations of the Löwenheim-Skolem and compactness theorems (see [14, 22]).
Theorem 1. Let Σ be a first-order, many-sorted signature; if a set of Σ-formulas Γ is satisfiable,
then there exists an interpretation A that satisfies Γ where |σA| ≤ ℵ0 for all σ ∈ SΣ.

Theorem 2. Let Σ be a first-order, many-sorted signature; then a set of Σ-formulas Γ is
satisfiable if, and only if, each finite subset Γ0 ⊆ Γ is satisfiable.

2.2 Theory Combination Properties
In what follows, Σ denotes an arbitrary signature, T a Σ-theory, and S ⊆ SΣ.

Stable infiniteness and smoothness T is stably infinite [16] w.r.t. S if, for every quantifier-
free T -satisfiable formula ϕ, there is a T -interpretation A satisfying ϕ with |σA| ≥ ℵ0 for each
σ ∈ S. T is smooth [23, 20] w.r.t. S if, for every quantifier-free formula ϕ, T -interpretation A
satisfying ϕ, and function κ from S to the class of cardinals with κ(σ) ≥ |σA| for each σ ∈ S,
there is a T -interpretation B satisfying ϕ with |σB| = κ(σ) for each σ ∈ S.
Finite witnessability and strong finite witnessability Given a finite set of variables
V =

⋃
σ∈S Vσ, for Vσ the subset of V of variables of sort σ, and equivalence relations Eσ on

Vσ whose union (also an equivalence relation) we denote by E, we define the formula δEV :=∧
σ∈S

[∧
xEσy

(x = y) ∧
∧

x ̸Eσy
¬(x = y)

]
. We then call δEV an arrangement of V and often

denote it by δV when E is clear from the context.
T is finitely witnessable [20] w.r.t. S if there is a computable function wit (called a witness)

from QF (Σ) into itself that satisfies: (i) for any quantifier-free formula ϕ, ϕ and ∃−→x . wit(ϕ)
are T -equivalent, for −→x = vars(wit(ϕ)) \ vars(ϕ); and (ii) if wit(ϕ) is T -satisfiable, then there
exists a T -interpretation A satisfying it with σA = varsσ(wit(ϕ))

A for each σ ∈ S.
Strong finite witnessability [12] w.r.t. S is defined similarly, replacing (ii) by: (ii′) given a

finite set of variables V and arrangement δV on V , if wit(ϕ)∧δV is T -satisfiable, then there is a
T -interpretation A satisfying it with σA = varsσ(wit(ϕ)∧ δV )A for each σ ∈ S. T is (strongly)
polite w.r.t. S if it is both smooth and (strongly) finitely witnessable w.r.t. S.
Convexity T is convex [16] w.r.t. S if ⊨T ϕ →

∨n
i=1 xi = yi, for ϕ a conjunction of literals,

and xi and yi variables of sorts in S, implies that ⊨T ϕ→ (xi = yi) for some 1 ≤ i ≤ n.
Finite model property and stable finiteness T has the finite model property [5] w.r.t.
S if, for every quantifier-free formula ϕ that is T -satisfiable, there exists a T -interpretation A
that satisfies ϕ with |σA| < ℵ0 for all σ ∈ S. A theory is stably finite [23] w.r.t. S if, for every
quantifier-free formula ϕ and T -interpretation A that satisfies ϕ, there exists a T -interpretation
B that satisfies ϕ with |σB| < ℵ0 and |σB| ≤ |σA| for every σ ∈ S.
Minimal model function Suppose S is finite, and consider the set Nω := N ∪ {ℵ0}. A
minimal model function [23, 20, 4] of T w.r.t. S is a function4

minmodT ,S : QF (Σ) → ℘fin(NS
ω)

4Here, as is usual in set-theoretic notation: NS
ω is the set of functions n : S → Nω , themselves also denoted

by (nσ)σ∈S where n(σ) = nσ ; and ℘fin(X) is the set of finite subsets of X.
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such that, if ϕ is a quantifier-free, T -satisfiable formula, then (nσ)σ∈S ∈ minmodT ,S(ϕ) if,
and only if, the following holds: first, there exists a T -interpretation A that satisfies ϕ with
|σA| = nσ for each σ ∈ S; and second, if B is a T -interpretation that satisfies ϕ with (|σB|)σ∈S ̸=
(nσ)σ∈S , then there exists σ ∈ S such that nσ < |σB|.5

When S equals the set, for example, {σ1, . . . , σn}, we will denote an element (nσ)σ∈S simply
by (nσ1 , . . . , nσn), identifying NS

ω with Nn
ω. When Σ is one-sorted, then minmodT ,S(ϕ) has

precisely one element, and so we can identify the output of minmodT ,S , if not empty, with an
element of Nω.

3 On Minimal Models
In this section we analyze some of the characteristics of minimal model functions. We start

by noticing that, if ϕ is T -satisfiable, there is a unique possibility for the set minmodT ,S(ϕ),
given the bi-implication in its definition. It therefore follows that two minimal model functions
always agree on T -satisfiable inputs; the output can vary, however, on T -unsatisfiable formulas.
We continue by showing that for satisfiable formulas, minmodT ,S(ϕ) is indeed a finite subset
of NS

ω, using the following variant of Dickson’s Lemma [8].67

Lemma 1. Let n be a natural number, and consider any subset A of Nn
ω equipped with the

order such that (p1, . . . , pn) ≤ (q1, . . . , qn) iff pi ≤ qi for all 1 ≤ i ≤ n: then A possesses at most
a finite number of minimal elements under this order.

Proposition 1. For every Σ-theory T , S ⊆ SΣ, and quantifier-free ϕ, the subset X of NS
ω is

finite, where (nσ)σ∈S ∈ X iff: there is a T -interpretation A that satisfies ϕ with (|σA|)σ∈S =
(nσ)σ∈S ; if B is a T -interpretation that satisfies ϕ with (|σB|)σ∈S ̸= (nσ)σ∈S , then there is a
σ ∈ S such that nσ < |σB|.

The following result thus neatly explains the choice of nomenclature for a minimal model
function vis-à-vis its definition: it is so well known that its proof became rather elusive.

Proposition 2. Take a quantifier-free formula ϕ and consider the set

CardT ,S(ϕ) = {(|σA|)σ∈S : A is a T -interpretation that satisfies ϕ},

together with the partial order such that (|σA|)σ∈S ≤ (|σB|)σ∈S iff |σA| ≤ |σB| for all σ ∈ S;
then, if ϕ is T -satisfiable, minmodT ,S(ϕ) equals the set of ≤-minimal elements of CardT ,S(ϕ).

If one looks at how a minimal model function is used in [23, 5, 4], two differences become
noticeable: first, that its codomain is taken to be ℘fin(NS) rather than ℘fin(NS

ω); and second,
that its domain is taken to be the subset of T -satisfiable elements of QF (Σ), rather than
QF (Σ). In the first case, the difference boils down to assuming stable finiteness, as we show in
the next proposition. We, however, do not make this assumption, as we are interested in the
characteristics of the separate properties, and the connections between them.

Proposition 3. Let T be a theory, and S a set of its sorts:

1. nσ is in N for all quantifier-free, T -satisfiable formulas ϕ, some (nτ )τ∈S ∈ minmodT ,S(ϕ),
and all σ ∈ S, iff T has the finite model property with respect to S.

5We can use Nω instead of the class of all cardinals thanks to Theorem 1.
6We thank Benjamin Przybocki for pointing out this lemma to us.
7Dickson’s original result simply exchanges Nω for N in Lemma 1.
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2. nσ is in N for all quantifier-free, T -satisfiable formulas ϕ, (nτ )τ∈S ∈ minmodT ,S(ϕ), and
σ ∈ S, iff T is stably finite with respect to S.

Notice that while in the first item of Proposition 3 we quantify existentially over the elements
of minmodT ,S(ϕ), on the second this is done universally.

As for the domain of minmodT ,S , notice that, typically, the minimal model function is only
considered for decidable theories (often implicitly), something that we do not wish to assume
a priori here. But, if decidability is assumed, both notions are one and the same.

4 The Main Theorem
Q: So, I am assuming that your main theorem provides a complete characterization of the
possible and impossible combinations of properties?
A: Not exactly. Already in [24], one combination was problematic: no theories that are stably
infinite and strongly finitely witnessable but not smooth were found, nor proven not to exist.

Q: Aha. These are the famous unicorn theories, right?
A: Yes. They were named that way because such theories were never seen, and were conjectured
not to exist. We are currently working on resolving this conjecture, using other techniques.

Q: And in the current paper, are you able to determine all the remaining combinations?
A: Almost, except for two, that we also conjecture to be impossible (and feel that a proof would
also lie beyond the scope and techniques of the present analysis).

Q: So I guess now you will be back to the paper and present the new conjectures, as well as
the main result?
A: Yes, if you do not mind.
—

We first make the following conjecture regarding two combinations:
Definition 4.1. A unicorn 2.0 theory is strongly finitely witnessable with no computable
minimal model function. A unicorn 3.0 theory is polite (smooth, and finitely witnessable) and
shiny (smooth, stably finite, and has a computable minimal model function), but is not strongly
polite (smooth, and strongly finitely witnessable).

Conjecture 1. There are no Unicorn 2.0 and Unicorn 3.0 theories.

Notice that, according to [5, 4], unicorn 3.0 theories, and 2.0 that are also smooth, cannot
have a decidable quantifier-free satisfiability problem; the same, however, is not necessarily true
for the non-smooth case.

We may now state the following theorem, which refers to Table 2. We use abbreviated names
of the properties: SI for stably infinite, SM for smooth, FW for finitely witnessable, SW for
strongly finitely witnessable, CV for convex, FM for finite model property, SF for stably finite,
and CF for computability of a minimal model function. A line X over a property X indicates
its negation. The table lists all the impossible combination of properties found in [24] (red),
in [25] (blue), and the current paper (black). A list of properties (or their negations) separated
by plus signs indicates that the combination is impossible. It is partitioned according to the
complexity of the signatures: in the first column there appear combinations that are impossible
in one-sorted signatures, while the results of the second column hold generally, regardless of
the number of sorts. Similarly, the combinations of the first row are only proved for empty
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One-sorted General

E
m

pt
y

SI + FW SI + CV
SI + SW + CV SM + FW + FM

SM + SW + SF
SI + CF (Theorem 6) SI + CV + FM + SF +Σ2

FM + CF (Theorem 7) SM + CF (Theorem 5)
SI + CV + FM + CF +Σ2 (Theorem 8)

G
en

er
al

SM + FW + SW SM + SI
FW + SW

SI + SM + SW FM + SF
FW + FM

FM + SF SW + SF
FW + FM + CF (Theorem 4)

Table 2: Impossible red combinations were proven in [24] and blue in [25]. Black combinations
are proven in the current paper.

signatures, while in the second row they are general. For example, the first line in the top left
square means that there are no theories over an empty one-sorted signature that are neither
stably infinite nor finitely witnessable. This was proved in [24]. Two entries in the table include
Σ2, which means that the corresponding combination is only impossible in Σ2-theories.

With Conjecture 1 and Table 2 in place, we can now state the following theorem, which
summarizes the results from [24, 25] and the present paper.

Theorem 3. Disregarding unicorn, unicorn 2.0 and unicorn 3.0 theories, a combination of
properties is impossible if, and only if, it occurs in Table 2.

The “if" part of Theorem 3 is proved by considering each combination that appears in the
table separately. The combinations that do not involve the computability of a minimal model
function were proven to be impossible in [24, 25]. In Section 5, we consider the combinations
that include this property. In particular, Theorems 4 to 8 include the precise formulations
of these results. The “only if" part is proved by providing examples for all combinations not
mentioned in Table 2. Examples without conmputability of a minimal model function were
given in [24, 25]. In Section 6, we determine this property for each of the examples from [24,
25], and also provide new examples for the remaining combinations.

5 Proof of Theorem 3: The Impossible Cases
In this section, we prove the impossibilty of some combinations of the computability of a

minimal model function with other properties that are related to theory combination. The most
general result is not restricted to any type of signature, and is presented in Section 5.1. The
other results, in Section 5.2, hold only for empty signatures. These results, along with results
of previous work on the subject of combination of properties, are summarized in Section 5.3.

5.1 General Signatures
The following theorem holds for any signature, and states that the computability of a min-

imal model function, together with the finite model property, imply finite witnessability.
Theorem 4. If T has a computable minimal model function and the finite model property
with respect to a finite set S, then T is finitely witnessable with respect to S.
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Proof sketch. Take a quantifier-free formula ϕ. As T has the finite model property, by Propo-
sition 3 there either is a minimal T -interpretation A satisfying ϕ which has (|σA|)σ∈S in NS ,
or ϕ is not T -satisfiable. We can then produce wit(ϕ) by considering the conjunction of ϕ and
a tautology involving |σA| many variables of sort σ for a minimal T -interpretation of ϕ in the
first case, and on the second wit(ϕ) = ϕ: the resulting formula is obviously equivalent to ϕ, can
be found computably, and satisfies the witnessability property that a witness should.

5.2 Empty Signatures

We start with a superficially unexpected result: for empty signatures, smoothness implies
the computability of a minimal model function.
Theorem 5. If T is a Σn-theory smooth with respect to SΣ, then T has a computable minimal
model function with respect to any S ⊆ SΣ.

Unexpected as smoothness is often considered a tool to increase models, while the com-
putability of a minimal model function should decrease them. Only superficially as the proof
is rather straightforward, although long, with the following idea and crucial use of Dickson’s
lemma (Lemma 1):

Proof sketch. On empty signatures, we can shrink interpretations until we reach minimal ones.
Computability comes from there being only finitely many such minimal interpretations.

In Theorem 5, one actually needs smoothness w.r.t. all sorts to prove the computability of
a minimal model function with respect to any set of sorts, as shown in the next example:

Example 1. Take any increasing non-computable function h : N \ {0} → N \ {0} and consider
the Σ2-theory T with axiomatization {ψσ2

=n → ψσ1

≥h(n) : n ∈ N \ {0}}. It is smooth with respect
to {σ1}, but not {σ1, σ2}, and so Theorem 5 does not apply. And indeed, due to the fact that h
is increasing, h(n) = minmodT ,{σ1}( ̸= (u1, . . . , un)), for ui of sort σ2 and any minimal model
function minmodT ,{σ1}, and it is clear that, if T has a computable minimal model function
with respect to {σ1}, h should be itself computable, leading to a contradiction.

The next theorem shows that a Σn-theory which is not stably infinite w.r.t. none of its sorts
(as singletons) must have a computable minimal model function w.r.t. any subset of the sorts.

Theorem 6. If T is a Σn-theory that is not stably infinite with respect to any σ ∈ SΣn
, then

T has a computable minimal model function with respect to any S ⊆ SΣn
.

Proof sketch. If T is not stably infinite w.r.t. any σ ∈ S, that means that there is only a
finite set of possible finite cardinalities for |σA|, for a T -interpretation A and σ ∈ S; indeed, if
there were infinitely many possible cardinalities, the pigeonhole principle would guarantee that
there are infinite possible values |σA

0 | for some σ0 ∈ S, and by Theorem 2 we would get a T -
interpretation A with σA

0 infinite, contradicting the fact that T is not stably infinite w.r.t. σ0,
as the fact that Σn is empty implies that interpretations are determined by their cardinalities.
A minimal model function w.r.t. S can then be calculated on ϕ by simply checking which of
these finitely many interpretations satisfy ϕ, what is of course computable.

The following two results are more restrictive than the previous two, not only demanding
the signatures to be empty, but also with low numbers of sorts.
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CF FM

FW

Thm. 4

SM

CF

Thm. 5 (Σn)

SI & CF

SI & CF

SI & CF

Thm. 6 (Σn)

FM & CF

FM & CF

FM & CF

Thm. 7 (Σ1)

CF FM

SI

CV

Thm. 8 (Σ2)

Figure 2: Venn diagrams for Thms. 4 to 8

Theorem 7. A Σ1-theory without the finite model property w.r.t. its only sort has a com-
putable minimal model function, also w.r.t. its only sort.

Proof sketch. The proof is similar to that of Theorem 6. If T is a theory over the one-sorted,
empty signature, without the finite model property, it has only finitely many finite interpreta-
tions up to isomorphism; indeed, were there infinitely many of them, their cardinalities would
be unbounded, and then for any quantifier-free formula ϕ and T -interpretation A that satisfies
ϕ, any finite T -interpretation B with |σB

1 | ≥ |vars(ϕ)A| could be modified to satisfy ϕ, giving us
the finite model property (contradiction). A minimal model function of ϕ can then be simply
calculated by checking which of these interpretations satisfy ϕ, what is computable.

Theorem 8. A convex Σ2-theory admits at least one of the following properties: stable in-
finiteness, finite model property, or a computable minimal model function, all w.r.t. {σ1, σ2}.

Proof sketch. If T is not stably infinite, one can use Theorem 2 to show that there exist
k1, k2 ∈ N such that no T -interpretation A has (|σA

1 |, |σA
2 |) > (k1, k2). Then, we can take

k1 + 1 variables of sort σ1 and k2 + 1 variables of sort σ2, and write a disjunction of those
that is valid by the pigeonhole principle, meaning we must have either |σA

1 | = 1 for all T -
interpretations, or |σA

2 | = 1, so that T remains convex. W.l.o.g, we assume the latter. Assum-
ing that no minimal model functions of T are computable, we get that there are infinitely many
non-isomorphic T -interpretations A with |σA

1 | countable: otherwise we could enumerate the car-
dinalities of countable T -interpretations as {(m1, 1), . . . , (mn, 1), (ℵ0, 1)} and straightforwardly
obtain a computable minimal model function. It follows that T has the finite model property,
since given a quantifier-free formula ϕ and a T -interpretation A where it is satisfied, we can
find another T -interpretation B with |σB

1 | finite and greater than or equal to |varsσ(ϕ)A|.

5.3 Summary
In Figure 2 we represent the results of this section through Venn diagrams. For Theorem 4

the diagram is straightforward: the intersection of theories with a computable minimal model
function and theories with the finite model property lies inside the domain of finitely witnessable
theories. Theorem 5 is also quite clear, but we must restrict ourselves to empty signatures. In
Theorem 8 the restriction is to the signature Σ2 alone, and we must choose different shapes for
our regions given bi-dimensional limitations. Meanwhile, for Theorem 6, we not only restrict
ourselves to empty signatures, but as we are dealing with the negation of a property we represent
all Σn-theories as the entire square. Notice that theories that are neither stably infinite nor
have a computable minimal model function are absent from the square. For Theorem 7 the
square represents all Σ1-theories.
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Section Theories Quantity
Section 6.1 Existing Theories 84
Section 6.2.1 New Busy Beaver Theories 7
Section 6.2.2 New Theories with a Non-computable Function 13
Section 6.2.3 New Derived Theories 16

Table 3: Summary of examples.

6 Proof of Theorem 3: The Possible Cases
The proof of the “only if" part of Theorem 3 amounts to providing examples of theories

that admit the combinations that are absent from Table 2. This part of the proof is quite long:
our analysis takes into account 10 binary properties: stable infiniteness, smoothness, finite
witnessability, strong finite witnessability, convexity, finite model property, stable finiteness
and computability of a minimal model function, as well as emptiness and one-sortedness of
the signature. That adds up to 1, 024 possible combinations, 884 of which were proven to be
impossible in [24, 25] and Section 5, and 20 of which remain open on whether they are possible
or not (corresponding to unicorn theories, as well as unicorn theories 2.0 and 3.0). Thus, 120
possibilities have examples. In 84 cases, the existing theories from [24, 25] can be utilized.
For them, one only needs to determine whether a minimal model function is computable. The
existing theories are, however, not enough. For the remaining 36 combinations the current
paper provides new theories that exhibit them.

The structure of the remainder of this section is described in Table 3. The examples from
[24, 25], and in particular, the computability of their minimal model functions, are addressed
in Section 6.1. The new theories are described in Section 6.2, and are further sub-categorized
into three classes of theories, in Sections 6.2.1 to 6.2.3. Table 3 also includes the number of
theories in each class. We provide several examples of each class of theories. The remaining
theories are defined in a similar manner.8

6.1 Existing Theories
In this section, we describe how the computability of a minimal model function can be

determined for all the theories from [24, 25]. We start with a theory that admits all the
properties.
Example 2. Consider the Σ1-theory T≥n from [24], whose models have at least n elements
(axiomatized by ψ≥n). It was shown in [24, 25] that it admits all properties, except for the
computability of a minimal model function, which was not studied there. For S = {σ1} we
can get a computable minimal model function by going over all arrangements of variables that
occur in the formula, and taking the one with the least induced equivalence classes. Of course,
if this number is less then n, then the model has to be enlarged to have n elements:

minmodT≥n,S(ϕ) =
{
max{n,min{|V/E| : ϕ and δEV are equivalent, V = vars(ϕ)}}

}
.

Now, let us move to an even simpler example, with a twist:

Example 3. Consider the Σ1-theory T∞ from [24], whose models are infinite (axiomatized by
{ψ≥n : n ∈ N\{0}}). It was shown in [24, 25] that it is stably infinite, smooth, and convex, while
not having any of the other properties (except for computability of the minimal model function,

8Full details are provided in [26].
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that was not considered there). It is easy to prove that, for S = {σ1}, minmodT∞,S(ϕ) = {ℵ0}
is a minimal model function, and also constant and therefore computable. The twist is that this
theory wouldn’t be considered to have a computable minimal model function by a definition
that demands the theory to be stably finite, as discussed in Proposition 3.

A class of examples without computable minimal model functions are those involving the
Busy Beaver function ς : N → N, such that ς(n) is the maximum number of 1’s a Turing machine
with at most n states can write to its tape when it halts (assuming the tape begin with only 0’s).
Its most important property for our purposes is that for any computable function h : N → N,
there exists n0 ∈ N such that ς(n) ≥ h(n) for all n ≥ n0, as shown by Radó ([18]). In [25] this
is used to separate the finite model property and stable finiteness from finite witnessability and
strong finite witnessability, but it can also separate the former properties from the computability
of a minimal model function.

Example 4. Consider the Σ1-theory Tς from [25], axiomatized by {ψ≥ς(n+2) ∨
∨n+2

i=2 ψ=ς(i) :
n ∈ N}. A finite interpretation A is a Tς -interpretation if and only if |σA

1 | = ς(n) for some
n ∈ N\{0}; and all infinite interpretations are Tς -interpretations. From [25], we know that it is
stably infinite, not smooth, convex, has the finite model property and is stably finite, without
being finitely witnessable or strongly finitely witnessable. It is then possible to show that Tς
does not have a computable minimal model function: indeed, suppose that it does. We can
then define an auxiliary function h : N → N by making h(0) = ς(0) = 0, h(1) = ς(1) = 1,
and, for n ∈ N \ {0}, h(n + 1) = m for m ∈ minmodTς ,{σ1}( ̸= (x1, . . . , xh(n)+1)) (for xi of
sort σ1). We then know that h(n+1) equals the cardinality of a Tς -interpretation with at least
h(n) + 1 elements, and thus we prove by induction that h(n) ≥ ς(n) for all n ∈ N. This leads
to a contradiction, as h is computable from its definition, but is not eventually bounded by ς.

The process of proving computability (or non-computability) of the other theories from [24,
25] is done in a similar manner to the above examples.

6.2 New Theories
In this section, we describe new theories, in order to show the feasibility of the remaining

combinations of properties. We start with Section 6.2.1, where we show how the busy beaver
function can be used to obtain several new theories, beyond those that were defined in [25]. We
also show some special formulas that are useful for defining theories in non-empty signatures.
Some combinations of properties were harder to handle, and for them, we introduce a new
non-computable function over the natural numbers in Section 6.2.2. Finally, in Section 6.2.3,
we show how to extend the obtained theories to more complex signatures.
6.2.1 New Theories With the Busy Beaver Function

We still use the Busy Beaver function for some of the theories in the current study, although
the resulting examples are not as straightforward as Tς . The following example shows a theory
that has none of the considered properties.
Example 5. Let TV be the Σ2-theory with axiomatization

{(ψσ1
=1 ∧ (ψσ2

≥ς(n+1) ∨
n∨

i=1

ψσ2

=ς(i))) ∨ (ψσ1
=2 ∧ (ψσ2

=2 ∨ ψ
σ2

≥n)) : n ∈ N \ {0}}.

By distributing the conjunctions over the disjunctions in the basic formula axiomatizing this
theory, and then analyzing the conjuncts, we can glimpse at what the models of TV look like.
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ψ ̸= = ∀x. ¬[s(x) = x]

ψk
= = ∀x. [sk(x) = x]

ψk
∨ = ∀x. [[s2k(x) = sk(x)] ∨ [s2k(x) = x]]

Figure 3: Special formulas: k ∈ N \ {0}, x is of sort σ1, and sk(x) is defined by s1(x) = s(x)
and sk+1(x) = s(sk(x)). We denote ψ1

= by ψ=, and ψ1
∨ by ψ∨.

ψσ1
=1 ∧ ψ

σ2

≥ς(n+1) When considered over all n ∈ N \ {0}, this gives us interpretations A with
|σA

1 | = 1 and σA
2 infinite.

ψσ1
=1 ∧ ψ

σ2

=ς(i) Corresponds to A with |σA
1 | = 1 and |σ2

A| = ς(n) for some n ∈ N \ {0}.

ψσ1
=2 ∧ ψ

σ2
=2 The interpretations A for this formula have |σA

1 | = |σA
2 | = 2.

ψσ1
=2 ∧ ψ

σ2

≥n This gives us interpretations A where |σA
1 | = 2 and σA

2 is infinite.

TV is then not stably infinite (and thus not smooth), as the cardinality of the domains
of sort σ1 of TV-interpretations is bounded by 2, what also helps prove TV is not convex: the
disjunction of equalities (x = y)∨(y = z)∨(x = z), with x, y, z of sort σ1, is TV-valid while none
of the disjuncts is. TV is not finitely witnessable (and thus not strongly finitely witnessable),
given the relationship between the cardinalities of its models and ς, the proof being similar to
that of the fact Tς does not have a computable minimal model function (Example 4); TV does
not have the finite model property (and is thus not stably finite), as ̸= (x1, x2)∧ ̸= (u1, u2, u3)
(for xi of sort σ1, and uj of sort σ2) can only be satisfied by a TV-interpretation A with |σA

1 | = 2
and σA

2 infinite; and, finally, TV does not have a computable minimal model function, by an
argument again similar to the one found in Example 4. To summarize, TV is a theory, over the
empty signature, with none of the considered properties.

The following example shows a theory that is convex, but has none of the other considered
properties. It relies on Σs-formulas from Figure 3, that encode various shapes of cycles that
functions can create (a cycle is a scenario in which applying a function some number of times
results in the original input). ψ ̸= holds in interpretations where s has no cycles of size 1. For
a positive k, ψk

= holds when the interpretation of s has cycles of size k, and ψk
∨ holds when the

cycles that the interpretation of s creates have one of the two forms described in the disjunction.
In particular, the formula ψ ̸=∧ψ2

∨ gets us the four scenarios represented in Figure 4. In a similar
way, we may wish to combine ψ̸= and ψ2

=, implying that in an interpretation A where both
hold sA always induces a cycle of size exactly 2. When k = 1, we omit it from ψk

= and ψk
∨.

Example 6. Let TIX be the Σs-interpretation with axiomatization

{(ψ≥2ς(n+1) ∧ ψ ̸=) ∨
n∨

i=2

(ψ=2ς(i) ∧ ψ ̸= ∧ ψ2
=) ∨ ψ=1 : n ∈ N \ {0, 1}}.

It has, essentially, three types of models A: a trivial one, with |σA
1 | = 1, and where sA is by

force the identity function; those with |σA
1 | finite and equal to some 2ς(n), for n ≥ 2, and where

ψ ̸= ∧ ψ2
= holds, meaning that sA always induces a cycle of size 2 (notice that we multiply ς(n)

by 2 to accommodate these cycles); and those with σA
1 infinite, and where ψ ̸= holds.
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a sA(a)

sA

sA

a sA(a) (sA)2(a) (sA)3(a)sA sA

sA

sA

a sA(a) (sA)2(a)sA

sA

sA

sA(a)

a (sA)2(a)

(sA)3(a)

sAsA

sAsA

Figure 4: Possible scenarios when ψ ̸= ∧ ψ2
∨ holds

TIX is not stably infinite (and thus not smooth), since s(x) = x is only satisfied by the
trivial model. It is not (strongly) finitely witnessable thanks to ς. It is convex, because of
the "determinism" of sA, which at most induces a cycle of size 2. It is not stably finite (and
thus does not have the finite model property), as ¬(s4(x) = x) is only satisfied by infinite
TIX-interpretations. Finally, it does not have a computable minimal model function, once again
thanks to ς.

The Busy Beaver function is similarly used to define 5 more theories with various properties.

6.2.2 Theories With a New Non-Computable Function

The most interesting example out of the present paper is that of a Σ1-theory that is stably
infinite but not smooth, finitely witnessable but not strongly so, stably finite, and convex but
without a computable minimal model function; we call this theory TI. We first prove the
existence of a function g : N \ {0} → N \ {0} with some key properties.
Lemma 2. There exists a function g : N \ {0} → N \ {0} that is 1) increasing; 2) unbounded;
3) non-surjective; 4) non-computable; and for which 5) there exists an increasing computable
function ρ : N \ {0} → N \ {0} such that g ◦ ρ is computable.9

Proof. Two of the theories in [24] rely on the existence of a non-computable function f :
N \ {0} → {0, 1} such that f(1) = 1 and, for every k ∈ N \ {0},

|{1 ≤ i ≤ 2k : f(i) = 0}| = |{1 ≤ i ≤ 2k : f(i) = 1}|

We can then define a new function g : N \ {0} → N \ {0} by making g(n) = n +
∑n

i=1 f(i) =∑n
i=1(f(i)+1). Then we have the following. 1) g is increasing, since g(n+1) = g(n)+f(n+1)+1,

and f(n+1) is either 0 or 1; 2) g is unbounded, as f is not computable and therefore infinitely
often equals 1; 3) it also follows that there are (infinitely many) values n ∈ N \ {0} such that
f(n+1) ̸= 0, and then g(n+1) > g(n)+1, meaning g is not surjective; 4) g is non-computable,
since if it were we could find an algorithm for calculating f : f(1) is fixed to be 1, and for n ≥ 1,
we notice that f(n+1) = g(n+1)−g(n)−1; and, finally, 5) for all k ∈ N\{0}, g(2k) = 3×2k−1,
since |{1 ≤ i ≤ 2k : f(i) = 0}| must equal |{1 ≤ i ≤ 2k : f(i) = 1}|, meaning both equal 2k−1,
from what follows that g composed with ρ(k) = 2k is computable.

9Notice that this does not hold for ς: it follows from [18] that for any increasing function ρ : N → N, ς ◦ ρ
grows at least as fast as ς, and thus eventually faster than any computable function, thus being non-computable.
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Now, we can define the theory TI.

Example 7. TI is the Σ1-theory with axiomatization {ψσ1

≥g(n) ∨
∨n

i=1 ψ
σ1

=g(i) : n ∈ N \ {0}}. It
has all the Σ1-interpretations whose domains have g(k) elements for some k, or infinitely many
elements, and only those.

Since g is increasing (property 1), and the signature is empty, different finite TI-interpre-
tations must have different cardinalities, which makes reasoning about TI easier. TI is stably
infinite, as whenever a quantifier-free formula is satisfied by one of its finite models, it is also
satisfied by (all) its infinite models. According to a result from [24], it is then convex. TI is
stably finite thanks to g being unbounded (property 2): that way, if a formula needs a certain
number of elements in an interpretation in order to be satisfied, we can always find a finite
TI-interpretation with at least that many elements. Similarly, by a result from [25], it also has
the finite model property. Further, since g is not surjective (property 3), TI is not smooth,
as there are "holes" in the cardinalities of its models. This, according to a result from [24],
also guarantees that TI is not strongly finitely witnessable. The fact that g is not computable
(property 4) implies that TI does not have a computable minimal model function: if it had
such a minmodTI,S (for S = {σ1}), this function could have been used to compute g simply
by hard-coding the value of g(1), and by making g(n+ 1) ∈ minmodTI,S( ̸= (x1, . . . , xg(n)+1))
(where the xi are of sort σ1).

Finally, as for the finite witnessability of TI: given a quantifier-free formula ϕ, let n be the
number of variables in it, and find the least k such that g(2k) = 3× 2k−1 ≥ n (an equality that
holds due to property 5). For xi fresh variables, we then have that wit(ϕ) = ϕ∧

∧g(2k)
i=1 xi = xi is

computable: it is furthermore clearly equivalent, and thus its existential closure is TI-equivalent,
to ϕ; and, lastly, if a TI-interpretation A satisfies ϕ, it is enough to add g(2k)− |σA

1 | elements
to it in order to find a TI-interpretation where all elements are witnessed.

Similarly to Section 6.2.1, we can use Figure 3 for theories related to g. In this way, we
present a theory that is finitely witnessable, has the finite model property and is stably finite,
without having any of the other properties.

Example 8. Consider the Σs-theory TXII, with axiomatization

{ψ=1 ∨ (ψ̸= ∧ ψ2
∨ ∧ (ψ≥2g(n+1) ∨

n∨
i=1

ψ=2g(i))) : n ∈ N \ {0}}.

It has three types of model A: a trivial one, with |σA
1 | = 1; finite but non-trivial ones, with

|σA
1 | = 2g(n) for some n ∈ N \ {0}, and where ψ̸= ∧ ψ2

∨ holds, and thus one of the scenarios in
Figure 4 holds; and infinite ones, where ψ̸= ∧ ψ2

∨ still holds. It is not stably infinite (and thus
not smooth), as s(x) = x is only satisfied by the trivial model; it is finitely witnessable but not
strongly so, thanks to the properties of g related to computability, which also guarantee that
TXII does not have a computable minimal model function; it is not convex, due to ψ2

∨; and it
has the finite model property, and is stably finite, given g is unbounded.

The function g is used in a similar manner to define 11 more theories with various properties.

6.2.3 Derived Theories

We have defined in [24] theory operators that, given a theory in the signatures of Table 1,
produce a different theory in a different signature, preserving properties of the original theory.
Definition 6.1 (Theory Operators from [24]).
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1. If T is a Σ1-(respectively Σs-)theory, then (T )2 is the Σ2-(Σ2
s-)theory axiomatized by

Ax(T ).10

2. If T is a Σn-theory, (T )s is the Σn
s -theory with axiomatization Ax(T ) ∪ {ψ=}.

3. If T is a Σn-theory, (T )∨ is the Σn
s -theory with axiomatization Ax(T ) ∪ {ψ∨}.

The first operator adds a sort to a theory, and the others add a function symbol. It was
proven in [24, 25] that the first two operators preserve convexity, stable infiniteness, smoothness,
finite witnessability, strong finite witnessability, the finite model property and stable finiteness,
as well as the absence of these properties. The third preserves all but convexity: (T )∨ admits
all the properties of T , except for the fact that it is guaranteed to never be convex. Here we
prove that all three operators preserve the (non-)computability of a minimal model function.

Theorem 9. Let T be a Σ1 or Σs-theory. Then: T has a computable minimal model function
with respect to {σ1} iff (T )2 has a computable minimal model function with respect to {σ1, σ2}.

Theorem 10. Let T be a Σn-theory. Then: T has a computable minimal model function w.r.t.
{σ1, . . . , σn} if, and only if, (T )s has a computable minimal model function w.r.t. {σ1, . . . , σn}.

Theorem 11. Let T be a Σn-theory. Then: T has a computable minimal model function w.r.t.
{σ1, . . . , σn} if, and only if, (T )∨ has a computable minimal model function w.r.t. {σ1, . . . , σn}.

These theorems are used in order to construct new theories in different signatures from
existing theories (that are either defined in [24, 25] or the current paper).

Example 9. The T≥n from Example 2 admits all the discussed properties w.r.t. to its only
sort. By [24, 25], all properties but the computability of a minimal model function also hold
for (T≥n)

2. By Theorem 9, this also holds for the computability of a minimal model function.

The operators are similarly used to define 14 more theories with various properties.

7 Conclusion and Future Work
Q: OK, I see what you did here. In [24, 25] every combination of the properties from a list of
properties related to politeness, shininess and the Nelson-Oppen method, was considered. Now
you have added the last property to this list, namely, the computability of a minimal model
function, thus completing all properties that relate to these combination methods.
A: Yes. The impossibility results show that there are cases in which one must prove a certain
combination of properties, without the ability to reduce them to others. The examples that we
found constitute a thorough taxonomic analysis of the properties, and also provide an invaluable
tool-set of techniques in order to explore them.

Q: So, are you finally done?
A: The job is never done. Some open problems remain, namely the existence of unicorns
of the three flavors. Further, one can consider more properties, such as decidability, finite

10In fact, [24] only defined this operator for Σ1-theories, even though it was used there also for Σs-theories.
Here we define it more generally, so that it also works in the presence of function symbols. In particular, this
clarifies that its usage in [24] for non-empty signatures was sound.
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axiomatizability, and more. Moreover, we have only considered properties with respect to the
whole set of sorts. We could also consider subsets. Finally, we have so many examples of
theories that one wonders whether producing them could be somehow automated. Theorems 9
to 11 definitely go in that direction, but perhaps even the construction of the more primitive
examples could be assisted by automation.

Q: Then let me just ask: couldn’t you think of a more serious name than unicorn theories?
A: Oh yeah, because smooth, polite and shiny are very serious... We are just keeping up with
the tradition!

References
[1] Haniel Barbosa et al. “cvc5: A Versatile and Industrial-Strength SMT Solver”. In: TACAS

(1). Vol. 13243. Lecture Notes in Computer Science. Springer, 2022, pp. 415–442.

[2] Clark Barrett et al. “Satisfiability Modulo Theories”. In: Handbook of Satisfiability, Second
Edition. Ed. by Armin Biere et al. Vol. 336. Frontiers in Artificial Intelligence and Appli-
cations. IOS Press, Feb. 2021. Chap. 33, pp. 825–885. url: http://www.cs.stanford.
edu/~barrett/pubs/BSST21.pdf.

[3] Clark W. Barrett, David L. Dill, and Aaron Stump. “A Generalization of Shostak’s
Method for Combining Decision Procedures”. In: FroCoS. Vol. 2309. Lecture Notes in
Computer Science. Springer, 2002, pp. 132–146.

[4] Filipe Casal and João Rasga. “Many-Sorted Equivalence of Shiny and Strongly Polite
Theories”. In: Journal of Automated Reasoning 60.2 (Feb. 2018), pp. 221–236. issn: 1573-
0670. doi: 10.1007/s10817-017-9411-y.

[5] Filipe Casal and João Rasga. “Revisiting the Equivalence of Shininess and Politeness”. In:
LPAR. Vol. 8312. Lecture Notes in Computer Science. Springer, 2013, pp. 198–212. doi:
10.1007/978-3-642-45221-5_15.

[6] Jürgen Christ and Jochen Hoenicke. “Weakly Equivalent Arrays”. In: FroCos. Vol. 9322.
Lecture Notes in Computer Science. Springer, 2015, pp. 119–134.

[7] Alessandro Cimatti et al. “The MathSAT5 SMT Solver”. In: TACAS. Vol. 7795. Lecture
Notes in Computer Science. Springer, 2013, pp. 93–107.

[8] Leonard Eugene Dickson. “Finiteness of the Odd Perfect and Primitive Abundant Num-
bers with n Distinct Prime Factors”. In: American Journal of Mathematics 35.4 (1913),
pp. 413–422. issn: 00029327, 10806377. url: http://www.jstor.org/stable/2370405
(visited on 01/29/2024).

[9] Bruno Dutertre. “Yices 2.2”. In: CAV. Vol. 8559. Lecture Notes in Computer Science.
Springer, 2014, pp. 737–744.

[10] Bruno Dutertre and Leonardo Mendonça de Moura. “A Fast Linear-Arithmetic Solver
for DPLL(T)”. In: CAV. Vol. 4144. Lecture Notes in Computer Science. Springer, 2006,
pp. 81–94.

[11] Yuri Gurevich. “On Kolmogorov Machines and Related Issues”. In: Current Trends in
Theoretical Computer Science. Vol. 40. World Scientific Series in Computer Science. World
Scientific, 1993, pp. 225–234.

[12] Dejan Jovanovic and Clark W. Barrett. “Polite Theories Revisited”. In: LPAR (Yo-
gyakarta). Vol. 6397. Lecture Notes in Computer Science. Springer, 2010, pp. 402–416.

34

http://www.cs.stanford.edu/~barrett/pubs/BSST21.pdf
http://www.cs.stanford.edu/~barrett/pubs/BSST21.pdf
https://doi.org/10.1007/s10817-017-9411-y
https://doi.org/10.1007/978-3-642-45221-5_15
http://www.jstor.org/stable/2370405


Combining Combination Properties: Minimal Models Toledo and Zohar

[13] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic Point of
View, Second Edition. Texts in Theoretical Computer Science. An EATCS Series. Springer,
2016.

[14] María Monzano. “Introduction to Many-sorted Logic”. In: Many-sorted Logic and its Ap-
plications. Ed. by K. Meinke and J. V. Tucker. Wiley professional computing. Wiley,
1993.

[15] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. “Z3: An Efficient SMT Solver”. In:
TACAS. Vol. 4963. Lecture Notes in Computer Science. Springer, 2008, pp. 337–340.

[16] Greg Nelson and Derek C. Oppen. “Simplification by Cooperating Decision Procedures”.
In: ACM Trans. Program. Lang. Syst. 1.2 (Oct. 1979), pp. 245–257. issn: 0164-0925. doi:
10.1145/357073.357079. url: https://doi.org/10.1145/357073.357079.

[17] Aina Niemetz and Mathias Preiner. “Bitwuzla”. In: CAV (2). Vol. 13965. Lecture Notes
in Computer Science. Springer, 2023, pp. 3–17.

[18] T. Radó. “On non-computable functions”. In: The Bell System Technical Journal 41.3
(1962), pp. 877–884. doi: 10.1002/j.1538-7305.1962.tb00480.x.

[19] Silvio Ranise, Christophe Ringeissen, and Calogero G. Zarba. “Combining data structures
with nonstably infinite theories using many-sorted logic”. In: 5th International Workshop
on Frontiers of Combining Systems - FroCoS’05. Ed. by Bernard Gramlich. Vol. 3717.
Lecture Notes in Artificial Intelligence. Vienna: Springer, Sept. 2005, pp. 48–64. doi:
10.1007/11559306. url: https://hal.inria.fr/inria-00000570.

[20] Silvio Ranise, Christophe Ringeissen, and Calogero G. Zarba. “Combining data structures
with nonstably infinite theories using many-sorted logic”. In: 5th International Workshop
on Frontiers of Combining Systems - FroCoS’05. Ed. by Bernard Gramlich. Vol. 3717.
Lecture Notes in Artificial Intelligence. Vienna: Springer, Sept. 2005, pp. 48–64. doi:
10.1007/11559306. url: https://hal.inria.fr/inria-00000570.

[21] Ying Sheng et al. “Politeness and Stable Infiniteness: Stronger Together”. In: Automated
Deduction – CADE 28. Ed. by André Platzer and Geoff Sutcliffe. Cham: Springer Inter-
national Publishing, 2021, pp. 148–165. isbn: 978-3-030-79876-5. doi: 10.1007/978-3-
030-79876-5_9.

[22] Cesare Tinelli and Calogero Zarba. Combining decision procedures for theories in sorted
logics. Tech. rep. 04-01. Department of Computer Science, The University of Iowa, Feb.
2004. doi: 10.1007/978-3-540-30227-8_53.

[23] Cesare Tinelli and Calogero G. Zarba. “Combining Nonstably Infinite Theories”. In: Jour-
nal of Automated Reasoning 34.3 (Apr. 2005), pp. 209–238. issn: 1573-0670. doi: 10.
1007/s10817-005-5204-9. url: https://doi.org/10.1007/s10817-005-5204-9.

[24] Guilherme V. Toledo, Yoni Zohar, and Clark Barrett. “Combining Combination Proper-
ties: An Analysis of Stable Infiniteness, Convexity, and Politeness”. In: Automated De-
duction – CADE 29. Ed. by Brigitte Pientka and Cesare Tinelli. Cham: Springer Nature
Switzerland, 2023, pp. 522–541.

[25] Guilherme V. Toledo, Yoni Zohar, and Clark Barrett. “Combining Finite Combination
Properties: Finite Models and Busy Beavers”. In: Frontiers of Combining Systems. Ed. by
Uli Sattler and Martin Suda. Cham: Springer Nature Switzerland, 2023, pp. 159–175.

[26] Guilherme Vicentin de Toledo and Yoni Zohar. Combining Combination Properties: Min-
imal Models. 2024. arXiv: 2405.01478 [cs.LO].

35

https://doi.org/10.1145/357073.357079
https://doi.org/10.1145/357073.357079
https://doi.org/10.1002/j.1538-7305.1962.tb00480.x
https://doi.org/10.1007/11559306
https://hal.inria.fr/inria-00000570
https://doi.org/10.1007/11559306
https://hal.inria.fr/inria-00000570
https://doi.org/10.1007/978-3-030-79876-5_9
https://doi.org/10.1007/978-3-030-79876-5_9
https://doi.org/10.1007/978-3-540-30227-8_53
https://doi.org/10.1007/s10817-005-5204-9
https://doi.org/10.1007/s10817-005-5204-9
https://doi.org/10.1007/s10817-005-5204-9
https://arxiv.org/abs/2405.01478

